Lecture Notes for Math 251: ODE and PDE. Lecture 32:
10.3 The Fourier Convergence Theorem

Shawn D. Ryan
Fall 2010

Last Time: We found Fourier Series for given functions and mge want to discuss if these
Fourier Series converge to anything.

1 Convergenceof Fourier Series

Last class we derived the Euler-Fourier formulas for thdfmments of the Fourier Series of a given
function f(x). For theFourier Sine Seriesof f(z) on the interval0, [)
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we have z
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wheren = 1,2, 3, ... For theFourier Cosine Seriesof f(z) on (0, 1),
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f('r) = §A0 + ;An COS(T)? (3)
with the coefficients given by
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wheren = 1,2, 3, ... Finally, for the full Fourier Series of f(x), which is valid on the interval
(—I,1) (Note: Note the same interval as the previous two cases!),
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o) = %Ao £ 37 Aucos(MTE) + Bysin("T), (5)
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the coefficients are given by
A, = / f(z) cos( )dx n=123,.. (6)

B, = /f sin( )dx n=123,. (7

Example 1. Compute the Fourier Series fgi(x) = on the interval

2 —2<z<-1
1l—z —1<z<?2

(—2,2).
We start by using the Euler-Fourier Formulas. For the Cosimas we find
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Also, for the sine terms
B, = / f(x)sin mm:)
2
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This example represents a worst case scenario. There arefaHourier coefficients to keep
track of. Notice that for each value of, the summand specifies four different Fourier terms (for

4m,4m + 1,4m + 2,4m + 3). This can often happen and depending cg&ven more terms maybe
required.

1.1 Convergenceof Fourier Series

So we know that if a functiorf(z) is to have a Fourier Series on an appropriate interval, the
coefficients have to be in the form of a Fourier Sine seriesiil}), /), a Fourier Cosine Series (3)
on (0,1), or the full Fourier Series (5) ofr-1,1). What do these series converge to? First consider
the full Fourier Series.

We require thaff (x) is piecewise smooth. This is even stronger than the piecewise continuity
we saw with Laplace Transforms. We want to dividel, /) into a finite number of subintervals
so that bothf(z) and its derivativef’(x) are continuous on each interval. We also require that
the only discontinuities at the boundary points of the stdrirals are jump discontinuities (not
asymptotically approaching infinity).
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Example 2. Any continuous function with continuous derivative on thesied interval is auto-
matically piecewise smooth. This is proven later in an adedranalysis class.

Example 3. Consider the function from Example 1

2 —2<z<-1

f(z) = { : (8)

l—z —-1<z<2

f(z) is continuous for alk in (—2,2), but the derivativef’(z) has a discontinuity at = —1.
This is a jump discontinuity, withim, . ;- f'(z) = 0 andlim,_,_;+ f'(z) = —1. Thus, f(z) is
piecewise smooth.

The next thing to note is that even though we only néed to be defined o—1, /) to compute
the Fourier Series, the Fourier Series itself is defined lfor.aAlso, all of the terms in a Fourier
Series arel-periodic. They are either constants of have the feim™*) or cos(“7*. So we can
regard the Fourier Series either as the expansion of a tmoti(—1, 1) or as the expansion of a
2[-periodic function on-oo < = < co.

What will this 2{-periodic function be? It will have to coincide dr-[, 1) with f(x) (since itis
also the expansion of(x) on that interval) and still bel-periodic. Define thgeriodic extension
of f(x) to be

fper(x) = f(x —2lm) for —I1+2lm <z <l+2lm 9

for all integersm.
REMARK: The definition (9) does not specify what the perioeitension is at the endpoints
x = |+ 2lm. This is because the extension will, in general, have jumpikese points. This

happens whei(—I7) # f(17).
No what does the Fourier Series ffr) converge to?

