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Last Time: We finished Chapter 9: Nonlinear Differential Btjans and Stability. Now we
start Chapter 10: Partial Differential Equations and FeruSeries

1 Two-Point Boundary Value Problems and Eigenfunctions

1.1 Boundary Conditions

Up until now, we have studied ordinary differential equasi@and initial value problems. Now
we shift to partial differential equations and boundaryueaproblems. Partial differential equa-
tions are much more complicated, but are essential in muogleliany complex systems found in
nature. We need to specify how the solution should behavd@moundary of the region our
equation is defined on. The data we prescribe ardtiuadary values or boundary conditions,
and a combination of a differential equation and boundandimns is called doundary value
problem.

Boundary Conditions depend on the domain of the problemaRardinary differential equa-
tion our domain was usually some interval on the real lineth\Wipartial differential equation our
domain might be an interval or it might be a square in the tioethsional plane. To see how
boundary conditions effect an equation let's examine haey #ifect the solution of an ordinary
differential equation.

Example 1. Let’s consider the second order differential equatjvry = 0. Specifying boundary
conditions for this equation involves specifying the valoéthe solution (or its derivatives) at two
points, recall this is because the equation is second dodersider the interval), 27) and specify
the boundary conditiong(0) = 0 andy(27) = 0. We know the solutions to the equation have the
form

y(x) = Acos(x) + Bsin(z). (1)
by the method of characteristics. Applying the first bougdaondition we se® = y(0) = A.
Applying the second condition gives= y(27) = Bsin(27), butsin(27) is already zero s@ can
be any number. So the solutions to this boundary value pmobke any functions of the form

y(z) = Bsin(z). 2
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Example 2. Considery” + y = 0 with boundary conditiong(0) = y(6) = 0. this seems similar
to the previous problem, the solutions still have the gdrfere

y(x) = Acos(x) + Bsin(z) (3)

and the first condition still tells ud = 0. The second condition tells us that y(6) = Bsin(6).
Now sincesin(6) # 0, so we must havé& = 0 and the entire solution ig(z) = 0.

Boundary value problems occur in nature all the time. Exantive examples physically. We
know from previous chapterg +y = 0 models an oscillator such as a rock hanging from a spring.
The rock will oscillate with frequencz%. The conditiony(0) = 0 just means that when we start
observing, we want the rock to be at the equilibrium spot. é&f specifyy(27) = 0, this will
automatically happen, since the motiorisperiodic. On the other hand, it is impossible for the
rock to return to the equilibrium point after 6 seconds. Il sdme back iR2w seconds, which is
more than 6. So the only possible way the rock can be at equitibafter 6 seconds is if it does
not leave, which is why the only solution is the zero solution

The previous examples anemogeneous boundary value problems. We say that a boundary
problem is homogeneous if the equation is homogeneous andithboundary conditions involve
zero. That is, homogeneous boundary conditions might bebtinese types

y(r1) 0 y(z2) =0 (4)
y'(x1) = 0 y(z2) =0 (5)
y(r) = 0 y'(z2) =0 (6)
y'(z1) = 0 y'(z2) =0 (7)

On the other hand, if the equation is nonhomogeneous or athyedfoundary conditions do not
equal zero, then the boundary value problemashomogenous or inhomogeneous. Let’s look
at some examples of nonhomogeneous boundary value prablems

Example 3. Takey” + 9y = 0 with boundary conditiong(0) = 2 andy(%) = 1. The general
solution to the differential equation is

y(x) = Acos(3z) 4+ Bsin(3z). (8)
The two conditions give
2 = y(0)=4 (9)
L= y(g)=8 (10)
so that the solution is
y(x) = 2 cos(3z) + sin(3x) (11)

Example 4. Takey” + 9y = 0 with boundary conditiong(0) = 2 andy(27) = 2. The general
solution to the differential equation is

y(x) = Acos(3x) + Bsin(3z). (12)
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The two conditions give

y(0)=A (13)
y(2m) = A. (14)

This time the second condition did not give and new infororatiike in Example 1 and® does not
affect whether or not the solution satisfies the boundargitimms or not. We then have infinitely
many solutions of the form

y(x) = 2cos(3z) + Bsin(3x) (15)

Example 5. Takey” + 9y = 0 with boundary conditiong(0) = 2 andy(27) = 4. The general
solution to the differential equation is

y(x) = Acos(3x) + Bsin(3z). (16)

The two conditions give
2 = y(0)=A (17)
y(2m) = A. (18)

On one handA = 2 and by the second equatioh = 4. This is impossible and this boundary
value problem has no solutions.

