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Last Time: We studied the heat equation and the method of Separation of Variables. We then
used Separation of Variables to solve the heat equation and looked at the form of the typical solu-
tion.

1 Fourier Series

Last lecture, we identified solutions of the heat equation having the form

ut = uxx (1)

0 < x < l, t > 0, with homogeneous Dirichlet conditions atu(0, t) = u(l, t) = 0, had the form

u(x, t) =
∞

∑

n=1

Ane
−(nπ

l
)2kt sin(

nπx

l
). (2)

while the heat equation with homogeneous Neumann conditionsux(0, t) = ux(l, t) = 0 had solu-
tions of the form

u(x, t) =
1

2
A0 +

∞
∑

n=1

Ane
−(nπ

l
)2kt cos(

nπx

l
). (3)

For this to make sense given an initial conditionu(x, 0) = f(x), for the Dirichlet case we need to
be able to writef(x) as

f(x) =
∞

∑

n=1

An sin(
nπx

l
) (4)

for some coefficientsAn, while in the Neumann case it must have the form

f(x) =
1

2
A0 +

∞
∑

n=1

An cos(
nπx

l
) (5)

for appropriate coefficients. Equation (??) is called aFourier Sine Series of f(x) and an expres-
sion like Equation (??) is called aFourier Cosine Series of f(x).
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There are two key things to keep in mind:

(1) Is it possible to find appropriate coefficients for the Fourier Sine and Cosine series for a given
f(x)?

(2) For whichf(x) will the Fourier series converge, if any? What will the Fourier Series con-
verge to?

Section 10.2 will focus on finding the coefficients of the Fourier Series, while Section 10.3 will
address convergence.

1.1 The Euler-Fourier Formula

We have a famous formula for the Fourier Coefficients, calledtheEuler-Fourier Formula.

1.1.1 Fourier Sine Series

Start by considering the Fourier Sine Series

f(x) =
∞

∑

n=1

An sin(
nπx

l
). (6)

How can we find the coefficientsAn? Observe that sine functions have the following property

∫

l

0

sin(
nπx

l
) sin(

mπx

l
)dx = 0 (7)

if m 6= n are both positive integers. This can be seen by direct integration. Recall the trig identity

sin(a) sin(b) =
1

2
cos(a − b) −

1

2
cos(a + b). (8)

Then the integral in Equation (??) equals

l

2(m − n)π
sin(

(m − n)πx

l
)|l0 −

l

2(m + n)π
sin(

(m + n)πx

l
)|l0 (9)

so long asm 6= n. But these terms are just linear combinations ofsin((m ± n)π) andsin(0), and
thus everything is zero.

Now, fix m and multiply Equation (??) (Fourier Sine Series) bysin(mπx

l
). Integrating term by

term we get

∫

l

0

f(x) sin(
mπx

l
)dx =

∫

l

0

∞
∑

n=1

An sin(
nπx

l
) sin(

mπx

l
)dx (10)

=
∞

∑

n=1

∫

l

0

sin(
nπx

l
) sin(

mπx

l
)dx. (11)
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Due to the above work the only term that remains is whenm = n. So all we have left is
∫

l

0

f(x) sin(
mπx

l
)dx = Am

∫

l

0

sin2(
mπx

l
) =

1

2
lAm (12)

and so

Am =
2

l

∫

l

0

f(x) sin(
mπx

l
)dx. (13)

In summary. Iff(x) has a Fourier sine expansion, the coefficients must be given by Equa-
tion (??). These are the only possible coefficients for such a series,but we have not shown that the
Fourier Sine Series is a valid expression forf(x).

Example 1. Compute a Fourier Sine Series forf(x) = 1 on0 ≤ x ≤ l.
By Equation (??), the coefficients must be given by

Am =
2

l

∫

l

0

sin(
mπx

l
)dx. (14)

= −
2

mπ
cos(

mπx

l
)|l0 (15)

=
2

mπ
(1 − cos(mπ)) =

2

mπ
(1 − (−1)m). (16)

So we haveAm = 4
mπ

if m is odd andAm = 0 if m is even. Thus, on(0, l)

1 =
4

π
(sin(

πx

l
) +

1

3
sin(

3πx

l
) +

1

5
sin(

5πx

l
) + ...) (17)

=
4

π

∞
∑

n=1

1

2n − 1
sin(

(2n − 1)πx

l
). (18)

Example 2. Compute the Fourier Sine Series forf(x) = x on0 ≤ x ≤ l.
In this case Equation (??) yields a formula for the coefficients

Am =
2

l

∫

l

0

x sin(
mπx

l
)dx (19)

= −
2x

mπ
cos(

mπx

l
)|l0 +

2l

m2π2
sin(

mπx

l
)|l0 (20)

= −
2l

mπ
cos(mπ) +

2l

m2π2
sin(mπ) (21)

= (−1)m+1 2l

mπ
. (22)

So on(0, l), we have

x =
2l

π

(

sin(
πx

l
) −

1

2
sin(

2πx

l
) +

1

3
sin(

3πx

l
) − ...

