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Last Time: We studied Even and Odd Functions as well as the convergence of Fourier Series.

1 Heat Equation Problems

In the previous lecture on the Heat Equation we saw that the product solutions to the heat equation
with homogeneous Dirichlet boundary conditions problem

ut = kuxx (1)

u(0, t) = u(l, t) = 0 (2)

u(x, 0) = f(x) (3)

had the form
un(x, t) = Bne−(nπ

l
)kt sin

(nπx

l

)

n = 1, 2, 3, ... (4)

Taking linear combinations of these (over eachn) gives a general solution to the above problem.

u(x, t) =
∞

∑

n=1

Bne−(nπ

l
)kt sin

(nπx

l

)

(5)

Settingt = 0, this implies that we must have

f(x) =
∞

∑

n=1

Bn sin
(nπx

l

)

(6)

In other words, the coefficients in the general solution for the given initial condition are theFourier
Sine coefficients off(x) on (0, l), which are given by

Bn =
2

l

∫

l

0

f(x) sin
(nπx

l

)

dx. (7)
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We also, saw that if we instead have a problem with homogeneous Neumann boundary condi-
tions

ut = kuxx 0 < x < l, t > 0 (8)

ux(0, t) = ux(l, t) = 0 (9)

u(0, t) = f(x) (10)

the product solutions had the form

un(x, t) = Ane
−(nπ

l
)2kt cos

(nπx

l

)

n = 1, 2, 3, ... (11)

and the general solution has the form

u(x, t) =
1

2
A0 +

∞
∑

n=1

Ane−(nπ

l
)2kt cos

(nπx

l

)

. (12)

With t = 0 this means that the initial condition must satisfy

f(x) =
1

2
A0 +

∞
∑

n=1

An cos
(nπx

l

)

. (13)

and so the coefficients for a particular initial condition are theFourier Cosine coefficients off(x),
given by

An =
2

l

∫

l

0

f(x) cos
(nπx

l

)

dx. (14)

One way to think about this difference is that given the initial datau(x, 0) = f(x), the Dirichlet
conditions specify theodd extension of f(x) as the desired periodic solution, while the Neumann
conditions specify theeven extension. This should make sense since odd functions must have
f(0) = 0, while even functions must havef ′(0) = 0.

So to solve a homogeneous heat equation problem, we begin by identifying the type of bound-
ary conditions we have. If we have Dirichlet conditions, we know our solution will have the form
of Equation (??). All we then have to do is compute the Fourier Sine coefficients of f(x). Simi-
larly, if we have Neumann conditions, we know the solution has the form of Equation (??) and we
have to compute the Fourier Cosine coefficients off(x).

REMARK: Observe that for any homogeneous Dirichlet problem, the temperature distribution
(??) will go to 0 ast → ∞. This should make sense because these boundary conditions have a
physical interpretation where we keep the ends of our rod at freezing temperature without regulat-
ing the heat flow in and out of the endpoints. As a result, if theinterior of the rod is initially above
freezing, that heat will radiate towards the endpoints and into our reservoirs at the endpoints. On
the other hand, if the interior of the rod is below freezing, heat will come from the reservoirs at the
endpoints and warm it up until the temperature is uniform.

For the Neumann problem, the temperature distribution (??) will converge to1
2
A0. Again, this

should make sense because these boundary conditions correspond to a situation where we have
insulated ends, since we are preventing any heat from escaping the bar. Thus all heat energy will
move around inside the rod until the temperature is uniform.
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1.1 Examples

Example 1. Solve the initial value problem

ut = 3uxx 0 < x < 2, t > 0 (15)

u(0, t) = u(2, t) = 0 (16)

u(x, 0) = 20. (17)

This problem has homogeneous Dirichlet conditions, so by (??) our general solution is

u(x, t) =
∞

∑

n=1

Bne−3(nπ

2
)2t sin(

nπx

2
). (18)

The coefficients for the particular solution are the FourierSine coefficients ofu(x, 0) = 20, so we
have

Bn =
2

2

∫ 2

0

20 sin(
nπx

2
)dx (19)

= [−
40

nπ
cos(

nπx

2
)]20 (20)

= −
40

nπ
(cos(nπ) − cos(0)) (21)

