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Last Time: We found Fourier Series for given functions and now we want to discuss if these
Fourier Series converge to anything.

1 Convergence of Fourier Series

Last class we derived the Euler-Fourier formulas for the coefficients of the Fourier Series of a given
functionf(x). For theFourier Sine Series of f(x) on the interval(0, l)

f(x) =

∞
∑

n=1

An sin(
nπx

l
), (1)

we have

An =
2

l

∫ l

0

f(x) sin(
nπx

l
)dx, (2)

wheren = 1, 2, 3, ... For theFourier Cosine Series of f(x) on (0, l),

f(x) =
1

2
A0 +

∞
∑

n=1

An cos(
nπx

l
), (3)

with the coefficients given by

An =
2

l

∫ l

0

f(x) cos(
nπx

l
)dx, (4)

wheren = 1, 2, 3, ... Finally, for the full Fourier Series of f(x), which is valid on the interval
(−l, l) (Note: Not the same interval as the previous two cases!),

f(x) =
1

2
A0 +

∞
∑

n=1

An cos(
nπx

l
) + Bn sin(

nπx

l
), (5)
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the coefficients are given by

An =
1

l

∫ l

−l

f(x) cos(
nπx

l
)dx n = 1, 2, 3, ... (6)

Bn =
1

l

∫ l

−l

f(x) sin(
nπx

l
)dx n = 1, 2, 3, ... (7)

Example 1. Compute the Fourier Series forf(x) =

{

2 − 2 ≤ x < −1

1 − x − 1 ≤ x < 2
on the interval

(−2, 2).
We start by using the Euler-Fourier Formulas. For the Cosineterms we find

A0 =
1

2

∫

2

−2

f(x)dx

=
1

2

(
∫

−1

−2

2dx +

∫

2

−1

1 − xdx

)

=
1

2
(2 +

3

2
) =

7

4

and

An =
1

2

∫

2

−2

f(x) cos(
nπx

2
)dx

=
1

2

(
∫

−1

−2

2 cos(
nπx

2
)dx +

∫

2

−1

(1 − x) cos(
nπx

2
)dx

)

=
1

2

(

4

nπ
sin(

nπx

2
)|−1

−2 +
2(1 − x)

nπ
sin(

nπx

2
)|2
−1 −

4

n2π2

(

cos(
nπx

2
)|2
−1

))

=
1

2

(

−
4

nπ
sin(

nπ

2
) +

4

nπ
sin(

nπ

2
) −

4

n2π2
(cos(nπ) − cos(

nπ

2
))

)

=











2

n2π2 n odd

0 n = 4m

− 4

n2π2 n = 4m + 2

.
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Also, for the sine terms

Bn =
1

2

∫

2

−2

f(x) sin(
nπx

2
)dx

=
1

2

(
∫

−1

−2

2 sin(
nπx

2
)dx +

∫

2

−1

(1 − x) sin(
nπx

2
)dx

)

=
1

2

(

−
4

nπ
cos(

nπx

2
)|−1

−2 −
2(1 − x)

nπ
cos(

nπx

2
)|2
−1 −

4

n2π2
(sin(

nπx

2
)|2
−1

)

=
1

2

(

6

nπ
cos(nπ) −

4

n2π2
sin(

nπ

2
)

)

=











3

nπ
neven

− 3

nπ
− 2

n2π2 n = 4m + 1

− 3

nπ
+ 2

n2π2 n = 4m + 3

.

So we have

f(x) =
7

8
+

∞
∑

m=1

2

(4m + 1)2π2
cos

(

(4m + 1)πx

2

)

+

(

−
3

(4m + 1)π
−

2

(4m + 1)2π2

)

sin

(

(4m + 1)πx

2

)

−
4

(4m + 2)2π2
cos

(

(4m + 2)πx

2

)

+
3

(4m + 2)π
sin

(

(4m + 2)πx

2

)

+
2

(4m + 3)2π2
cos

(

(4m + 3)πx

2

)

+

(

−
3

(4m + 3)π
+

2

(4m + 3)2π2

)

sin

(

(4m + 3)πx

2

)

+
3

4mπ
sin

(

4mπx

2

)

.

This example represents a worst case scenario. There are a lot of Fourier coefficients to keep
track of. Notice that for each value ofm, the summand specifies four different Fourier terms (for
4m, 4m + 1, 4m + 2, 4m + 3). This can often happen and depending onl, even more terms maybe
required.

1.1 Convergence of Fourier Series

So we know that if a functionf(x) is to have a Fourier Series on an appropriate interval, the
coefficients have to be in the form of a Fourier Sine series (??) on (0, l), a Fourier Cosine Series
(??) on (0, l), or the full Fourier Series (??) on (−l, l). What do these series converge to? First
consider the full Fourier Series.

