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Last Time: We studied Even and Odd Functions as well as theecgence of Fourier Series.

1 Heat Equation Problems

In the previous lecture on the Heat Equation we saw that théymt solutions to the heat equation
with homogeneous Dirichlet boundary conditions problem

uw(0,t) = wu(l,t)=0 2
u(z,0) = f(x) 3)

had the form , e
Up(z,t) = Bue (TI¥ Sin(T) n=123,.. 4)

Taking linear combinations of these (over eaglgives a general solution to the above problem.
5 =S B, ek gip (10 5
u(z,t) ; e Vi sm(l) 5)
Settingt = 0, this implies that we must have
> nmx
= By, sin(—— 6
f(x) Z sin (=) (6)

In other words, the coefficients in the general solutionliergiven initial condition are thigourier
Sine coefficients off (x) on (0, ), which are given by

2 [ . /NTT
Bn:?/() f(x)sm(T)dx. (7



We also, saw that if we instead have a problem with homogenEeumann boundary condi-
tions

u = kug, O0<ax<l, t>0 (8)
ug(0,t) = wu.(l,t) =0 9
u(0,) = f(x) (10)

the product solutions had the form

nmw

Un(z,t) = Ape (T )kt cos(@) n=123,.. (12)

and the general solution has the form

1 _(nmy2 nmwT
u(z,t) = Ao+ ;Ane CTR cos (——) (12)
With ¢ = 0 this means that the initial condition must satisfy
1 > nmT
=-A A — 1
fla) =3 0+; n €08 (——) (13)

and so the coefficients for a particular initial conditios gveFourier Cosine coefficients off (),
given by

nmwx

!
An:%/()f(x)cos( i )dz. (14)

One way to think about this difference is that given the ahitiateu.(z, 0) = f(x), the Dirichlet
conditions specify thedd extension of f(x) as the desired periodic solution, while the Neumann
conditions specify theven extension. This should make sense since odd functions must have
f(0) = 0, while even functions must hav&(0) = 0.

So to solve a homogeneous heat equation problem, we begiebtifying the type of bound-
ary conditions we have. If we have Dirichlet conditions, weWw our solution will have the form
of Equation @?). All we then have to do is compute the Fourier Sine coeffisief f (). Simi-
larly, if we have Neumann conditions, we know the solutios tiee form of Equation?®?) and we
have to compute the Fourier Cosine coefficientg (@f).

REMARK: Observe that for any homogeneous Dirichlet prohldre temperature distribution
(??) will go to 0 ast — oo. This should make sense because these boundary conditvaesh
physical interpretation where we keep the ends of our rockaizing temperature without regulat-
ing the heat flow in and out of the endpoints. As a result, ifititerior of the rod is initially above
freezing, that heat will radiate towards the endpoints aal dur reservoirs at the endpoints. On
the other hand, if the interior of the rod is below freezingatwill come from the reservoirs at the
endpoints and warm it up until the temperature is uniform.

For the Neumann problem, the temperature distributf® Will converge to%AO. Again, this
should make sense because these boundary conditionspmrde® a situation where we have
insulated ends, since we are preventing any heat from exgépe bar. Thus all heat energy will
move around inside the rod until the temperature is uniform.
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1.1 Examples

Example 1. Solve the initial value problem

U = Uy, 0<ax <2, t>0 (15)
u(0,t) = u(2,t)=0 (16)
u(z,0) = 20. a7)

This problem has homogeneous Dirichlet conditions, sd?By dur general solution is

nmwx

u(z,t) = Z Bpe 303 sin(T). (18)
n=1

The coefficients for the particular solution are the FouBiere coefficients ofi(x,0) = 20, so we
have

B, = ; /0 2205in($)dx (19)
= [ cos("20)3 20)
_ —i—g(cos(nﬁ)—cos((])) (21)
_ %(ht(—l)"“) (22)

and the solution to the problem is

40 > ]_ —]_ 7L+1 7L27\'2
T = n 2

u(z,t) =

Example 2. Solve the initial value problem

U = By, 0<x<2, t>0 (24)
u(z,0) = 3ux. (26)

This problem has homogeneous Neumann conditions, s8®)y(r general solution is

nmwx

]. > nm
u(x,t) = §A0 + ZAne_3(7)2t cos( 5 ). (27)
n=1

The coefficients for the particular solution are the Fou@esine coefficients of(z,0) = 3z, SO



we have

2 2
Ay = —/ 3xdr = 6 (28)
2 Jo
2 2
A, = —/ 31’008(@)d1' (29)
2 /o 2
6x nmwx 12 . nmz .,
= [—%cos( 5 )+n27r2 sin( 5 ) (30)
12
= ——cos(nm) (31)
nm
12
= — (- (32)
nm
and the solution to the problem is
12 & (—1)"+! L
— —). 33
u(z, - Z cos(—-) (33)
Example 3. Solve the initial value problem
u = 4duy,, 0<x<22m, t>0 (34)
u(0,t) = wu(2m,t)=0 (35)

