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Last Time: We studied the heat equation and the method ofr&&ma of Variables. We then

used Separation of Variables to solve the heat equationcarkedl at the form of the typical solu-
tion.

1 Fourier Series

Last lecture, we identified solutions of the heat equationrgathe form

Ut = Ugy (l)
0 <z <I,t> 0, with homogeneous Dirichlet conditions@&i0, t) = u(l,t) = 0, had the form
ZA e~ Tk gin mlrx) (2)

while the heat equation with homogeneous Neumann conditig, t) = u,(l,¢) = 0 had solu-

tions of the form
nmx

——AO+ZA6 CEP cos(—-). 3)

For this to make sense given an initial condltm(m 0) = f(z), for the Dirichlet case we need to
be able to writef (z) as

=3 Ausin(") (@)
for some coefficients!,,, while in the Neumann case it must have the form
nmnx
= —A A, 5
f(@) O+Z cos(“7) )

for appropriate coefficients. Equatio??) is called aFourier Sine Series of f(x) and an expres-
sion like Equation??) is called aFourier Cosine Seriesof f(z).
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There are two key things to keep in mind:

(1) Is it possible to find appropriate coefficients for the FewSine and Cosine series for a given
f(z)?

(2) For which f(x) will the Fourier series converge, if any? What will the FeurSeries con-
verge to?

Section 10.2 will focus on finding the coefficients of the ReuBeries, while Section 10.3 will
address convergence.

1.1 TheEuler-Fourier Formula

We have a famous formula for the Fourier Coefficients, cathedEuler-Fourier Formula.

1.1.1 Fourier Sine Series

Start by considering the Fourier Sine Series
=54, sin(?). (6)

How can we find the coefficients$,,? Observe that sine functions have the following property

! ni mi
/sm( lx)sin( lx)dxzo (7)
0

if m # n are both positive integers. This can be seen by direct iatiegr. Recall the trig identity
sin(a) sin(b) = % cos(a — b) — % cos(a + b). (8)

Then the integral in Equatior?®) equals

(m+n)rx

), ©)

l sin( (m —ln)ﬁx)|lo B

sin(

2(m —n)m 2(m+n)m

so long asn # n. But these terms are just linear combinationsiaf(m + n)xr) andsin(0), and
thus everything is zero.

Now, fix m and multiply Equation??) (Fourier Sine Series) byin(™7*). Integrating term by
term we get

l mir n7T mT
/Of(x)sin( s = /ZA sin("7%) sin(" (10)

_ Z / sin("7%)sin(" 7 ) (11)




Due to the above work the only term that remains is whes n. So all we have left is

l l
/0 f(2) sin(m;m)dx = A, /0 sinz(m;m) - %mm (12)
and so z
2
A =3 /0 f(2) sin(m;m)dx. (13)

In summary. Iff(z) has a Fourier sine expansion, the coefficients must be giydfqoa-
tion (??). These are the only possible coefficients for such a sdngsye have not shown that the
Fourier Sine Series is a valid expression for).

Example 1. Compute a Fourier Sine Series fofz) = 1 on0 < z <.
By Equation ©?), the coefficients must be given by

!
A, = 2/ sin(mﬂx)dx. (14)
L Jo l
2 mnx
= - cos( i )4 (15)
2 2 -
= %(1 — cos(mm)) = %(1 —(=1)™). (16)
So we haved,,, = % if m is odd andA4,, = 0 if m is even. Thus, o0, )
1 = é(sin(ﬂ) + ! sin(?m—x) + ! sin(gm—x) +...) 17)
T l 3 l 5 [
A 1 (2n—-1Dm
= = ; S sin( i ). (18)

Example 2. Compute the Fourier Sine Series ftfir) = x on0 < z <[,
In this case Equatior?®) yields a formula for the coefficients

!
A, = %/ xsin(m?x)dx (19)
0
B 2z mnx. 200 . ommx
= —% COS( 7 ) ot G sm( ] ) 0 (20)
21
= ——— cos(mm) + —5— sin(mmn) (21)
mm m=m
_ (_1)m+12_l‘ (22)
mm
So on(0, 1), we have
21 1 2 1
o= = (sin(?) b sin(?) + 3 sin(?me) — ) (23)
2l & 1 . ((2n—1)mx 1 (2nmx
_ A Al PAchall R : 24
- 2n_1sm< i ) 2nsm< l ) (24)



1.1.2 Fourier Cosine Series

Now let’s consider the Fourier Cosine Series

1 > nwx
fl) =540+ ; Ay cos(—). (25)
We can use the following property of cosine
l
/ cos(@) cos(m;m)dx = 0. (26)
0

Verify this for an exercise.
By the exact same computation as before for sines, we repiaes with cosines, if. # 0 we
get

l l
/ F(z) cos( Y dw = A, / cos2("™ N aw = L4, 27)
0 l 0 l 2
If m =0, we have
! 1 ! 1
/ f(ﬂ?) -ldx = —Ao/ 12 = —ZA(]. (28)
0 2 o 2
Thus, for allm > 0, we have
2 [l mmx
A, = 7/ f(z) cos( i )dx. (29)
0

This is why we have thé in front of A, (so it has the same form &k, for m # 0).

