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Last Time: We studied basic solutions to Two-Point BoundaryValue Problems and studied the
eigenvalues and eigenvectors of such problems.

1 The Heat Equation

We will soon see that partial differential equations can be far more complicated than ordinary
differential equations. For PDEs, there is no general theory, the methods need to be adapted for
smaller groups of equations. This course will only do an introduction, you can find out much
more in advanced courses. We will be focusing on a single solution method calledSeparation of
Variables, which is pervasive in engineering and mathematics.

The first partial differential equation to consider is the famousheat equationwhich models
the temperature distribution in some object. We will focus on the one-dimensional heat equa-
tion, where we want to find the temperature distributions in aone-dimensional bar of lengthl. In
particular we will assume that our bar corresponds to the interval(0, l) on the real line.

The assumption is made purely for simplicity. If we assume wehave a real bar, the one-
dimensional assumption is equivalent to assuming at every lateral cross-section and every instant
of time, the temperature is constant. While this is unrealistic it is not a terrible assumption. Also,
if the length is much larger than the width in advanced mathematics one can assume the width is 0
since it is such a small fraction of the length. We are also assuming the bar is perfectly insulated,
so the only way heat can enter or leave the bar is through the endsx = 0 andx = l. So any heat
transfer will be one-dimensional.

1.1 Derivation of the Heat Equation

Many PDEs come from basic physical laws. Letu(x, t) denote the temperature at a pointx at time
t. c will be the specific heat of the material the bar is made from (which is the amount of heat
needed to raise one unit of mass of this material by one temperature unit) andρ is the density of
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Figure 1: Heat Flux across the boundary of a small slab with length∆x. The graph is the graph
of temperature at a given timet. In accordance with Fourier’s Law, the heat leaves or entersthe
boundary by flowing from hot to cold; hence atx the flux is opposing the sign ofux, while at
x + ∆x it is agreeing.

the rod. Note that in general, the specific heat and density ofthe rods do not have to be constants,
they may vary withx. We greatly simplify the problem by allowing them to be constant.

Let’s consider a small slab of length∆x. We will let H(t) be the amount of heat contained in
this slab. The mass of the slab isρ∆x and the heat energy contained in this small region is given
by

H(t) = cuρ∆x (1)

On the other hand, within the slab, heat will flow from hot to cold (this isFourier’s Law ). The
only way heat can leave is by leaving through the boundaries,which are atx andx + ∆x (This is
theLaw of Conservation of Energy). So the change of heat energy of the slab is equal to the heat
flux across the boundary. Ifκ is the conductivity of the bar’s material

dH

dt
= κux(x + ∆x, t) − κux(x, t) (2)

This is illustrated in Figure 1.1. Setting the derivative ofH(t) from above equal to the previous
equations we find

(cu(x, t)ρ∆x)t = κux(x + ∆x, t) − κux(x, t) (3)

or

cρut(x, t) =
κux(x + ∆x, t) − κux(x, t)

∆x
. (4)

If we take the limit as∆x → 0, the right hand side is just thex-derivative ofκux(x, t) or

cρut(x, t) = κuxx(x, t). (5)

Settingk = κ
cρ

> 0, we have the heat equation

ut = kuxx. (6)

Notice that the heat equation is a linear PDE, since all of thederivatives ofu are only multiplied
by constants. What is the constantk? It is called theThermal Diffusivity of the bar and is a
measure of how quickly heat spreads through a given material.

How do we interpret the heat equation? Graph the temperatureof the bar at a fixed time.
Suppose it looks like Figure 2. On the left side the bar is concave up. If the graph is concave up,
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Figure 2: Temperature versus position on a bar. The arrows show time dependence in accordance
with the heat equation. The temperature graph is concave up,so the left side of the bar is warming
up. While on the right the temperature is concave down and so th right side is cooling down..

that means that the second derivative of the temperature (with respect to positionx) is positive.
The heat equation tells us that the time derivative of the temperature at any of the points on the left
side of the bar will be increasing. The left side of the bar will be warming up. Similarly, on the
right side of the bar, the graph is concave down. Thus the second x-derivative of the temperature
is negative, and so will be the firstt-derivative, and we can conclude that the right side of the bar
is cooling down.

2 Separation of Variables and Heat Equation IVPs

2.1 Initial Value Problems

Partial Differential Equations generally have a lot of solutions. To specify a unique one, we will
need additional conditions. These conditions are motivated by physics and are initial or boundary
conditions. An IVP for a PDE consists for the heat equation, initial conditions, and boundary
conditions.