Theorem 4. (Fourier Convergence Theore@)ppose f(z) is piecewise smooth on (—/, ). Then
at x = x, the Fourier Seriesof f(x) will convergeto

(1) fper(zo) if fper iScONtinuous at z, or

(2) The average of the one sided limits %[ Tper(x8) + fper(25)] 1S fper has a jump discontinuity at
T = Xop-

Theorem 1 tells us that on the intervatl, ) the Fourier Series willlmost converge to the
original functionf(x), with the only problems occurring at the discontinuities.

Example 5. What does the Fourier Series ffx) = {1 —3ses0 will converge to at
2 0<x <3
xr=-2,0,3,5,67
The first two points are inside the original interval of ddfom of f(x), so we can just directly
considerf,..(x). The only discontinuity off () occurs atc = 0. So atr = —2, f(z) is nice and
continuous. The Fourier Series will convergefte-2) = 1. On the other hand, at = 0 we have

a jump discontinuity, so the Fourier Series will convergehe average of the one-sided limits.



f(07) = lim, o+ f(z) = 0andf(0~) = lim, .o~ f(x) = 1, so the Fourier Series will converge
to 1[£(0) + f(07)] = 4.

What happens at the other points? Here we consfglefz) and where it has jump disconti-
nuities. these can only occur eithermat= xq + 2lm where—[ < zy < [ is a jump discontinuity
of f(x) or at endpoints: = +[ + 2im, since the periodic extension might not "sync up” at these
points, producing a jump discontinuity.

At =z = 3, we are at one of these "boundary points” and the left-sid®d is 6 while the
right-sided limit is 1. Thus the Fourier Series will convertgere to™* = 1. 2 = 5 is a point of
continuity for f,..(z) and so the Fourier Series will convergefip.(5) = f(—1) = 1.z =6,isa
jump discontinuity (corresponding to= 0), so the Fourier Series will converge%o

Example 6. Where does the Fourier Series fffzr) =

{2 —9<r<—1
converge at

l—a —-1<z<2
r=-7,-1,6?

None of the points are inside-2, 2) where f(z) is discontinuous. The only points where the
periodic extension might be discontinuous are the "boungamts” x = +2 + 4k. In fact, since
f(—2) # f(2), these will be points of discontinuity. Sf.,.(z) is continuous at = —7, since it
is not a boundary point and we hayig,(—7) = f(1) = 0, which is what the Fourier Series will
converge to. The same fer= —1, the Fourier Series will converge fg—1) = 252 = 2.

Forx = 6 we are at an endpoint. The left-sided limit is -1, while trghtisided limit is 2, so

the Fourier Series will converge to their aver%ge

2 10.4 Even and Odd Functions

Before we can apply the discussion from Section 1 to the Eo&ine and Cosine Series, we need
to review some facts about Even and Odd Functions.
Recall that areven function is a function satisfying

g(—r) = g(v). (10)

This means that the graph= ¢(z) is symmetric with respect to the-axis. Anodd function
satisfies

g(=z) = —g(x) (11)
meaning that its graph = g(x) is symmetric with respect to the origin.

Example 7. A monomialz™ is even ifn is even and odd if: is odd. cos(z) is even andin(z) is
odd. Notetan(x) is odd.

There are some general rules for how products and sums behave
(1) If g(z) is odd andh(z) is even, their produgj(x)h(z) is odd.
(2) If g(x) andh(x) are either both even or both odgx)h(x) is even.
(3) The sum of two even functions or two odd functions is eveodul, respectively.
To remember the rules consider how many negative signs catrad the arguments. EXERCISE:
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Verify these rules.
(4) The sum of an even and an odd function can be anything.ctnday function on(—1,1) can
be written as a sum of an even function, calledeen part, and an odd function, called tloeld
part.
(5) Differentiation and Integration can change the paritydunction. If f(z) is even,% and
Iy f(s)ds are both odd, and vice versa.
The graph of an odd functiof(z) must pass through the origin by definition. This also tells us
that if g(x) is even, as long ag(0) exists, thery’(0) = 0.
Definite Integrals on symmetric intervals of odd and evercfioms have useful properties

l

I I
odd)dx = adand n)dx = n)dx 2
/_( )dx = Oquadan /_l(eve ) 2/ (even) (12)

l -l

Given a functionf(x) defined on(0, ), there is only one way to extend it {e-/, /) to an even
or odd function. Theven extension of f(x) is

Foon() = {f(x) for0 <z <l (13)

f(—z) for—I<az<0.