We require thatf(x) is piecewise smooth. This is even stronger than the piecewise continuity
we saw with Laplace Transforms. We want to divide(−l, l) into a finite number of subintervals
so that bothf(x) and its derivativef ′(x) are continuous on each interval. We also require that
the only discontinuities at the boundary points of the subintervals are jump discontinuities (not
asymptotically approaching infinity).
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Example 2. Any continuous function with continuous derivative on the desired interval is auto-
matically piecewise smooth. This is proven later in an advanced analysis class.

Example 3. Consider the function from Example 1

f(x) =

{

2 − 2 ≤ x < −1

1 − x − 1 ≤ x ≤ 2
. (8)

f(x) is continuous for allx in (−2, 2), but the derivativef ′(x) has a discontinuity atx = −1.
This is a jump discontinuity, withlimx→−1− f ′(x) = 0 andlimx→−1+ f ′(x) = −1. Thus,f(x) is
piecewise smooth.

The next thing to note is that even though we only needf(x) to be defined on(−l, l) to compute
the Fourier Series, the Fourier Series itself is defined for all x. Also, all of the terms in a Fourier
Series are2l-periodic. They are either constants of have the formsin(nπx

l
) or cos(nπx

l
). So we can

regard the Fourier Series either as the expansion of a function on(−l, l) or as the expansion of a
2l-periodic function on−∞ < x < ∞.

What will this2l-periodic function be? It will have to coincide on(−l, l) with f(x) (since it is
also the expansion off(x) on that interval) and still be2l-periodic. Define theperiodic extension
of f(x) to be

fper(x) = f(x − 2lm) for − l + 2lm < x < l + 2lm (9)

for all integersm.
REMARK: The definition (??) does not specify what the periodic extension is at the endpoints

x = l + 2lm. This is because the extension will, in general, have jumps at these points. This
happens whenf(−l+) 6= f(l−).

No what does the Fourier Series off(x) converge to?

Theorem 4. (Fourier Convergence Theorem)Suppose f(x) is piecewise smooth on (−l, l). Then
at x = x0, the Fourier Series of f(x) will converge to
(1) fper(x0) if fper is continuous at x0 or
(2) The average of the one sided limits 1

2
[fper(x

+

0 ) + fper(x
−

0 )] is fper has a jump discontinuity at
x = x0.

Theorem 1 tells us that on the interval(−l, l) the Fourier Series willalmost converge to the
original functionf(x), with the only problems occurring at the discontinuities.

Example 5. What does the Fourier Series off(x) =

{

1 − 3 ≤ x ≤ 0

2x 0 < x ≤ 3
will converge to at

x = −2, 0, 3, 5, 6?
The first two points are inside the original interval of definition of f(x), so we can just directly

considerfper(x). The only discontinuity off(x) occurs atx = 0. So atx = −2, f(x) is nice and
continuous. The Fourier Series will converge tof(−2) = 1. On the other hand, atx = 0 we have
a jump discontinuity, so the Fourier Series will converge tothe average of the one-sided limits.
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f(0+) = limx→0+ f(x) = 0 andf(0−) = limx→0− f(x) = 1, so the Fourier Series will converge
to 1

2
[f(0+) + f(0−)] = 1

2
.

What happens at the other points? Here we considerfper(x) and where it has jump disconti-
nuities. These can only occur either atx = x0 + 2lm where−l < x0 < l is a jump discontinuity
of f(x) or at endpointsx = ±l + 2lm, since the periodic extension might not ”sync up” at these
points, producing a jump discontinuity.

At x = 3, we are at one of these ”boundary points” and the left-sided limit is 6 while the
right-sided limit is 1. Thus the Fourier Series will converge here to6+1

2
= 7

2
. x = 5 is a point of

continuity forfper(x) and so the Fourier Series will converge tofper(5) = f(−1) = 1. x = 6, is a
jump discontinuity (corresponding tox = 0), so the Fourier Series will converge to1

2
.

Example 6. Where does the Fourier Series forf(x) =

{

2 − 2 ≤ x < −1

1 − x − 1 ≤ x ≤ 2
converge at

x = −7,−1, 6?
None of the points are inside(−2, 2) wheref(x) is discontinuous. The only points where the

periodic extension might be discontinuous are the ”boundary points”x = ±2 + 4k. In fact, since
f(−2) 6= f(2), these will be points of discontinuity. Sofper(x) is continuous atx = −7, since it
is not a boundary point and we havefper(−7) = f(1) = 0, which is what the Fourier Series will
converge to. The same forx = −1, the Fourier Series will converge tof(−1) = 2+2

2
= 2.

For x = 6 we are at an endpoint. The left-sided limit is -1, while the right-sided limit is 2, so
the Fourier Series will converge to their average1

2
.
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