Example 3. Compute the Fourier Cosine Series fdrr) = 1 on0 < z <.
By Equation ?), the coefficients whem # 0 are

!
A, = 2/ cos(mﬂx)dx (30)
L Jo [
B 2 . mmx
= ——sin(——)l (31)
_ 2 sin(mm) = 0. (32)
mm

So the only coefficient we have occurs atg and this Fourier Cosine Series is then trivial

(?)—FOCOS(%—:C) L (33)

1=1+0cos ;

Example 4. Compute the Fourier Cosine Series fdr) = x.



Form # 0,

!
A, = %/ xcos(m;m)dx (34)
0
2v . mmzx 21 mnzx.
= %sm( l ) + 3 cos( l Mo (35)
— 2L in(mm) + —a (cos(mm) — 1) (36)
= mr si{mm m27'r2 COSs(mT
21
= m((—l)m—l) (37)
o
_ { e M odd (38)
0 m even
If m = 0, we have z
A(]:%/ xdr = 1. (39)
0

So on(0, 1), we have the Fourier Cosine Series

[ 4l T 1 3rx 1 OTX
T = 5o <COS(T) + 3 COS(T) + 5 COS(T) + ) (40)
4l E 1 (2n — Drx
= -+ — : 41
SR (2n—1)2cos( l ) (41)
1.1.3 Full Fourier Series
The full Fourier Series of (x) on the interval-l < x < [, is defined as
1 - nmwT . ,NTT
f(x) = §A0 +;An COS(T) + B, sm(T). (42)

REMARK: Be careful, now the interval we are working with isite as long-I < = < I.
The computation of the coefficients for the formulas is agalgs to the Fourier Sine and Cosine
series. We need the following set of identities:

/_ll cos(m;x) sin(m;m)dx = 0 for n,m (43)
/_ll cos(mlm) cos(m;m)d:c = 0 forn#m (44)
/_ll sin(mlm) sin(m;m)dx = 0 for n#m (45)

/_ll 1- cos(#)dz = 0= /_ll 1- sin(#)dx. (46)



Thus, using the same procedure as above for sine and cosimayvget the coefficients. We fix
m and multiply bycos(™7%), and do the same fain(™*). So we need to calculate the integrals
of the squares

I ! !
/ Cosz(ng)dx =1= / sinz(ng)dx and / 1%dx = 21 (47)
-1

-l -l

EXERCISE: Verify the above integrals.
So we get the following formulas

/ T

A, - %/_lf(x)cos(ml Jdr (n=1,2,3,..) (48)
/ T

B, = %/_lf(x)sin(ml Vir (n=1,2,3,.) (49)

for the coefficients of the full Fourier Series. Notice tha first equation is exactly the same as we
got when considering the Fourier Cosine Series and the deszpration is the same as the solution
for the Fourier Sine SeriedlOTE: The intervals of integration are different!

Example 5. Compute the Fourier Series ffx) = 1 + x.
Using the above formulas we have

1
Ay = 7/(1—0—x)dx:2 (50)
-l
1/ mnx
A, = 7 (14 ) cos( i )dx (51)
-l
1 1
_ +xsin(m7rm)+ - COS(mﬁxﬂl_l (52)
mm l mAm l
1
= W(Cos(mw) —cos(—mm)) =0 m#0 (53)
1
Bn = ; / (1+x)sin(m?x)dx (54)
-1
1+x mmnx 1 . mmx
= cos( l )+m27r2 sin( l ), (55)
21 21
= ——cos(mm) = (—1)" —. (56)
mm mm
So the full Fourier series off(x) is
20, . 7z 1 . 2mx 1 . 3mx
142 = 1+ ;(SIH(T) — 5 SIH(T) + g SIH(T) — ) (57)
A~ 1 (2n— 17z 1 . 2nmx
=1 ?Z2n_1sm( l )—%sm( i ). (58)
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