Lecture Notes for Math 251: ODE and PDE. Lecture 35: 10.8 Laplace's Equation

Shawn D. Ryan

Spring 2012

Last Time: We studied another fundamental equation in the study of partial differential equations, which is the wave equation. Today we will look at the final fundamental equation, which is Laplace's Equation.

1 Laplace's Equation

We will consider the two-dimensional and three-dimensional Laplace Equations

$$
\begin{align*}
(2 D): u_{x x}+u_{y y} & =0 \tag{1}\\
(3 D): \quad u_{x x}+u_{y y}+u_{z z} & =0 \tag{2}
\end{align*}
$$

1.1 Dirichlet Problem for a Rectangle

We want to find the function u satisfying Laplace's Equation

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \tag{3}
\end{equation*}
$$

in the rectangle $0<x<a, 0<y<b$, and satisfying the boundary conditions

$$
\begin{align*}
& u(x, 0)=0, \quad u(x, b)=0, \quad 0<x<a \tag{4}\\
& u(0, y)=0, \quad u(a, y)=f(y), \quad 0 \leq y \leq b \tag{5}
\end{align*}
$$

We need four boundary conditions for the four spatial derivatives.
Start by using Separation of Variables and assume $u(x, y)=X(x) Y(y)$. Substitute u into Equation (??). This yields

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=\lambda, \tag{6}
\end{equation*}
$$

where λ is a constant. We obtain the following system of ODEs

$$
\begin{align*}
X^{\prime \prime}-\lambda X & =0 \tag{7}\\
Y^{\prime \prime}+\lambda Y & =0 . \tag{8}
\end{align*}
$$

From the boundary conditions we find

$$
\begin{align*}
& X(0)=0 \tag{9}\\
& Y(0)=0, Y(b)=0 . \tag{10}
\end{align*}
$$

We first solve the ODE for Y, which we have seen numerous times before. Using the BCs we find there are nontrivial solutions if and only if λ is an eigenvalue

$$
\begin{equation*}
\lambda=\left(\frac{n \pi}{b}\right)^{2}, \quad n=1,2,3, \ldots \tag{11}
\end{equation*}
$$

and $Y_{n}(y)=\sin \left(\frac{n \pi y}{b}\right)$, the corresponding eigenfunction. Now substituting in for λ we want to solve the ODE for X. This is another problem we have seen regularly and the solution is

$$
\begin{equation*}
X_{n}(x)=c_{1} \cosh \left(\frac{n \pi x}{b}\right)+c_{2} \sinh \left(\frac{n \pi x}{b}\right) \tag{12}
\end{equation*}
$$

The BC implies that $c_{1}=0$. So the fundamental solution to the problem is

$$
\begin{equation*}
u_{n}(x, y)=\sinh \left(\frac{n \pi x}{b}\right) \sin \left(\frac{n \pi y}{b}\right) . \tag{13}
\end{equation*}
$$

By linear superposition the general solution is

$$
\begin{equation*}
u(x, y)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, y)=\sum_{n=1}^{\infty} c_{n} \sinh \left(\frac{n \pi x}{b}\right) \sin \left(\frac{n \pi y}{b}\right) \tag{14}
\end{equation*}
$$

Using the last boundary condition $u(a, y)=f(y)$ solve for the coefficients c_{n}.

$$
\begin{equation*}
u(a, y)=\sum_{n=1}^{\infty} c_{n} \sinh \left(\frac{n \pi a}{b}\right) \sin \left(\frac{n \pi y}{b}\right)=f(y) \tag{15}
\end{equation*}
$$

Using the Fourier Since Series coefficients we find

$$
\begin{equation*}
c_{n}=\frac{2}{b \sinh \left(\frac{n \pi a}{b}\right)} \int_{0}^{b} f(y) \sin \left(\frac{n \pi y}{b}\right) d y . \tag{16}
\end{equation*}
$$

1.2 Dirichlet Problem For A Circle

Consider solving Laplace's Equation in a circular region $r<a$ subject to the boundary condition

$$
\begin{equation*}
u(a, \theta)=f(\theta) \tag{17}
\end{equation*}
$$

where f is a given function on $0 \leq \theta \leq 2 \pi$. In polar coordinates Laplace's Equation becomes

$$
\begin{equation*}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 . \tag{18}
\end{equation*}
$$