=
40

nπ
(1 + (−1)n+1) (22)

and the solution to the problem is

u(x, t) =
40

π

∞
∑

n=1

1 + (−1)n+1

n
e−

3n
2

π
2

4
t sin(

nπx

2
). (23)

Example 2. Solve the initial value problem

ut = 3uxx 0 < x < 2, t > 0 (24)

ux(0, t) = ux(2, t) = 0 (25)

u(x, 0) = 3x. (26)

This problem has homogeneous Neumann conditions, so by (??) our general solution is

u(x, t) =
1

2
A0 +

∞
∑

n=1

Ane−3(nπ

2
)2t cos(

nπx

2
). (27)

The coefficients for the particular solution are the FourierCosine coefficients ofu(x, 0) = 3x, so
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we have

A0 =
2

2

∫ 2

0

3xdx = 6 (28)

An =
2

2

∫ 2

0

3x cos(
nπx

2
)dx (29)

= [−
6x

nπ
cos(

nπx

2
) +

12

n2π2
sin(

nπx

2
)]20 (30)

= −
12

nπ
cos(nπ) (31)

=
12

nπ
(−1)n+1 (32)

and the solution to the problem is

u(x, t) =
3

2
+

12

π

∞
∑

n=1

(−1)n+1

n
e−

3n
2

π
2

4
t cos(

nπx

2
). (33)

Example 3. Solve the initial value problem

ut = 4uxx 0 < x < 2π, t > 0 (34)

u(0, t) = u(2π, t) = 0 (35)

u(x, 0) =

{

1 0 < x < π

x π < x < 2π
. (36)

This problem has homogeneous Dirichlet conditions, so our general solution is

u(x, t) =
∞

∑

n=1

Bne−n2t sin(
nx

2
). (37)

The coefficients for the particular solution are the FourierSine coefficients ofu(x, 0), so we have

Bn =
2

2π

(
∫

π

0

sin(
nx

2
)dx +

∫ 2π

π

x sin(
nx

2
)dx

)

(38)

= −
2

nπ
cos(

nx

2
)|π0 −

2x

nπ
cos(

nx

2
)|2π

π
+

4

n2π
sin(

nx

2
)|2π

π
(39)

= −
2

nπ
(cos(

nx

2
) − cos(0)) −

4

n
cos(nπ) +

2

n
cos(

nπ

2
) −

4

n2π
sin(

nπ

2
) (40)

= −
2

nπ
(cos(

nπ

2
) − 1) +

4

n
(−1)n+1 +

2

n
cos(

nπ

2
) −

4

n2π
sin(

nπ

2
) (41)

=
2

n

(

−
1

π
(cos(

nπ

2
) − 1) + 2(−1)n+1 cos(

nπ

2
) −

2

nπ
sin(

nπ

2
)

)

(42)

and the solution to the problem is

u(x, t) = 2
∞

∑

n=1

1

n

(

−
1

π
(cos(

nπ

2
)− 1) + 2(−1)n+1 cos(

nπ

2
)−

2

nπ
sin(

nπ

2
)

)

e−n2t sin(
nx

2
). (43)
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2 Other Boundary Conditions

So far, we have used the technique of separation of variablesto produce solutions to the heat
equation

ut = kuxx (44)

on 0 < x < l with either homogeneous Dirichlet boundary conditions[u(0, t) = u(l, t) = 0] or
homogeneous Neumann boundary conditions[ux(0, t) = ux(l, t) = 0]. What about for some other
physically relevant boundary conditions?

2.1 Mixed Homogeneous Boundary Conditions

We could have the following boundary conditions

u(0, t) = ux(l, t) = 0 (45)

Physically, this might correspond to keeping the end of the rod wherex = 0 in a bowl of ice water,
while the other end is insulated.

