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Last Time: We studied basic solutions to Two-Point Boundéiye Problems and studied the
eigenvalues and eigenvectors of such problems.

1 The Heat Equation

We will soon see that partial differential equations can &ermore complicated than ordinary
differential equations. For PDEs, there is no general thebe methods need to be adapted for
smaller groups of equations. This course will only do anadtrction, you can find out much
more in advanced courses. We will be focusing on a singldisolmethod calledeparation of
Variables, which is pervasive in engineering and mathematics.

The first partial differential equation to consider is thentausheat equationwhich models
the temperature distribution in some object. We will focustbe one-dimensional heat equa-
tion, where we want to find the temperature distributions ana-dimensional bar of length In
particular we will assume that our bar corresponds to thexwat (0, /) on the real line.

The assumption is made purely for simplicity. If we assumehaee a real bar, the one-
dimensional assumption is equivalent to assuming at ewgeydl cross-section and every instant
of time, the temperature is constant. While this is unréalisis not a terrible assumption. Also,
if the length is much larger than the width in advanced matters one can assume the width is O
since it is such a small fraction of the length. We are alsaragsg the bar is perfectly insulated,
so the only way heat can enter or leave the bar is through ttheer 0 andx = [. So any heat
transfer will be one-dimensional.

1.1 Derivation of the Heat Equation

Many PDEs come from basic physical laws. Lt t) denote the temperature at a poirdat time
t. ¢ will be the specific heat of the material the bar is made frorhi¢tv is the amount of heat
needed to raise one unit of mass of this material by one teatyrerunit) andg is the density of
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Figure 1: Heat Flux across the boundary of a small slab witlgtleAz. The graph is the graph
of temperature at a given time In accordance with Fourier’s Law, the heat leaves or eribers
boundary by flowing from hot to cold; hence atthe flux is opposing the sign af,, while at
x + Az itis agreeing.

the rod. Note that in general, the specific heat and densifyeofods do not have to be constants,
they may vary withz. We greatly simplify the problem by allowing them to be camit
Let’s consider a small slab of lengthz. We will let H(¢) be the amount of heat contained in
this slab. The mass of the slabgdax and the heat energy contained in this small region is given
by
H(t) = cupAx Q)

On the other hand, within the slab, heat will flow from hot tddc@ihis is Fourier's Law). The
only way heat can leave is by leaving through the boundanibgh are atr andx + Az (This is

theLaw of Conservation of Energy). So the change of heat energy of the slab is equal to the heat
flux across the boundary. Afis the conductivity of the bar's material

dH
— = Kug(x + Az, t) — Kug(x,t) 2)
This is illustrated in Figure 1.1. Setting the derivative/éft) from above equal to the previous

equations we find

(cu(z,t)pAr); = kug(x + Az, t) — Kug(z,t) 3)
> (¢ + A1) — mug(a,)
KU, (T + Az, 1) — Kug(x,
cpug(z,t) = A : (4)
T
If we take the limit asAz — 0, the right hand side is just thederivative ofxu,(z,t) or
cpuy(x,t) = Kug,(z,t). (5)
Settingk = o >0, we have the heat equation

Notice that the heat equation is a linear PDE, since all oflérezatives ofu are only multiplied
by constants. What is the constart It is called theThermal Diffusivity of the bar and is a
measure of how quickly heat spreads through a given material

How do we interpret the heat equation? Graph the temperafutiee bar at a fixed time.
Suppose it looks like Figure 2. On the left side the bar is esaap. If the graph is concave up,
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Figure 2: Temperature versus position on a bar. The arroas §ime dependence in accordance
with the heat equation. The temperature graph is concav&oupg left side of the bar is warming
up. While on the right the temperature is concave down and sgltt side is cooling down..

that means that the second derivative of the temperatutl (espect to position) is positive.
The heat equation tells us that the time derivative of thepmature at any of the points on the left
side of the bar will be increasing. The left side of the bal s warming up. Similarly, on the
right side of the bar, the graph is concave down. Thus thergecalerivative of the temperature
is negative, and so will be the firstderivative, and we can conclude that the right side of thre ba
is cooling down.

2 Separation of Variables and Heat Equation IVPs

2.1 Initial Value Problems

Partial Differential Equations generally have a lot of $lns. To specify a unique one, we will
need additional conditions. These conditions are motivatephysics and are initial or boundary
conditions. An IVP for a PDE consists for the heat equatioitjal conditions, and boundary
conditions.

