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Last Time: We studied what a given Fourier Series converges to if at all.

1 Even and Odd Functions

Before we can apply the discussion from Section 10.3 to the Fourier Sine and Cosine Series, we
need to review some facts about Even and Odd Functions.

Recall that aneven function is a function satisfying

g(−x) = g(x). (1)

This means that the graphy = g(x) is symmetric with respect to they-axis. An odd function
satisfies

g(−x) = −g(x) (2)

meaning that its graphy = g(x) is symmetric with respect to the origin.

Example 1. A monomialxn is even ifn is even and odd ifn is odd.cos(x) is even andsin(x) is
odd. Notetan(x) is odd.

There are some general rules for how products and sums behave:
(1) If g(x) is odd andh(x) is even, their productg(x)h(x) is odd.
(2) If g(x) andh(x) are either both even or both odd,g(x)h(x) is even.
(3) The sum of two even functions or two odd functions is even or odd, respectively.
To remember the rules consider how many negative signs come out of the arguments.
EXERCISE: Verify these rules.
(4) The sum of an even and an odd function can be anything. In fact, any function on(−l, l) can
be written as a sum of an even function, called theeven part, and an odd function, called theodd
part.
(5) Differentiation and Integration can change the parity of a function. If f(x) is even, df

dx
and

∫ x

0
f(s)ds are both odd, and vice versa.
The graph of an odd functiong(x) must pass through the origin by definition. This also tells us

that if g(x) is even, as long asg′(0) exists, theng′(0) = 0.
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Definite Integrals on symmetric intervals of odd and even functions have useful properties
∫ l

−l

(odd)dx = 0 and
∫ l

−l

(even)dx = 2

∫ l

0

(even)dx (3)

Given a functionf(x) defined on(0, l), there is only one way to extend it to(−l, l) to an even
or odd function. Theeven extension of f(x) is

feven(x) =

{

f(x) for 0 < x < l

f(−x) for − l < x < 0.
(4)

This is just its reflection across they-axis. Notice that the even extension is not necessarily defined
at the origin.

Theodd extension of f(x) is

fodd(x) =











f(x) for 0 < x < l

−f(−x) for − l < x < 0

0 for x = 0

. (5)

This is just its reflection through the origin.

1.1 Fourier Sine Series

Each of terms in the Fourier Sine Series forf(x), sin(nπx
l

), is odd. As with the full Fourier Series,
each of these terms also has period2l. So we can think of the Fourier Sine Series as the expansion
of an odd function with period2l defined on the entire line which coincides withf(x) on (0, l).

One can show that the full Fourier Series offodd is the same as the Fourier Sine Series off(x).
Let

1

2
A0 +

∞
∑

n=1

An cos(
nπx

l
) + Bn sin(

nπx

l
) (6)

be the Fourier Series forfodd(x), with coefficients given in Section 10.3

An =
1

l

∫ l

−l

fodd(x) cos(
nπx

l
)dx = 0 (7)

But fodd is odd andcos is even, so their product is again odd.

Bn =
1

l

∫ l

−l

fodd(x) sin(
nπx

l
)dx (8)

But bothfodd andsin are odd, so their product is even.

Bn =
2

l

∫ l

0

fodd(x) sin(
nπx

l
)dx (9)

=
2

l

∫ l

0

f(x) sin(
nπx

l
)dx, (10)
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which are just the Fourier Sine coefficients off(x). Thus, as the Fourier Sine Series off(x) is the
full Fourier Series offodd(x), the2l-periodic odd function that the Fourier Sine Series expandsis
just the periodic extensionfodd.

This goes both ways. If we want to compute a Fourier Series foran odd function on(−l, l) we
can just compute the Fourier Sine Series of the function restricted to(0, l). It will almost converge
to the original function on(−l, l) with the only issues occurring at any jump discontinuities.The
only works for odd functions. Do not use the formula for the coefficients of the Sine Series,
unless you are working with an odd function.