Use Separation of Variables. Letu(x, t) = X(x)T (t), and we get the pair of ODEs

T ′ = −kλT (46)

X ′′ = −λX. (47)

Thus
T (t) = Be−kλt. (48)

We now have a boundary value problem forX to deal with, where the boundary conditions are
X(0) = X ′(l) = 0. There are only positive eigenvalues, which are given by

λn =

(

(2n − 1)π

2l

)2

(49)

and their associated eigenfunctions are

Xn(x) = sin(
(2n − 1)πx

2l
). (50)

The separated solutions are then given by

un(x, t) = Bne−(
(2n−1)π

2l
)2kt sin

((2n − 1)πx

2l

)

(51)

and the general solution is

u(x, t) =

∞
∑

n=1

Bne−( (2n−1)π
2l

)2kt sin
((2n − 1)πx

2l

)

. (52)
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with an initial conditionu(x, 0) = f(x), we have that

f(x) =

∞
∑

n=1

Bn sin
((2n − 1)πx

2l

)

. (53)

This is an example of a specialized sort of Fourier Series, the coefficients are given by

Bn =
2

l

∫

l

0

f(x) sin
((2n − 1)πx

2l

)

dx. (54)

REMARK: The convergence for a series like the one above is different than that of our standard
Fourier Sine or Cosine series, which converge to the periodic extension of the odd or even exten-
sions of the original function, respectively. Notice that the terms in the sum above are periodic
with period4l (as opposed to the2l-periodic series we have seen before). In this case, we need
to first extend our functionf(x), given on(0, l), to a function on(0, 2l) symmetric aroundx = l.
Then, as our terms are all sines, the convergence on(−2l, 2l) will be to the odd extension of this
extended function, and the periodic extension of this will be what the series converges to on the
entire real line.

Example 4. Solve the following heat equation problem

ut = 25uxx (55)

u(0, t) = 0 ux(10, t) = 0 (56)

u(x, 0) = 5. (57)

By (??) our general solution is

u(x, t) =

∞
∑

n=1

Bne
−25(

(2n−1)π
20

)2t sin
((2n − 1)πx

20

)

. (58)

The coefficients for the particular solution are given by

Bn =
2

10

∫ 10

0

5 sin
((2n − 1)πx

20

)

dx (59)

= −
10

(2n − 1)π
cos

((2n − 1)πx

20

)

|100 (60)

= −
10

(2n − 1)π

(

cos(
(2n − 1)π

2
) − cos(0)

)

(61)

=
10

(2n − 1)π
. (62)

and the solution to the problem is

u(x, t) =
10

π

∞
∑

n=1

1

(2n − 1)
e−

(2n−1)2π
2

16
t sin

((2n − 1)πx

20

)

. (63)
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2.2 Nonhomogeneous Dirichlet Conditions

The next type of boundary conditions we will look at are Dirichlet conditions, which fix the value
of u at the endpointsx = 0 andx = l. For the heat equation, this corresponds to fixing the
temperature at the ends of the rod. We have already looked at homogeneous conditions where the
ends of the rod had fixed temperature 0. Now consider the nonhomogeneous Dirichlet conditions

u(0, t) = T1, u(l, t) = T2 (64)

This problem is slightly more difficult than the homogeneousDirichlet condition problem we
have studied. Recall that for separation of variables to work, the differential equations and the
boundary conditions must be homogeneous. When we have nonhomogeneous conditions we need
to try to split the problem into one involving homogeneous conditions, which we know how to
solve, and another dealing with the nonhomogeneity.

REMARK: We used a similar approach when we applied the methodof Undetermined Coeffi-
cients to nonhomogeneous linear ordinary differential equations.

How can we separate the core homogeneous problem from what iscausing the nonhomogene-
ity? Consider what happens ast → ∞. We should expect that, since we fix the temperatures at the
endpoints and allow free heat flux at the boundary, at some point the temperature will stabilize and
we will be at equilibrium. Such a temperature distribution would clearly not depend on time, and
we can write

lim
t→∞

u(x, t) = v(x) (65)

Notice thatv(x) must still satisfy the boundary conditions and the heat equation, but we should
not expect it to satisfy the initial conditions (since for large t we are far from where we initially
started). A solution such asv(x) which does not depend ont is called asteady-state or equilib-
rium solution.

For a steady-state solution the boundary value problem becomes

0 = kv′′ v(0) = T1 v(l) = T2. (66)

It is easy to see that solutions to this second order differential equation are

v(x) = c1x + c2 (67)

and applying the boundary conditions, we have

v(x) = T1 +
T2 − T1

l
x. (68)

Now, let
w(x, t) = u(x, t) − v(x) (69)

so that
u(x, t) = w(x, t) + v(x). (70)
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This functionw(x, t) represents thetransient part ofu(x, t) (sincev(x) is the equilibrium part).
Taking derivatives we have

ut = wt + vt = wt and uxx = wxx + vxx = wxx. (71)

Here we use the fact thatv(x) is independent oft and must satisfy the differential equation. Also,
using the equilibrium equationv′′ = vxx = 0.