An initial condition specifies the physical state at a givienett,. For example, and initial
condition for the heat equation would be the starting temoee distribution

u(z,0) = f(x) (7)

This is the only condition required because the heat equagidirst order with respect to time.
The wave equation, considered in a future section is secater in time and needs two initial
conditions.

PDEs are only valid on a given domain. Boundary conditioregp how the solution behaves
on the boundaries of the given domain. These need to be sukdfcause the solution does not
exist on one side of the boundary, we might have problemsadhitlrentiability there.

Our heat equation was derived for a one-dimensional barngjtite, so the relevant domain
in question can be taken to be the intewat » < [ and the boundary consists of the two points
x = 0 andx = [. We could have derived a two-dimensional heat equatioreXample, in which
case the domain would be some region initheplane with the boundary being some closed curve.

It will be clear from the physical description of the problevhat the appropriate boundary
conditions are. We might know at the endpoints= 0 andz = [, the temperature(0,t) and
u(l,t) are fixed. Boundary conditions that give the value of the temtuare calledDirichlet
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Boundary Conditions. Or we might insulate the ends of the bar, meaning there dhmiho heat
flow out of the boundary. This would yield the boundary coiodi$ . (0,¢) = wu.(l,t) = 0. If the
boundary conditions specify the derivative at the boundasy are calledNeumann Conditions
If the boundary conditions specify that we have one insdlated and at the other we control the
temperature. This is an example dftixed Boundary Condition.

As we have seen, changing boundary conditions can signilfjagmange the solution. Initially,
we will work with homogeneous Dirichlet conditions0, ) = u(l,t) = 0, giving us the following
initial value problem

(DE): w = kuy (8)
(BC): wu(0,t) = u(l,t)=0 9)
(IC) s u(z,0) = f(x) (10)

After we have seen the general method, we will see what happéh homogeneous Neumann
conditions. We will discuss nonhomogeneous equations late

2.2 Separation of Variables

Above we have derived the heat equation for the bar of lehgtBuppose we have an initial value
problem such as Equation (8)-(10). How should we proceed?veve to try to build a general
solution out of smaller solutions which are easier to find.

We start by assuming we haveseparated solution where

u(z,t) = X(x)T(t). (11)

Our solution is the product of a function that depends only and a function that depends only on
t. We can then try to write down an equation depending only and another solution depending
only ont before using our knowledge of ODESs to try and solve them.

It should be noted that this is a very special situation aribhet occur in general. Even when
we can use it sometimes it is hard to move beyond the first Biewever, it works for all equations
we will be considering in this class, and is a good startingtpo

How does this method work? Plug the separated solution red¢at equation.

%[X(x)T(t)] = kaa—;[X@)T@] (12)
X()T'(t) = kX"(x)T(t) (13)

Now notice that we can move everything depending @o one side and everything depending on
t to the other. 0 X
x
= 14
ET(t)  X(x) (14
This equation should says that both sides are equal for:amy we choose. Thus they both must
be equal to a constant. Since if what they equal dependedoomn both sides would not be equal

for all z andt. So

T'(t) _ X'(x)
K1)~ X(2)

— ) (15)
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We have written the minus sign for convenience. It will turt that\ > 0.
The equation above contains a pair of separate ordinamrdiffial equations
X"+2AX = 0 (16)
T + kT = 0. a7)

Notice that our boundary conditions becom¥éf)) = 0 and X (/) = 0. Now the second equation
can easily be solved, since we haVe= —\kT, so that

T(t) = Ae M, (18)
The first equation gives a boundary value problem
X"+2X =0 X(0)=0 X(1)=0 (19)

This should look familiar. The is the basic eigenfunctionlgem studied in section 10.1. As in
that example, it turns out our eigenvalues have to be pesitiet\ = 2 for ;. > 0, our general
solution is

X(z) = Bcos(puz) + Csin(puz). (20)

The first boundary condition say$ = 0. The second condition says th&{/) = C'sin(ul) = 0.
To avoid only having the trivial solution, we must hgvie= nr. In other words,

nm.\2 nmx
= (5

and X,(z)= sin(T) (22)

forn=1,2,3,...
So we end up having found infinitely many solutions to our luang value problem, one for
each positive integet. They are

tn(w,1) = Ao~ Tk sin(?). (22)
The heat equation is linear and homogeneous. As such, theiftei of Superposition still holds.
So a linear combination of solutions is again a solution. i8ofanction of the form