An initial condition specifies the physical state at a given time t0. For example, and initial
condition for the heat equation would be the starting temperature distribution

u(x, 0) = f(x) (7)

This is the only condition required because the heat equation is first order with respect to time.
The wave equation, considered in a future section is second order in time and needs two initial
conditions.

PDEs are only valid on a given domain. Boundary conditions specify how the solution behaves
on the boundaries of the given domain. These need to be specified, because the solution does not
exist on one side of the boundary, we might have problems withdifferentiability there.

Our heat equation was derived for a one-dimensional bar of length l, so the relevant domain
in question can be taken to be the interval0 < x < l and the boundary consists of the two points
x = 0 andx = l. We could have derived a two-dimensional heat equation, forexample, in which
case the domain would be some region in thexy-plane with the boundary being some closed curve.

It will be clear from the physical description of the problemwhat the appropriate boundary
conditions are. We might know at the endpointsx = 0 andx = l, the temperatureu(0, t) and
u(l, t) are fixed. Boundary conditions that give the value of the solution are calledDirichlet
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Boundary Conditions. Or we might insulate the ends of the bar, meaning there should be no heat
flow out of the boundary. This would yield the boundary conditionsux(0, t) = ux(l, t) = 0. If the
boundary conditions specify the derivative at the boundary, they are calledNeumann Conditions.
If the boundary conditions specify that we have one insulated end and at the other we control the
temperature. This is an example of aMixed Boundary Condition .

As we have seen, changing boundary conditions can significantly change the solution. Initially,
we will work with homogeneous Dirichlet conditionsu(0, t) = u(l, t) = 0, giving us the following
initial value problem

(DE) : ut = kuxx (8)

(BC) : u(0, t) = u(l, t) = 0 (9)

(IC) : u(x, 0) = f(x) (10)

After we have seen the general method, we will see what happens with homogeneous Neumann
conditions. We will discuss nonhomogeneous equations later.

2.2 Separation of Variables

Above we have derived the heat equation for the bar of lengthL. Suppose we have an initial value
problem such as Equation (8)-(10). How should we proceed? Wewant to try to build a general
solution out of smaller solutions which are easier to find.

We start by assuming we have aseparated solution, where

u(x, t) = X(x)T (t). (11)

Our solution is the product of a function that depends only onx and a function that depends only on
t. We can then try to write down an equation depending only onx and another solution depending
only ont before using our knowledge of ODEs to try and solve them.

It should be noted that this is a very special situation and will not occur in general. Even when
we can use it sometimes it is hard to move beyond the first step.However, it works for all equations
we will be considering in this class, and is a good starting point.

How does this method work? Plug the separated solution into the heat equation.

∂

∂t
[X(x)T (t)] = k

∂2

∂x2
[X(x)T (t)] (12)

X(x)T ′(t) = kX ′′(x)T (t) (13)

Now notice that we can move everything depending onx to one side and everything depending on
t to the other.

T ′(t)

kT (t)
=

X ′′(x)

X(x)
(14)

This equation should says that both sides are equal for anyx or t we choose. Thus they both must
be equal to a constant. Since if what they equal depended onx or t both sides would not be equal
for all x andt. So

T ′(t)

kT (t)
=

X ′′(x)

X(x)
= −λ (15)
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We have written the minus sign for convenience. It will turn out thatλ > 0.
The equation above contains a pair of separate ordinary differential equations

X ′′ + λX = 0 (16)

T ′ + λkT = 0. (17)

Notice that our boundary conditions becomesX(0) = 0 andX(l) = 0. Now the second equation
can easily be solved, since we haveT ′ = −λkT , so that

T (t) = Ae−λkt. (18)

The first equation gives a boundary value problem

X ′′ + λX = 0 X(0) = 0 X(l) = 0 (19)

This should look familiar. The is the basic eigenfunction problem studied in section 10.1. As in
that example, it turns out our eigenvalues have to be positive. Letλ = µ2 for µ > 0, our general
solution is

X(x) = B cos(µx) + C sin(µx). (20)

The first boundary condition saysB = 0. The second condition says thatX(l) = C sin(µl) = 0.
To avoid only having the trivial solution, we must haveµl = nπ. In other words,

λn =
(nπ

l

)2
and Xn(x) = sin

(nπx

l

)

(21)

for n = 1, 2, 3, ...
So we end up having found infinitely many solutions to our boundary value problem, one for

each positive integern. They are

un(x, t) = Ane−(nπ

l
)2kt sin(

nπx

l
). (22)

