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Last Time: We studied other Heat Equation problems with various other boundary conditions.

1 The Wave Equation

1.1 Derivation of the Wave Equation

Consider a completely flexible string of lengthl and constant densityρ. We will assume that the
string will only undergo relatively small vertical vibrations, so that points do not move from side
to side. An example might be a plucked guitar string. Thus we can letu(x, t) be its displacement
from equilibrium at timet. The assumption of complete flexibility means that the tension force is
tangent to the string, and the string itself provides no resistance to bending. This means the tension
force only depends on the slope of the string.

Take a small piece of string going fromx to x + ∆x. Let Θ(x, t) be the angle from the
horizontal of the string. Our goal is to use Newton’s Second LawF = ma to describe the motion.
What forces are acting on this piece of string?
(a) Tension pulling to the right, which has magnitudeT (x + ∆x, t) and acts at an angle ofΘ(x +
∆x, t) from the horizontal.
(b) Tension pulling to the left, which has magnitudeT (x, t) and acts at an angle ofΘ(x, t) from
the horizontal.
(c) Any external forces, which we denote byF (x, t).
Initially, we will assume thatF (x, t) = 0. The length of the string is essentially

√

(∆x)2 + (∆u)2,
so the vertical component of Newton’s Law says that

ρ
√

(∆x)2 + (∆u)2utt(x, t) = T (x + ∆x, t) sin(Θ(x + ∆x, t)) − T (x, t) sin(Θ(x, t)). (1)

Dividing by ∆x and taking the limit as∆x → 0, we get

ρ
√

1 + (ux)2utt(x, t) =
∂

∂x
[T (x, t) sin(Θ(x, t))]. (2)

We assumed our vibrations were relatively small. This meansthatΘ(x, t) is very close to zero.
As a result,sin(Θ(x, t)) ≡ tan(Θ(x, t)). Moreover,tan(Θ(x, t)) is just the slope of the string
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ux(x, t). We conclude, sinceΘ(x, t) is small, thatux(x, t) is also very small. The above equation
becomes

ρutt(x, t) = (T (x, t)ux(x, t))x. (3)

We have not used the horizontal component of Newton’s Law yet. Since we assume there are only
vertical vibrations, our tiny piece of string can only move vertically. Thus the net horizontal force
is zero.

T (x + ∆x, t) cos(Θ(x + ∆x, t)) − T (x, t) cos(Θ(x, t)) = 0. (4)

Dividing by ∆x and taking the limit as∆x → ∞ yields

∂

∂x
[T (x, t) cos(Θ(x, t))] = 0. (5)

SinceΘ(x, t) is very close to zero,cos(Θ(x, t)) is close to one. thus we have that∂T
∂x

(x, t) is close
to zero. SoT (x, t) is constant along the string, and independent ofx. We will also assume thatT
is independent oft. Then Equation (??) becomes the one-dimensional wave equation

utt = c2uxx (6)

wherec2 = T
ρ
.

1.2 The Homogeneous Dirichlet Problem

Now that we have derived the wave equation, we can use Separation of Variables to obtain basic
solutions. We will consider homogeneous Dirichlet conditions, but if we had homogeneous Neu-
mann conditions the same techniques would give us a solution. The wave equation is second order
in t, unlike the heat equation which was first order int. We will need to initial conditions in order
to obtain a solution, one for the initial displacement and the other for the initial speed.

The relevant wave equation problem we will study is

utt = c2uxx (7)

u(0, t) = u(l, t) = 0 (8)

u(x, 0) = f(x), ut(x, 0) = g(x) (9)

The physical interpretation of the boundary conditions is that the ends of the string are fixed in
place. They might be attached to guitar pegs.

We start by assuming our solution has the form

u(x, t) = X(x)T (t). (10)

Plugging this into the equation gives

T ′′(t)X(x) = c2T (t)X ′′(x). (11)

Separating variables, we have
X ′′

X
=

T ′′

c2T
= −λ (12)
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whereλ is a constant. This gives a pair of ODEs

T ′′ + c2λT = 0 (13)

X ′′ + λX = 0. (14)

The boundary conditions transform into

u(0, t) = X(0)T (t) = 0 ⇒ X(0) = 0 (15)

u(l, t) = X(l)T (t) = 0 ⇒ X(l) = 0. (16)

This is the same boundary value problem that we saw for the heat equation and thus the eigenvalues
and eigenfunctions are

λn =
(nπ

l

)2
(17)

Xn(x) = sin
(nπx

l

)

(18)

for n = 1, 2, ... The first ODE (??) is then

T ′′ +
(cnπ

l

)2
T = 0, (19)

and since the coefficient ofT is clearly positive this has a general solution

Tn(t) = An cos
(nπct

l

)