Thusw(x, t) must satisfy the heat equation, as the relevant derivativesof it are identical to those
of u(x, t), which is known to satisfy the equation. What are the boundary and initial conditions?

w(0, t) = u(0, t) − v(0) = T1 − T1 = 0 (72)

w(l, t) = u(l, t) − v(l) = T2 − T2 = 0 (73)

w(x, 0) = u(x, 0) − v(x) = f(x) − v(x) (74)

wheref(x) = u(x, 0) is the given initial condition for the nonhomogeneous problem. Now, even
though our initial condition is slightly messier, we now have homogeneous boundary conditions,
sincew(x, t) must solve the problem

wt = kwxx (75)

w(0, t) = w(l, t) = 0 (76)

w(x, 0) = f(x) − v(x) (77)

This is just a homogeneous Dirichlet problem. We know the general solution is

w(x, t) =

∞
∑

n=1

Bne
−(nπ

l
)2kt sin(

nπx

l
). (78)

where the coefficients are given by

Bn =
2

l

∫

l

0

(f(x) − v(x)) sin(
nπx

l
)dx. (79)

Notice thatlimt→∞ w(x, t) = 0, so thatw(x, t) is transient.
Thus, the solution to the nonhomogeneous Dirichlet problem

ut = kuxx (80)

u(0, t) = T1, u(l, t) = T2 (81)

u(x, 0) = f(x) (82)

is u(x, t) = w(x, t) + v(x), or

u(x, t) =

∞
∑

n=1

Bne
−(nπ

l
)2lt sin

(nπx

l

)

+ T1 +
T2 − T1

l
x (83)
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with coefficients

Bn =
2

l

∫

l

0

(f(x) − T1 −
T2 − T1

l
x) sin

(nπx

l

)

dx. (84)

REMARK: Do not memorize the formulas but remember what problemw(x, t) has to solve
and that the final solution isu(x, t) = v(x) + w(x, t). Forv(x), it is not a hard formula, but if one
is not sure of it, remembervxx = 0 and it has the same boundary conditions asu(x, t). This will
recover it.

Example 5. Solve the following heat equation problem

ut = 3uxx (85)

u(0, t) = 20, u(40, t) = 100 (86)

u(x, 0) = 40 − 3x (87)

We start by writing
u(x, t) = v(x) + w(x, t) (88)

wherev(x) = 20 + 2x. Thenw(x, t) must satisfy the problem

wt = 3wxx (89)

w(0, t) = w(40, t) = 0 (90)

w(x, 0) = 40 − 3x − (20 + 2x) = 20 − x (91)

This is a homogeneous Dirichlet problem, so the general solution for w(x, t) will be

w(x, t) =
∞

∑

n=1

e−3(nπ

40
)2t sin(

nπx

40
). (92)

The coefficients are given by

Bn =
2

40

∫ 40

0

(20 − x) sin
(nπx

40

)

dx (93)

=
1

20
[−

40(20 − x)

nπ
cos

(nπx

40

)

−
1600

n2π2
sin

(nπx

40

)]40

0
(94)

=
1

20

(

800

nπ
cos(nπ) +

800

nπ
cos(0)

)

(95)

=
40

nπ
((−1)n + 1). (96)

So the solution is

u(x, t) = 20 + 2x +
40

π

∞
∑

n=1

(−1)n + 1

n
e−

3n
2

π
2

1600
t sin

(nπx

40

)

. (97)
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2.3 Other Boundary Conditions

There are many other boundary conditions one could use, mostof which have a physical interpre-
tation. For example the boundary conditions

u(0, t) + ux(0, t) = 0 u(l, t) + ux(l, t) = 0 (98)

say that the heat flux at the end points should be proportionalto the temperature. We could also
have had nonhomogeneous Neumann conditions

ux(0, t) = F1 ux(l, t) = F2 (99)

which would specify allowing a certain heat flux at the boundaries. These conditions are not nec-
essarily well suited for the method of separation of variables though and are left for future classes.

HW 10.6 # 1, 4, 6, 13abc
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