This is just its reflection across thyeaxis. Notice that the even extension is not necessarilyeefi
at the origin.
Theodd extension of f(z) is

f(x) for0 <z <l
fodd(z) =< —f(—x) for—Il<z<0 . (14)
0 forr=0

This is just its reflection through the origin.

2.1 Fourier Sine Series

Each of terms in the Fourier Sine Series for), sin(“7*), is odd. As with the full Fourier Series,

each of these terms also has per2ddSo we can think of the Fourier Sine Series as the expansion
of an odd function with period/ defined on the entire line which coincides withr) on (0, 7).
One can show that the full Fourier Seriesfgf; is the same as the Fourier Sine Serieg (@f).
Let
@ nmnx

1 - .
§A0 + Z A, cos( l )+ B, SIH(T) (15)

n=1

be the Fourier Series fgf,.4(z), with coefficients given by (6)

nmwx

1
A, = % /_ Sl eon(“T )z =0 (16)



But f,44 is 0dd andtos is even, so their product is again odd.

nmwx

l
B, = % /_ Saa(w)sin(“TE o (17)

But both f,,; andsin are odd, so their product is even.

! ni

B, = % /O Foaa() sin(—lx)dx (18)
/ nmTr

= %/0 f(x)sin(—l )dx, (19)

which are just the Fourier Sine coefficientsfdfr). Thus, as the Fourier Sine Seriesfdk) is the
full Fourier Series off,q4(x), the2i-periodic odd function that the Fourier Sine Series expasds
just the periodic extensiof),qq.

This goes both ways. If we want to compute a Fourier Serieariardd function ori—[, /) we
can just compute the Fourier Sine Series of the functiomicgst to(0, ). It will almost converge
to the original function or{—(, [) with the only issues occurring at any jump discontinuitiebe
only works for odd functions. Do not use the formula for the coefficients of the Sine Series
unless you are working with an odd function.

Example 8. Write down the odd extension ¢fx) = [—x on (0, /) and compute its Fourier Series.
To get the odd extension gf(z) we will need to see how to reflegtacross the origin. What
we end up with is the function

l—x O<zx<xl
; - . 20
fdd(l") {—l—x ez <0 (20)

Now. what is the Fourier Series ¢f;,(x)? By the previous discussion, we know that is will
be identical to the Fourier Sine Seriesfdtfr), as this will converge of(—/, 0) to f,.4. SO we have

= . T
Joaa () = ; Apsin(==), (21)
where
2 [ . NTT
A, = 7/(l—x)sm(T)d:€ (22)
0
2 l(l-x nwx ? . onmz,
= D o) (T 3)
= 2—l (24)
nm

Thus the desired Fourier Series is

o) = =37~ sin("7E). (25)

\l



You might wonder how we were able a few days lectures ago tgpotenthe Fourier Sine
Series of a constant function lik§xz) = 1 which is even. It is important to remember that if we
are computing the Fourier Sine Series fdr:), it only needs to converge tf(x) on (0, ), where
issues of evenness and oddness do not occur. The Fourie68iies will converge to the odd
extension off (z) on (=1, 1).

Example 9. Find the Fourier Series for the odd extension of

3

2 (26)
X .

on(—3,3).

The Fourier Series fof,44(x) on (—3, 3) will just be the Fourier Sine Series f@fz) on (0, 3).
The Fourier Sine coefficients fgi(z) are

A, = g /O ") sin("7)da 27)
_ §</o gsm(%mﬁfj(u@ - g)sin(%)) (28)
_ §<_ %(COS(%) 1) - % cos(nr) % s n(?)) (30)
_ g(%a —COS(%) + (1) nf;z Sm(%w)) (31)
= Z(1- e+ o - Zain()) (32)

and the Fourier Series is

3 2 nmw nmwx

foaa() = — Z:: % 1 —cos(—) + (—1)"* — = sin(T)] sin(T). (33)

nm

>]

EXERCISE: Sketch the Odd Extension fifr) given in the previous Example and write down
the formula for it.