These examples illustrate that a small change to the boyrmarditions can dramatically
change the problem, unlike small changes in the initial @@tanitial value problems.

1.2 Eigenvalue Problems

Recall the system studied extensively in previous chapters
Ax = \x (29

where for certain values of, called eigenvalues, there are nonzero solutions caltgsheectors.
We have a similar situation with boundary value problems.
Consider the problem
y' +Ay=0 (20)

with boundary conditiong(0) = 0 andy(r) = 0. The values of\ where we get nontrivial
(nonzero) solutions will beigenvalues. The nontrivial solutions themselves are cakegenfunc-
tions.

We need to consider three cases separately.

(1) If A > 0, then it is convenient to let = 12 and rewrite the equation as

y'+pty =0 (21)



The characteristic polynomial i€ + 2 = 0 with rootsr = +iu. So the general solution is
y(x) = Acos(ux) + Bsin(uz) (22)

Note thaty # 0 sinceX > 0. Recall the boundary conditions ay&)) = 0 andy(w) = 0. So the
first boundary condition gived = 0. The second boundary condition reduces to

Bsin(um) =0 (23)

For nontrivial solutiong3 # 0. Sosin(um) = 0. Thusy = 1,2, 3, ... and thus the eigenvalueg
arel,4,9,...,n%. The eigenfunctions are only determined up to arbitrarystamt, so convention
is to choose the arbitrary constant to be 1. Thus the eigetiturs are

y1(x) =sin(z) yo(x) = sin(2x), ..., yo(x) = sin(nx) (24)

(2) If A <0, let \ = —u2. So the above equation becomes

y" — Py =0 (25)

The characteristic equationsi$— ;2 = 0 with rootsr = 4y, so its general solution can be written
as
y(x) = Acosh(ux) + Bsinh(uzx) = Ce"” + De (26)

The first boundary condition, if considering the first fornivegs A = 0. The second boundary
condition givesB sinh(um) = 0. Sinceu # 0, thensinh(ur) # 0, and therefore3 = 0. So for
A < 0 the only solution igy = 0, there are no nontrivial solutions and thus no eigenvalues.

(3) If A =0, then the equation above becomes

y' =0 (27)
and the general solution if we integrate twice is
y(x) = Ax+ B (28)

The boundary conditions are only satisfied wheén= 0 and B = 0. So there is only the trivial
solutiony = 0 and\ = 0 is not an eigenvalue.

To summarize we only gateal eigenvalues and eigenvectors when> 0. There may be
complex eigenvalues. A basic problem studied later in thzgtdr is

y' + =0, y(0)=0, y(L)=0 (29)

Hence the eigenvalues and eigenvectors are

n27r2 nmwx

Ao =3 yn(w) =sin(——) for n=1,2,3,.. (30)

This is the classicdtuler Buckling Problem.
Review Euler’'s Equations:



Example 6. Consider equation of the form
" +ty +y=0 (31)

and letr = In(¢). Then

dy dyd_x _ldy

G T dedt tdr (32)
d*y d dy 1 dy, 1 dy
A A T A 4 33
dx? dt(dx)t d:c(t)dx (33)
d*y1 dy, 1
= wet e (34
(35)
Plug these back into the original equation
d*y dy dy

2,1 - _ < _ < = —

Yy +ty+y = 72 d:c+dx+y 0 (36)

Thus the characteristic equation-s+ 1 = 0, which has roots = +i. So the general solution is
y(x) = ¢1 cos(x) + ¢y sin(z) (38)
Recalling that: = In(¢) our final solution is
y(x) = ¢y cos(In(t)) + cosin(In(t)) (39)
HwW 10.1#1,4,8,10,11,15,17

Hint: You may have to use the method of undetermined coefiisi®or nonhomogeneous prob-
lems.