)

(23)

=
2l

π

∞
∑

n=1

1

2n − 1
sin

(

(2n − 1)πx

l

)

−
1

2n
sin

(

2nπx

l

)

. (24)
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1.1.2 Fourier Cosine Series

Now let’s consider the Fourier Cosine Series

f(x) =
1

2
A0 +

∞
∑

n=1

An cos(
nπx

l
). (25)

We can use the following property of cosine

∫

l

0

cos(
nπx

l
) cos(

mπx

l
)dx = 0. (26)

Verify this for an exercise.
By the exact same computation as before for sines, we replacesines with cosines, ifm 6= 0 we

get
∫

l

0

f(x) cos(
mπx

l
)dx = Am

∫

l

0

cos2(
mπx

l
)dx =

1

2
lAm. (27)

If m = 0, we have
∫

l

0

f(x) · 1dx =
1

2
A0

∫

l

0

12 =
1

2
lA0. (28)

Thus, for allm > 0, we have

Am =
2

l

∫

l

0

f(x) cos(
mπx

l
)dx. (29)

This is why we have the1
2

in front of A0 (so it has the same form asAm for m 6= 0).

Example 3. Compute the Fourier Cosine Series forf(x) = 1 on0 ≤ x ≤ l.
By Equation (??), the coefficients whenm 6= 0 are

Am =
2

l

∫

l

0

cos(
mπx

l
)dx (30)

=
2

mπ
sin(

mπx

l
)|l0 (31)

=
2

mπ
sin(mπ) = 0. (32)

So the only coefficient we have occurs areA0, and this Fourier Cosine Series is then trivial

1 = 1 + 0 cos(
πx

l
) + 0 cos(

2πx

l
) + ... (33)

Example 4. Compute the Fourier Cosine Series forf(x) = x.

4



Form 6= 0,

Am =
2

l

∫

l

0

x cos(
mπx

l
)dx (34)

=
2x

mπ
sin(

mπx

l
) +

2l

m2π2
cos(

mπx

l
)|l0 (35)

=
2l

mπ
sin(mπ) +

2l

m2π2
(cos(mπ) − 1) (36)

=
2l

m2π2
((−1)m − 1) (37)

=

{

− 4l

m2π2 m odd

0 m even
. (38)

If m = 0, we have

A0 =
2

l

∫

l

0

xdx = l. (39)

So on(0, l), we have the Fourier Cosine Series

x =
l

2
−

4l

π2

(

cos(
πx

l
) +

1

9
cos(

3πx

l
) +

1

25
cos(

5πx

l
) + ...

)

(40)

=
l

2
+

4l

π2

∞
∑

n=1

1

(2n − 1)2
cos

(

(2n − 1)πx

l

)

. (41)

1.1.3 Full Fourier Series

The full Fourier Series off(x) on the interval−l < x < l, is defined as

f(x) =
1

2
A0 +

∞
∑

n=1

An cos(
nπx

l
) + Bn sin(

nπx

l
). (42)

REMARK: Be careful, now the interval we are working with is twice as long−l < x < l.
The computation of the coefficients for the formulas is analogous to the Fourier Sine and Cosine

series. We need the following set of identities:
∫

l

−l

cos(
nπx

l
) sin(

mπx

l
)dx = 0 for n, m (43)

∫

l

−l

cos(
nπx

l
) cos(

mπx

l
)dx = 0 for n 6= m (44)

∫

l

−l

sin(
nπx

l
) sin(

mπx

l
)dx = 0 for n 6= m (45)

∫

l

−l

1 · cos(
nπx

l
)dx = 0 =

∫

l

−l

1 · sin(
nπx

l
)dx. (46)
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Thus, using the same procedure as above for sine and cosine, we can get the coefficients. We fix
m and multiply bycos(mπx

l
), and do the same forsin(mπx

l
). So we need to calculate the integrals

of the squares
∫

l

−l

cos2(
nπx

l
)dx = 1 =

∫

l

−l

sin2(
nπx

l
)dx and

∫

l

−l

12dx = 2l (47)

EXERCISE: Verify the above integrals.
So we get the following formulas

Am =
1

l

∫

l

−l

f(x) cos(
mπx

l
)dx (n = 1, 2, 3, ...) (48)

Bm =
1

l

∫

l

−l

f(x) sin(
mπx

l
)dx (n = 1, 2, 3, ...) (49)

for the coefficients of the full Fourier Series. Notice that the first equation is exactly the same as we
got when considering the Fourier Cosine Series and the second equation is the same as the solution
for the Fourier Sine Series.NOTE: The intervals of integration are different!

Example 5. Compute the Fourier Series off(x) = 1 + x.
Using the above formulas we have

A0 =
1

l

∫

l

−l

(1 + x)dx = 2 (50)

Am =
1

l

∫

l

−l

(1 + x) cos(
mπx

l
)dx (51)

=
1 + x

mπ
sin(

mπx

l
) +

1

m2π2
cos(

mπx

l
)|l
−l

(52)

=
1

m2π2
(cos(mπ) − cos(−mπ)) = 0 m 6= 0 (53)

Bm =
1

l

∫

l

−l

(1 + x) sin(
mπx

l
)dx (54)

= −
1 + x

mπ
cos(

mπx

l
) +

1

m2π2
sin(

mπx

l
)|l
−l

(55)

= −
2l

mπ
cos(mπ) = (−1)m+1 2l

mπ
. (56)

So the full Fourier series off(x) is

1 + x = 1 +
2l

π
(sin(

πx

l
) −

1

2
sin(

2πx

l
) +

1

3
sin(

3πx

l
) − ...) (57)

= 1 +
2l

π

∞
∑

n=1

1

2n − 1
sin(

(2n − 1)πx

l
) −

1

2n
sin(

2nπx

l
). (58)
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