+ Bn sin
(nπct

l

)

. (20)

There is no reason to think either of these are zero, so we end up with separated solutions

un(x, t) =

[

An cos(
nπct

l
) + Bn sin(

nπct

l
)

]

sin(
nπx

l
) (21)

and the general solution is

u(x, t) =
∞

∑

n=1

[

An cos(
nπct

l
) + Bn sin(

nπct

l
)

]

sin(
nπx

l
). (22)

We can directly apply our first initial condition, but to apply the second we will need to differentiate
with respect tot. This gives us

ut(x, t) =
∞

∑

n=1

[

−
nπc

l
An sin(

nπct

l
) +

nπc

l
Bn cos(

nπct

l
)

]

sin(
nπx

l
) (23)

Plugging in the initial condition then yields the pair of equations

u(x, 0) = f(x) =
∞

∑

n=1

An sin(
nπx

l
) (24)

ut(x, 0) = g(x) =
∞

∑

n=1

nπc

l
Bn sin(

nπx

l
). (25)
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These are both Fourier Sine series. The first is directly the Fourier Since series forf(x) on (0, l).
The second equation is the Fourier Sine series forg(x) on (0, l) with a slightly messy coefficient.
The Euler-Fourier formulas then tell us that

An =
2

l

∫ l

0

f(x) sin(
nπx

l
)dx (26)

nπc

l
Bn =

2

l

∫ l

0

g(x) sin(
nπx

l
)dx (27)

An =
2

l

∫ l

0

f(x) sin(
nπx

l
)dx (28)

Bn =
2

nπc

∫ l

0

g(x) sin(
nπx

l
)dx. (29)

1.3 Examples

Example 1. Find the solution (displacementu(x, t)) for the problem of an elastic string of lengthL

whose ends are held fixed. The string has no initial velocity (ut(x, 0) = 0) from an initial position

u(x, 0) = f(x) =











4x
L

0 ≤ x ≤
L
4

1 L
4

< x < 3L
4

4(L−x)
L

3L
4
≤ x ≤ L

(30)

By the formulas above we see if we separate variables we have the following equation forT

T ′′ + (
cnπ

L
)2T = 0 (31)

with the general solution

Tn(t) = An cos(
nπct

L
) + Bn sin(

nπct

L
). (32)

since the initial speed is zero, we findT ′(0) = 0 and thusBn = 0. Therefore the general solution
is

u(x, t) =
∞

∑

n=1

An cos(
nπct

L
) sin(

nπx

L
). (33)

where the coefficients are the Fourier Sine coefficients off(x). So

An =
2

L

∫ L

0

f(x) sin(
nπx

L
)dx (34)

=
2

L

[
∫ L/4

0

4x

L
sin(

nπx

L
)dx +

∫ 3L/4

L/4

sin(
nπx

L
)dx +

∫ L

3L/4

4L − 4x

L
sin(

nπx

L
)dx

]

(35)

= 8
sin(nπ

4
) + sin(3nπ

4
)

n2π2
(36)
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Thus the displacement of the string will be

u(x, t) =
8

π2

∞
∑

n=1

sin(nπ
4

) + sin(3nπ
4

)

π2
cos(

nπct

L
) sin(

nπx

L
). (37)

Example 2. Find the solution (displacementu(x, t)) for the problem of an elastic string of lengthL

whose ends are held fixed. The string has no initial velocity (ut(x, 0) = 0) from an initial position

u(x, 0) = f(x) =
8x(L − x)2

L3
(38)

By the formulas above we see if we separate variables we have the following equation forT

T ′′ + (
cnπ

L
)2T = 0 (39)

with the general solution

Tn(t) = An cos(
nπct

L
) + Bn sin(

nπct

L
). (40)

since the initial speed is zero, we findT ′(0) = 0 and thusBn = 0. Therefore the general solution
is

u(x, t) =
∞

∑

n=1

An cos(
nπct

L
) sin(

nπx

L
). (41)

where the coefficients are the Fourier Sine coefficients off(x). So

An =
2

L

∫ L

0

f(x) sin(
nπx

L
)dx (42)

=
2

L

∫ L

0

8x(L − x)2

L3
sin(

nπx

L
)dx (43)

= 32
2 + cos(nπ)

n3π3
Integrate By Parts (44)

Thus the displacement of the string will be

u(x, t) =
32

π3

∞
∑

n=1

2 + cos(nπ)

n3
cos(

nπct

L
) sin(

nπx

L
). (45)

Example 3. Problem 12 is a great exercise.

HW 10.7 # 4a, 5a, 7a, 8a, 12

Go through the Separation of Variables it will be important for Exams.
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