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Last Time: We finished Chapter 9: Nonlinear Differential Equations and Stability. Now we
start Chapter 10: Partial Differential Equations and Fourier Series

1 Two-Point Boundary Value Problems and Eigenfunctions

1.1 Boundary Conditions

Up until now, we have studied ordinary differential equations and initial value problems. Now
we shift to partial differential equations and boundary value problems. Partial differential equa-
tions are much more complicated, but are essential in modeling many complex systems found in
nature. We need to specify how the solution should behave on the boundary of the region our
equation is defined on. The data we prescribe are theboundary values or boundary conditions,
and a combination of a differential equation and boundary conditions is called aboundary value
problem.

Boundary Conditions depend on the domain of the problem. Foran ordinary differential equa-
tion our domain was usually some interval on the real line. With a partial differential equation our
domain might be an interval or it might be a square in the two-dimensional plane. To see how
boundary conditions effect an equation let’s examine how they affect the solution of an ordinary
differential equation.

Example 1. Let’s consider the second order differential equationy′′+y = 0. Specifying boundary
conditions for this equation involves specifying the values of the solution (or its derivatives) at two
points, recall this is because the equation is second order.Consider the interval(0, 2π) and specify
the boundary conditionsy(0) = 0 andy(2π) = 0. We know the solutions to the equation have the
form

y(x) = A cos(x) + B sin(x). (1)

by the method of characteristics. Applying the first boundary condition we see0 = y(0) = A.
Applying the second condition gives0 = y(2π) = B sin(2π), butsin(2π) is already zero soB can
be any number. So the solutions to this boundary value problem are any functions of the form

y(x) = B sin(x). (2)
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Example 2. Considery′′ + y = 0 with boundary conditionsy(0) = y(6) = 0. this seems similar
to the previous problem, the solutions still have the general form

y(x) = A cos(x) + B sin(x) (3)

and the first condition still tells usA = 0. The second condition tells us that0 = y(6) = B sin(6).
Now sincesin(6) 6= 0, so we must haveB = 0 and the entire solution isy(x) = 0.

Boundary value problems occur in nature all the time. Examine the examples physically. We
know from previous chaptersy′′+y = 0 models an oscillator such as a rock hanging from a spring.
The rock will oscillate with frequency1

2π
. The conditiony(0) = 0 just means that when we start

observing, we want the rock to be at the equilibrium spot. If we specifyy(2π) = 0, this will
automatically happen, since the motion is2π periodic. On the other hand, it is impossible for the
rock to return to the equilibrium point after 6 seconds. It will come back in2π seconds, which is
more than 6. So the only possible way the rock can be at equilibrium after 6 seconds is if it does
not leave, which is why the only solution is the zero solution.

The previous examples arehomogeneous boundary value problems. We say that a boundary
problem is homogeneous if the equation is homogeneous and the two boundary conditions involve
zero. That is, homogeneous boundary conditions might be oneof these types

y(x1) = 0 y(x2) = 0 (4)

y′(x1) = 0 y(x2) = 0 (5)

y(x1) = 0 y′(x2) = 0 (6)

y′(x1) = 0 y′(x2) = 0. (7)

On the other hand, if the equation is nonhomogeneous or any ofthe boundary conditions do not
equal zero, then the boundary value problem isnonhomogenous or inhomogeneous. Let’s look
at some examples of nonhomogeneous boundary value problems.

Example 3. Takey′′ + 9y = 0 with boundary conditionsy(0) = 2 andy(π

6
) = 1. The general

solution to the differential equation is

y(x) = A cos(3x) + B sin(3x). (8)

The two conditions give

2 = y(0) = A (9)

1 = y(
π

6
) = B (10)

so that the solution is
y(x) = 2 cos(3x) + sin(3x) (11)

Example 4. Takey′′ + 9y = 0 with boundary conditionsy(0) = 2 andy(2π) = 2. The general
solution to the differential equation is

y(x) = A cos(3x) + B sin(3x). (12)
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The two conditions give

2 = y(0) = A (13)

2 = y(2π) = A. (14)

This time the second condition did not give and new information, like in Example 1 andB does not
affect whether or not the solution satisfies the boundary conditions or not. We then have infinitely
many solutions of the form

y(x) = 2 cos(3x) + B sin(3x) (15)

Example 5. Takey′′ + 9y = 0 with boundary conditionsy(0) = 2 andy(2π) = 4. The general
solution to the differential equation is

y(x) = A cos(3x) + B sin(3x). (16)

The two conditions give

2 = y(0) = A (17)

4 = y(2π) = A. (18)

On one hand,A = 2 and by the second equationA = 4. This is impossible and this boundary
value problem has no solutions.