1l O<ax<m

u(x,0) = { . (36)

r m<x<?2m

This problem has homogeneous Dirichlet conditions, so enegal solution is

ZB e " ! sin( ) (37)
The coefficients for the particular solution are the Fouigre coefficients ofi(x, 0), so we have
9 T 21
B, = 7 (/0 sin(%)dm +/7r xsin(%)dx) (38)
2 nw 2z nw 4 . nx o
= T 005(7”3 - 005(7) T+ o 3111(7) - (39)
= —i(cos(n—x) —cos(0)) — 4 cos(nm) + 2 cos(n—w) L si (T) (40)
onm 2 n T 2 n2r N
2 nmw 4 2 nmw 4 nmw
= —— — )= 1)+ (=) 4 = —) — ——sin(—- 41
mr(cos( 2 ) =D+ n( A nCOS( 2 ) n2m sin 2 ) (41)
2 1 nm nmw 2 nmw
I N n+1 — — qin(—
= 2R3 - 1 21 eos() - Z (3D 42)

and the solution to the problem is

ulz, ) —22 ( (cos W>—1>+2<—1>"“cos<f>—isin<ni>)€‘"2t81n< ). (43)



2 Other Boundary Conditions

So far, we have used the technique of separation of varidblesoduce solutions to the heat

equation
Uy = Kyy (44

on0 < z < [ with either homogeneous Dirichlet boundary conditiGm@®, t) = u(l,t) = 0] or
homogeneous Neumann boundary conditien$0, t) = u.(I,t) = 0]. What about for some other
physically relevant boundary conditions?

2.1 Mixed Homogeneous Boundary Conditions
We could have the following boundary conditions
u(0,t) = uy(l,1) =0 (45)

Physically, this might correspond to keeping the end of titewherer = 0 in a bowl of ice water,
while the other end is insulated.
Use Separation of Variables. Letr,t) = X (z)T'(t), and we get the pair of ODEs

T = —kEAT (46)

X" = —)\X. (47)
Thus

T(t) = Be ™, (48)

We now have a boundary value problem forto deal with, where the boundary conditions are
X (0) = X'(I) = 0. There are only positive eigenvalues, which are given by

_(@2n—=1D)r 2
W= (25 (49)
and their associated eigenfunctions are
X, (x) = sin(W). (50)

The separated solutions are then given by

n—1)mw 2 _ 1
Un(1,) = Bpe~(“m e sin(%) (51)
and the general solution is
S _(@n=Dmyop, | (Qn _ 1)7TI
= B.e ¢ )2kt (@2n — Dmzy ,
u(w,t) E e Cm sin - ) 2

n=1



with an initial conditionu(z,0) = f(x), we have that

o . (2n—1)mx
flz) = ; B, sin( 5 ). (53)
This is an example of a specialized sort of Fourier Seriesctefficients are given by
l J—
B, = %/ f(x) sin(%)dm. (54)
0

REMARK: The convergence for a series like the one aboveisrdift than that of our standard
Fourier Sine or Cosine series, which converge to the periextension of the odd or even exten-
sions of the original function, respectively. Notice thia¢ terms in the sum above are periodic
with period4/ (as opposed to thg/-periodic series we have seen before). In this case, we need
to first extend our functiorf(z), given on(0, 1), to a function on(0, 2/) symmetric around: = I.
Then, as our terms are all sines, the convergende-@nh 2!) will be to the odd extension of this
extended function, and the periodic extension of this welvthat the series converges to on the
entire real line.

Example 4. Solve the following heat equation problem

Uy = 25Uyy (55)
w0,t) = 0 u,(10,¢) =0 (56)
u(x,0) = 5. (57)

By (??) our general solution is

(2n — )7z

1) =3 B,e B . 58
) = D By (B )
The coefficients for the particular solution are given by
2 [ (2n— 1)z
Bn = 1—0 . 5Sln(270)dl’ (59)
B 10 (2n — D)mxy 1o
IO o8 lo (60)
10 (2n — 1)
_ ~C Ty 61
Gn—1)r (cos( 5 ) COS(O)) (61)
10
= — 62
(2n — 1) (62)
and the solution to the problem is
IRURS 1 _enoia?, (2n — 1)mx
u(x,t) = - Zl on = 1>6 sin ( 50 ). (63)



2.2 Nonhomogeneous Dirichlet Conditions

The next type of boundary conditions we will look at are Chitet conditions, which fix the value
of v at the endpointss = 0 andz = [. For the heat equation, this corresponds to fixing the
temperature at the ends of the rod. We have already lookeshaddreneous conditions where the
ends of the rod had fixed temperature 0. Now consider the nmoageneous Dirichlet conditions

uw(0,t) =Ty, wu(l,t) =T, (64)

This problem is slightly more difficult than the homogeneduschlet condition problem we
have studied. Recall that for separation of variables tokytire differential equations and the
boundary conditions must be homogeneous. When we have nmgemeous conditions we need
to try to split the problem into one involving homogeneousditons, which we know how to
solve, and another dealing with the nonhomogeneity.