2.2 Fourier Cosine Series

Now consider what happens for the Fourier Cosine Serigg0of on (0, ). This is analogous to
the Sine Series case. Every term in the Cosine Series hasrthe f

nmwx

A, cos(—— 7 ) (34)
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and hence is even, so the entire Cosine Series is even. Soo#ieeCSeries must converge on
(—(,1) to an even function which coincides ¢ /) with f(z). this must be the even extension

) fle) O0<z<l
f“’”e"(x)_{f(—x) —l<z<0 (35)

Notice that this definition does not specify the value of tinection at zero, the only restriction on
an even function at zero is that, if it exists, the derivasiieuld be zero.

It is straight forward enough to show that the Fourier coiffits of f....,(x) coincide with the
Fourier Cosine coefficients gf(x). The Euler-Fourier formulas give

! ni
A, = % /_ | Foven () cos( " (36)
— %/Ol feven() cos(?)dx SINCEf cpen () cos(ng)is even (37)

2 nmwT
-2 /0 Foven () cos(" ) da (38)

which are the Fourier Cosine coefficientsfdfr) on (0, [)

l
B.=7 / Soven (&) sin () = 0 (39)

SiNCe feven () sin(*7%) is odd. Thus the Fourier Cosine Seriesf¢f) on (0,7) can be considered
as the Fourier expansion ¢f,..(x) on (—[,1), and therefore also as expansion of the periodic
extension off...,(z). It will converge as in the Fourier Convergence Theorem i pleriodic
extension.

This also means that if we want to compute the Fourier Sefiaa even function, we can just
compute the Fourier Cosine Series of its restrictiof0td). It is very important that this only be
attempted if the function we are starting with is even.

Example 10. Write down the even extension ¢fz) = [ — x on (0,1) and compute its Fourier
Series.
The even extension will be

feven(x):{l—x o<z <l ‘ (40)

l+2 —-l<x<0

Its Fourier Series is the same as the Fourier Cosine Serigs:gfby the previous discussion. So
we can just compute the coefficients. Thus we have

nmwx

feven(T) = %Ao + Z A, COS(T), (42)
n=1
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where

So we have

_ %/Olf(x)dx:%/ol(l—x)dx:l

: nm

_ %/Of(x)cos(Tx)dx
: nm

= %/O(Z—x)cos(Tx)dx

_ 2l-w) o ommx, P onmr
— 7[ n27r sin( l )—nzﬂcos( ;i o
- % (niﬁz (—cos(nm) + COS(())))

- ey

and compute its Fourier Series.
Using Equation (35) we see that the even extension is

3 3
flt) =12 0572
€Tr) =
even % _%<x<0
—x—% —3§x§—%

10
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(47)

(48)
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(50)



We just need to compute the Fourier Cosine coefficients obtiggnal f(z) on (0, 3).

o 3
Ay = 5/0 f(z)dz (51)
2( (%73 S 3
— §</0 5dx+/3/2x—§dx) (52)
29 9 9
=3G90 )
3 nm
A, = ;/0 f(z) cos(%)dz (54)
2 3/2 3 nwT 3 3 nmwr
= 3 (/0 5 COS(T)CZI' + /3/2(1' - 5) COS(T)dl') (55)
2/ 9 nm s 3z —3 nm 9 nmw
- - <% sm(Tx) g/ ( ) sin( 3:6)@/2 + TﬂCOS(Tx>|§/z) (56)
— %(% sin(%) + n297r2 (cos(mr) — cos(%))) (57)
= n_();r (% sin(%) + n—lﬂ ((—1)" — cos(%))) (58)
— n_ir (n—lﬂ((—l)" — cos(n;)) + % sin(n;)). (59)
So the Fourier Series is
foon = 3+ 23 (L1 = o) 4 g eos("FD. (60)

HW 10.3#1,3,6

HW 10.4#1,2,8,11,12,16,17
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