N
u(z,t) = ZAne_(nTﬂ)th sin(nlﬂ) (23)

n=0

is also a solution to our problem.
Notice we have not used our initial condition yet. We have

N
@) =u(z,0)=" 4, sin(#). (24)
n=0

So if our initial condition has this form, the result of supesition Equation (23) is in a good form
to use the IC. The coefficient$, just being the associated coefficients frgin).
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Example 1. Find the solutions to the following heat equation problenaand of length 2.

u(0,t) = u(2,t)=0 (26)
(e, 0) = sin(gﬁTx)—&Ssin(Bﬂx) @7)

In this problem, we havé = 1. Now we know that our solution will have the form like
Equation (23), since our initial condition is just the drface of two sine functions. We just need
to figure out which terms are represented and what the caeftged,, are.

Our initial condition is
3rx

flz) = sin(T) — 5sin(37x) (28)
Looking at (23) withl = 2, we can see that the first term corresponds te 3 and the second
n = 6, and there are no other terms. Thus we hdye= 1 and A = —5, and all otherd,, = 0.
Our solution is then

2
u(z,t) = e (i sin(?me) — 59 gin(3mx). (29)

There is no reason to suppose that our initial distribute®@ ifinite sum of sine functions.
Physically, such situations are special. What do we do if ax@la more general initial temperature
distribution?

Let's consider what happens if we take iafinite sum of our separated solutions. Then our
solution is

_ > _(M)th . nmtx
u(x,t) ;Ane I sm(—l ). (30)
Now the initial condition gives
> . nmwx
flz) = ; Ay sin(—=). (31)

This idea is due to the French Mathematician Joseph Fourtkisecalled thd-ourier Sine Series
for f(z).

There are several important questions that arise. Why dheelbelieve that our initial con-
dition f(z) ought to be able to be written as an infinite sum of sines? whulshwe believe that

such a sum would converge to anything?

2.3 Neumann Boundary Conditions

Now let’s consider a heat equation problem with homogen&@musnann conditions

(DE):  uy = Uy (32)
(BC):  ug(0,t) = wu.(l,t)=0 (33)
(IC): wu(x,0) = f(x) (34)
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We will start by again supposing that our solution to Equat{82) is separable, so we have
u(z,t) = X (x)T'(t) and we obtain a pair of ODESs, which are the same as before

X"+20X = 0 (35)
T +XkT = 0. (36)

The solution to the first equation is still
T(t) = Ae M (37)

Now we need to determine the boundary conditions for thersequation. Our boundary condi-
tions areu, (0, t) andu, (I, t). Thus they are conditions fox’(0) and X'(l), since the-derivative
is not controlled at all. So we have the boundary value prable

X"+AX =0 X'(0)=0 X'(I)=0. (38)
Along the lines of the analogous computation last lectdme,lias eigenvalues and eigenfunctions

Moo= (F) (39)

nmx
yn(x) = COS(T) (40)
forn =0,1,2,... So the individual solutions to Equation (32) have the form

w,t) = Ane(%)% Cos(— (41)

nmx
)

Taking finite linear combinations of these work similarlytke Dirichlet case (and is the solution
to Equation (32) wherf(x) is a finite linear combination of constants and cosines,igeneral
we are interested in knowing when we can take infinite sums, i.

nmwx

1 > nm\2
u(z,t) = §AO + E A, e Uk COS(T) (42)
n=1

Notice how we wrote the = 0 case, a%AO. The reason will be clear when talking about Fourier
Series. The initial conditions means we need

nmwx

F) = 340+ Avcos("T). 43)
n=1

An expression of the form above is called theurier Cosine Seriesof f(x).



2.4 Other Boundary Conditions

It is also possible for certain boundary conditions to regjthe "full” Fourier Series of the initial
data, this is an expression of the form

nmx nmx ) . (a4)

f(z) = %Ao + Z(An COS(T) + B, Sin(T)

but in most cases we will work with Dirichlet or Neumann cdratis. However, in the process of
learning about Fourier sine and cosine series, we will asonl how to compute the full Fourier
series of a function.
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