REMARK: We used a similar approach when we applied the metiidéhdetermined Coeffi-
cients to nonhomogeneous linear ordinary differentiabéigns.

How can we separate the core homogeneous problem from wteiséng the nonhomogene-
ity? Consider what happensas- oco. We should expect that, since we fix the temperatures at the
endpoints and allow free heat flux at the boundary, at sonre ffe@ temperature will stabilize and
we will be at equilibrium. Such a temperature distributioouhd clearly not depend on time, and
we can write

tli>n;> u(z,t) = v(x) (65)

Notice thatv(xz) must still satisfy the boundary conditions and the heat ggpiabut we should
not expect it to satisfy the initial conditions (since fordat we are far from where we initially
started). A solution such agx) which does not depend aris called asteady-state or equilib-
rium solution.

For a steady-state solution the boundary value problemrbeso

0=k 0(0)=T1 v(l)="T. (66)
It is easy to see that solutions to this second order diffexleequation are
v(T) =17 + ¢ (67)

and applying the boundary conditions, we have

v(z) =T, + L ; Tl:z:. (68)
Now, let
w(z,t) = u(z,t) — v(x) (69)
so that
u(z,t) = w(z,t) +v(x). (70)



This functionw(z, t) represents theransient part ofu(z, t) (sincev(x) is the equilibrium part).
Taking derivatives we have

U =Wy + 0 = wy and Uyy = Way + Vpgp = Wag. (71D

Here we use the fact thafz) is independent of and must satisfy the differential equation. Also,
using the equilibrium equation’ = v,, = 0.

Thusw(z, t) must satisfy the heat equation, as the relevant derivativieare identical to those
of u(z, t), which is known to satisfy the equation. What are the boundad initial conditions?

w(0,t) = u(0,t) —v(0) =Ty —T, =0 (72)
w(l,t) = u(ll,t)—v(l)=T,—T,=0 (73)
w(z,0) = u(z,0) —v(r) = f(z) —v(z) (74)

wheref(z) = u(x,0) is the given initial condition for the nonhomogeneous peotl Now, even
though our initial condition is slightly messier, we now bawmogeneous boundary conditions,
sincew(x,t) must solve the problem

Wy = KWy (75)
w(0,t) = w(l,t)=0 (76)
w(z,0) = f(z)—v(z) (77)

This is just a homogeneous Dirichlet problem. We know theegarsolution is
t) =" BueF’ kg 78
w(x»nz:jlez sin () (78)

where the coefficients are given by

2 nmwx

B, = j/o (f(x) —v(z)) sin(T)dx. (79)

Notice thatlim, .., w(x,t) = 0, so thatw(z, t) is transient.
Thus, the solution to the nonhomogeneous Dirichlet problem

l l

U = Klgy (80)
U(O,t) = Tl, U(l, t) = T2 (81)
u(r,0) = f(x) (82)
isu(z,t) = w(z,t) +v(x), or
u(z,t) = i Bye~ T sin(nﬂ) + 1 + L2 Tlx (83)
n=1



with coefficients l
T, —T
B, - %/(f(x)—Tl— L) sin(“ ) (84)
0

REMARK: Do not memorize the formulas but remember what problv(x,t) has to solve
and that the final solution ig(z, t) = v(x) + w(x,t). Forv(z), itis not a hard formula, but if one
is not sure of it, remember,, = 0 and it has the same boundary conditions.és t). This will
recover it.

Example 5. Solve the following heat equation problem

U = SUgy (85)
u(0,t) = 20, w(40,t) =100 (86)
u(z,0) = 40— 3z (87)
We start by writing
u(z,t) = v(z) + w(zx,t) (88)

wherev(x) = 20 + 2z. Thenw(z, t) must satisfy the problem

w(0,t) = w(40,t) =0 (90)
w(z,0) = 40—3x— (204+22) =20 —=z (91)

This is a homogeneous Dirichlet problem, so the generatisolior w(x, t) will be

Z e 305" gin n;)m) (92)
The coefficients are given by
B, = 42—0 /040(20 —x) sin(ﬁ—?)dz (93)
_ 21_0[_ 40(2737: x) COS(TZE)I) 71;252(2) . (nﬁ)x)ro (94)
= 21—0 % cos(nm) + % cos(O)) (95)
_ %((_1)" 1), (96)

So the solution is

40 > _1 n ]_ 7L27\'2
u(z,t) =20+ 2z + — Z ue_gwoo tsin(— .
s n

n=1

(97)



2.3 Other Boundary Conditions

There are many other boundary conditions one could use, ohagtich have a physical interpre-
tation. For example the boundary conditions

w(0,8) +ua(0,8) = 0 u(lyt) + ug(l,£) =0 (98)

say that the heat flux at the end points should be proportiondle temperature. We could also
have had nonhomogeneous Neumann conditions

ux(O,t) = Fl Ux(l,t) = F2 (99)

which would specify allowing a certain heat flux at the boureta These conditions are not nec-
essarily well suited for the method of separation of vagalthough and are left for future classes.

HW 10.6#1, 4, 6, 13abc

10