The heat equation is linear and homogeneous. As such, the Principle of Superposition still holds.
So a linear combination of solutions is again a solution. So any function of the form

u(x, t) =

N
∑

n=0

Ane−(nπ

l
)2kt sin(

nπx

l
) (23)

is also a solution to our problem.
Notice we have not used our initial condition yet. We have

f(x) = u(x, 0) =
N

∑

n=0

An sin(
nπx

l
). (24)

So if our initial condition has this form, the result of superposition Equation (23) is in a good form
to use the IC. The coefficientsAn just being the associated coefficients fromf(x).
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Example 1. Find the solutions to the following heat equation problem ona rod of length 2.

ut = uxx (25)

u(0, t) = u(2, t) = 0 (26)

u(x, 0) = sin(
3πx

2
) − 5 sin(3πx) (27)

In this problem, we havek = 1. Now we know that our solution will have the form like
Equation (23), since our initial condition is just the difference of two sine functions. We just need
to figure out which terms are represented and what the coefficientsAn are.

Our initial condition is

f(x) = sin(
3πx

2
) − 5 sin(3πx) (28)

Looking at (23) withl = 2, we can see that the first term corresponds ton = 3 and the second
n = 6, and there are no other terms. Thus we haveA3 = 1 andA6 = −5, and all otherAn = 0.
Our solution is then

u(x, t) = e−( 9π
2

4
)t sin(

3πx

2
) − 5e(−9π2)t sin(3πx). (29)

There is no reason to suppose that our initial distribution is a finite sum of sine functions.
Physically, such situations are special. What do we do if we have a more general initial temperature
distribution?

Let’s consider what happens if we take aninfinite sum of our separated solutions. Then our
solution is

u(x, t) =

∞
∑

n=0

Ane
−(nπ

l
)2kt sin(

nπx

l
). (30)

Now the initial condition gives

f(x) =

∞
∑

n=0

An sin(
nπx

l
). (31)

This idea is due to the French Mathematician Joseph Fourier and is called theFourier Sine Series
for f(x).

There are several important questions that arise. Why should we believe that our initial con-
dition f(x) ought to be able to be written as an infinite sum of sines? why should we believe that
such a sum would converge to anything?

2.3 Neumann Boundary Conditions

Now let’s consider a heat equation problem with homogeneousNeumann conditions

(DE) : ut = uxx (32)

(BC) : ux(0, t) = ux(l, t) = 0 (33)

(IC) : u(x, 0) = f(x) (34)
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We will start by again supposing that our solution to Equation (32) is separable, so we have
u(x, t) = X(x)T (t) and we obtain a pair of ODEs, which are the same as before

X ′′ + λX = 0 (35)

T ′ + λkT = 0. (36)

The solution to the first equation is still

T (t) = Ae−λkt (37)

Now we need to determine the boundary conditions for the second equation. Our boundary condi-
tions areux(0, t) andux(l, t). Thus they are conditions forX ′(0) andX ′(l), since thet-derivative
is not controlled at all. So we have the boundary value problem

X ′′ + λX = 0 X ′(0) = 0 X ′(l) = 0. (38)

Along the lines of the analogous computation last lecture, this has eigenvalues and eigenfunctions

λn =
(nπ

l

)2
(39)

yn(x) = cos
(nπx

l

)

(40)

for n = 0, 1, 2, ... So the individual solutions to Equation (32) have the form

u(x, t) = Ane
(nπ

l
)2kt cos

(nπx

l

)

. (41)

Taking finite linear combinations of these work similarly tothe Dirichlet case (and is the solution
to Equation (32) whenf(x) is a finite linear combination of constants and cosines, but in general
we are interested in knowing when we can take infinite sums, i.e.

u(x, t) =
1

2
A0 +

∞
∑

n=1

Ane
−(nπ

l
)2kt cos(

nπx

l
) (42)

Notice how we wrote then = 0 case, as1
2
A0. The reason will be clear when talking about Fourier

Series. The initial conditions means we need

f(x) =
1

2
A0 +

∞
∑

n=1

An cos(
nπx

l
). (43)

An expression of the form above is called theFourier Cosine Seriesof f(x).
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2.4 Other Boundary Conditions

It is also possible for certain boundary conditions to require the ”full” Fourier Series of the initial
data, this is an expression of the form

f(x) =
1

2
A0 +

∞
∑

n=1

(

An cos
(nπx

l

)

+ Bn sin
(nπx

l

)

)

. (44)

but in most cases we will work with Dirichlet or Neumann conditions. However, in the process of
learning about Fourier sine and cosine series, we will also learn how to compute the full Fourier
series of a function.
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