Example 2. Write down the odd extension off(x) = l−x on(0, l) and compute its Fourier Series.
To get the odd extension off(x) we will need to see how to reflectf across the origin. What

we end up with is the function

fodd(x) =

{

l − x 0 < x < l

−l − x − l < x < 0
. (11)

Now. what is the Fourier Series offodd(x)? By the previous discussion, we know that is will
be identical to the Fourier Sine Series off(x), as this will converge on(−l, 0) to fodd. So we have

fodd(x) =
∞

∑

n=1

An sin(
nπx

l
), (12)

where

An =
2

l

∫ l

0

(l − x) sin(
nπx

l
)dx (13)

=
2

l
[−

l(l − x)

nπ
cos(

nπx

l
) −

l2

n2π2
sin(

nπx

l
)]l0 (14)

=
2l

nπ
. (15)

Thus the desired Fourier Series is

fodd(x) =
2l

π

∞
∑

n=1

1

n
sin(

nπx

l
). (16)

You might wonder how we were able a few lectures ago to computethe Fourier Sine Series
of a constant function likef(x) = 1 which is even. It is important to remember that if we are
computing the Fourier Sine Series forf(x), it only needs to converge tof(x) on (0, l), where
issues of evenness and oddness do not occur. The Fourier SineSeries will converge to the odd
extension off(x) on (−l, l).

Example 3. Find the Fourier Series for the odd extension of

f(x) =

{

3

2
0 < x < 3

2

x − 3

2

3

2
< x < 3.

(17)
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on (−3, 3).
The Fourier Series forfodd(x) on(−3, 3) will just be the Fourier Sine Series forf(x) on(0, 3).

The Fourier Sine coefficients forf(x) are

An =
2

3

∫

3

0

f(x) sin(
nπx

l
)dx (18)

=
2

3

(
∫ 3

2

0

3

2
sin(

nπx

3
)dx +

∫

3

3

2

(x −
3

2
) sin(

nπx

3
)

)

(19)

=
2

3

(

−
9

2nπ
cos(

nπx

3
)|

3

2

0 +
3(x − 3

2
)

nπ
cos(

nπx

3
)|33

2

+
9

n2π2
sin(

nπx

3
)|33

2

)

(20)

=
2

3

(

−
9

2nπ
(cos(

nπ

2
) − 1) −

9

2nπ
cos(nπ) −

9

n2π2
sin(

nπx

2
)

)

(21)

=
2

3
(

9

2nπ
(1 − cos(

nπ

2
) + (−1)n+1) −

9

n2π2
sin(

nπ

2
)

)

(22)

=
3

nπ

(

1 − cos(
nπ

2
) + (−1)n+1 −

2

nπ
sin(

nπ

2
)

)

(23)

and the Fourier Series is

fodd(x) =
3

π

∞
∑

n=1

1

n
[1 − cos(

nπ

2
) + (−1)n+1 −

2

nπ
sin(

nπ

2
)] sin(

nπx

3
). (24)

EXERCISE: Sketch the Odd Extension off(x) given in the previous Example and write down
the formula for it.

1.2 Fourier Cosine Series

Now consider what happens for the Fourier Cosine Series off(x) on (0, l). This is analogous to
the Sine Series case. Every term in the Cosine Series has the form

An cos(
nπx

l
) (25)

and hence is even, so the entire Cosine Series is even. So the Cosine Series must converge on
(−l, l) to an even function which coincides on(0, l) with f(x). this must be the even extension

feven(x) =

{

f(x) 0 < x < l

f(−x) − l < x < 0
. (26)

Notice that this definition does not specify the value of the function at zero, the only restriction on
an even function at zero is that, if it exists, the derivativeshould be zero.