These examples illustrate that a small change to the boundary conditions can dramatically
change the problem, unlike small changes in the initial datafor initial value problems.

1.2 Eigenvalue Problems

Recall the system studied extensively in previous chapters

Ax = λx (19)

where for certain values ofλ, called eigenvalues, there are nonzero solutions called eigenvectors.
We have a similar situation with boundary value problems.

Consider the problem
y′′ + λy = 0 (20)

with boundary conditionsy(0) = 0 and y(π) = 0. The values ofλ where we get nontrivial
(nonzero) solutions will beeigenvalues. The nontrivial solutions themselves are calledeigenfunc-
tions.

We need to consider three cases separately.
(1) If λ > 0, then it is convenient to letλ = µ2 and rewrite the equation as

y′′ + µ2y = 0 (21)
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The characteristic polynomial isr2 + µ2 = 0 with rootsr = ±iµ. So the general solution is

y(x) = A cos(µx) + B sin(µx) (22)

Note thatµ 6= 0 sinceλ > 0. Recall the boundary conditions arey(0) = 0 andy(π) = 0. So the
first boundary condition givesA = 0. The second boundary condition reduces to

B sin(µπ) = 0 (23)

For nontrivial solutionsB 6= 0. Sosin(µπ) = 0. Thusµ = 1, 2, 3, ... and thus the eigenvaluesλn

are1, 4, 9, ..., n2. The eigenfunctions are only determined up to arbitrary constant, so convention
is to choose the arbitrary constant to be 1. Thus the eigenfunctions are

y1(x) = sin(x) y2(x) = sin(2x), ..., yn(x) = sin(nx) (24)

(2) If λ < 0, let λ = −µ2. So the above equation becomes

y′′ − µ2y = 0 (25)

The characteristic equation isr2−µ2 = 0 with rootsr = ±µ, so its general solution can be written
as

y(x) = A cosh(µx) + B sinh(µx) = Ceµx + De−µx (26)

The first boundary condition, if considering the first form, gives A = 0. The second boundary
condition givesB sinh(µπ) = 0. Sinceµ 6= 0, thensinh(µπ) 6= 0, and thereforeB = 0. So for
λ < 0 the only solution isy = 0, there are no nontrivial solutions and thus no eigenvalues.

(3) If λ = 0, then the equation above becomes

y′′ = 0 (27)

and the general solution if we integrate twice is

y(x) = Ax + B (28)

The boundary conditions are only satisfied whenA = 0 andB = 0. So there is only the trivial
solutiony = 0 andλ = 0 is not an eigenvalue.

To summarize we only getreal eigenvalues and eigenvectors whenλ > 0. There may be
complex eigenvalues. A basic problem studied later in the chapter is

y′′ + λy = 0, y(0) = 0, y(L) = 0 (29)

Hence the eigenvalues and eigenvectors are

λn =
n2π2

L2
, yn(x) = sin(

nπx

L
) for n = 1, 2, 3, ... (30)

This is the classicalEuler Buckling Problem.
Review Euler’s Equations:
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Example 6. Consider equation of the form

t2y′′ + ty′ + y = 0 (31)

and letx = ln(t). Then

dy

dt
=

dy

dx

dx

dt
=

1

t

dy

dx
(32)

d2y

dx2
=

d

dt
(
dy

dx
)
1

t
+

dy

dx
(
1

t
)
dy

dx
(33)

=
d2y

dx2

1

t2
+

dy

dx
(−

1

t2
) (34)

(35)

Plug these back into the original equation

t2y′′ + ty + y =
d2y

dx2
−

dy

dx
+

dy

dx
+ y = 0 (36)

= y′′ + y = 0 (37)

Thus the characteristic equation isr2 + 1 = 0, which has rootsr = ±i. So the general solution is

ŷ(x) = c1 cos(x) + c2 sin(x) (38)

Recalling thatx = ln(t) our final solution is

y(x) = c1 cos(ln(t)) + c2 sin(ln(t)) (39)

HW 10.1 # 1,4,8,10,11,15,17

Hint: You may have to use the method of undetermined coefficients for nonhomogeneous prob-
lems.
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