4



It is straight forward enough to show that the Fourier coefficients offeven(x) coincide with the
Fourier Cosine coefficients off(x). The Euler-Fourier formulas give

An =
1

l

∫ l

−l

feven(x) cos(
nπx

l
)dx (27)

=
2

l

∫ l

0

feven(x) cos(
nπx

l
)dx since feven(x) cos(

nπx

l
) is even (28)

=
2

l

∫ l

0

feven(x) cos(
nπx

l
)dx (29)

which are the Fourier Cosine coefficients off(x) on (0, l)

Bn =
1

l

∫ l

−l

feven(x) sin(
nπx

l
)dx = 0 (30)

sincefeven(x) sin(nπx
l

) is odd. Thus the Fourier Cosine Series off(x) on (0, l) can be considered
as the Fourier expansion offeven(x) on (−l, l), and therefore also as expansion of the periodic
extension offeven(x). It will converge as in the Fourier Convergence Theorem to this periodic
extension.

This also means that if we want to compute the Fourier Series of an even function, we can just
compute the Fourier Cosine Series of its restriction to(0, l). It is very important that this only be
attempted if the function we are starting with is even.

Example 4. Write down the even extension off(x) = l − x on (0, l) and compute its Fourier
Series.

The even extension will be

feven(x) =

{

l − x 0 < x < l

l + x − l < x < 0
. (31)

Its Fourier Series is the same as the Fourier Cosine Series off(x), by the previous discussion. So
we can just compute the coefficients. Thus we have

feven(x) =
1

2
A0 +

∞
∑

n=1

An cos(
nπx

l
), (32)
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where

A0 =
2

l

∫ l

0

f(x)dx =
2

l

∫ l

0

(l − x)dx = l (33)

An =
2

l

∫ l

0

f(x) cos(
nπx

l
)dx (34)

=
2

l

∫ l

0

(l − x) cos(
nπx

l
)dx (35)

=
2

l
[
l(l − x)

nπ
sin(

nπx

l
) −

l2

n2π2
cos(

nπx

l
)]l0 (36)

=
2

l

(

l2

n2π2
(− cos(nπ) + cos(0))

)

(37)

=
2l

n2π2
((−1)n+1 + 1). (38)

So we have

feven(x) =
l

2
+

∞
∑

n=1

2l

n2π2
((−1)n+1 + 1). (39)

Example 5. Write down the even extension of

f(x) =

{

3

2
0 ≤ x < 3

2

x − 3

2

3

2
≤ x ≤ 3

(40)

and compute its Fourier Series.
Using Equation (??) we see that the even extension is

feven(x) =



















x − 3

2

3

2
< x < 3

3

2
0 ≤ x < 3

2

3

2
− 3

2
< x < 0

−x − 3

2
− 3 ≤ x ≤ −3

2

. (41)
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We just need to compute the Fourier Cosine coefficients of theoriginalf(x) on (0, 3).

A0 =
2

3

∫

3

0

f(x)dx (42)

=
2

3

(
∫

3/2

0

3

2
dx +

∫

3

3/2

x −
3

2
dx

)

(43)

=
2

3
(
9

4
+

9

8
) =

9

4
(44)

An =
2

3

∫

3

0

f(x) cos(
nπx

3
)dx (45)

=
2

3

(
∫

3/2

0

3

2
cos(

nπx

3
)dx +

∫

3

3/2

(x −
3

2
) cos(

nπx

3
)dx

)

(46)

=
2

3

(

9

2nπ
sin(

nπx

3
)|

3/2

0 +
3(x − 3

2
)

nπ
sin(

nπx

3
)|33/2 +

9

n2π2
cos(

nπx

3
)|33/2

)

(47)

=
2

3

(

9

2nπ
sin(

nπ

2
) +

9

n2π2

(

cos(nπ) − cos(
nπ

2
)

))

(48)

=
6

nπ

(

1

2
sin(

nπ

2
) +

1

nπ

(

(−1)n − cos(
nπ

2
)

))

(49)

=
6

nπ

(

1

nπ
((−1)n − cos(

nπ

2
)) +

1

2
sin(

nπ

2
)

)

. (50)

So the Fourier Series is

feven =
9

8
+

6

π

∞
∑

n=1

1

n

(

1

nπ

(

(−1)n − cos(
nπ

2
)
)

+
1

2
sin(

nπ

2
)

)

cos(
nπx

3
). (51)

HW 10.4 # 1,2,8,11,12,16,17
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