Try Separation of Variables in Polar Coordinates

$$
\begin{equation*}
u(r, \theta)=R(r) \Theta(\theta) \tag{19}
\end{equation*}
$$

plug into the differential equation, Equation (??). This yields

$$
\begin{equation*}
R^{\prime \prime} \Theta+\frac{1}{r} R^{\prime} \Theta+\frac{1}{r^{2}} R \Theta^{\prime \prime}=0 \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}=-\frac{\Theta^{\prime \prime}}{\Theta}=\lambda \tag{21}
\end{equation*}
$$

where λ is a constant. We obtain the following system of ODEs

$$
\begin{align*}
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R & =0 \tag{22}\\
\Theta^{\prime \prime}+\lambda \theta & =0 \tag{23}
\end{align*}
$$

Since we have no homogeneous boundary conditions we must use instead the fact that the solutions must be bounded and also periodic in Θ with period 2π. It can be shown that we need λ to be real. Consider the three cases when $\lambda<0, \lambda=0, \lambda>0$.

If $\lambda<0$, let $\lambda=-\mu^{2}$, where $\mu>0$. So we find the equation for Θ becomes $\Theta^{\prime \prime}-\mu^{2} \Theta=0$. So

$$
\begin{equation*}
\Theta(\theta)=c_{1} e^{\mu \theta}+c_{2} e^{-\mu \theta} \tag{24}
\end{equation*}
$$

Θ can only be periodic if $c_{1}=c_{2}=0$, so λ cannot be negative (Since we do not get any nontrivial solutions.

If $\lambda=0$, then the equation for Θ becomes $\Theta^{\prime \prime}=0$ and thus

$$
\begin{equation*}
\Theta(\theta)=c_{1}+c_{2} \theta \tag{25}
\end{equation*}
$$

For Θ to be periodic $c_{2}=0$. Then the equation for R becomes

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}=0 \tag{26}
\end{equation*}
$$

This equation is an Euler equation and has solution

$$
\begin{equation*}
R(r)=k_{1}+k_{2} \ln (r) \tag{27}
\end{equation*}
$$

Since we also need the solution bounded as $r \rightarrow \infty$, then $k_{2}=0$. So $u(r, \theta)$ is a constant, and thus proportional to the solution $u_{0}(r, \theta)=1$.

If $\lambda>0$, we let $\lambda=\mu^{2}$, where $\mu>0$. Then the system of equations becomes

$$
\begin{gather*}
r^{2} R^{\prime \prime}+r R^{\prime}-\mu^{2} R=0 \tag{28}\\
\Theta^{\prime \prime}+\mu^{2} \Theta=0 \tag{29}
\end{gather*}
$$

The equation for R is an Euler equation and has the solution

$$
\begin{equation*}
R(r)=k_{1} r^{\mu}+k_{2} r^{-\mu} \tag{30}
\end{equation*}
$$

and the equation for Θ has the solution

$$
\begin{equation*}
\Theta(\theta)=c_{1} \sin (\mu \theta)+c_{2} \cos (\mu \theta) . \tag{31}
\end{equation*}
$$

For Θ to be periodic we need μ to be a positive integer n, so $\mu=n$. Thus the solution $r^{-\mu}$ is unbounded as $r \rightarrow 0$. So $k_{2}=0$. So the solutions to the original problem are

$$
\begin{equation*}
u_{n}(r, \theta)=r^{n} \cos (n \theta), \quad v_{n}(r, \theta)=r^{n} \sin (n \theta), \quad n=1,2,3, \ldots \tag{32}
\end{equation*}
$$

Together with $u_{0}(r, \theta)=1$, by linear superposition we find

$$
\begin{equation*}
u(r, \theta)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right) \tag{33}
\end{equation*}
$$

Using the boundary condition from the beginning

$$
\begin{equation*}
u(a, \theta)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} a^{n}\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right)=f(\theta) \tag{34}
\end{equation*}
$$

for $0 \leq \theta \leq 2 \pi$. We compute to coefficients by using our previous Fourier Series equations

$$
\begin{array}{ll}
c_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta, & n=1,2,3, \ldots \\
k_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta, & n=1,2,3, \ldots \tag{36}
\end{array}
$$

Note we need both terms since sine and cosine terms remain throughout the general solution.

1.3 HW 10.8 \# 2

Find the solution $u(x, y)$ of Laplace's Equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{align*}
& u(0, y)=0, \quad u(a, y)=0, \quad 0<y<b \tag{37}\\
& u(x, 0)=h(x), \quad u(x, b)=0, \quad 0 \leq x \leq a \tag{38}
\end{align*}
$$

Answer: Using the method of Separation of Variables, write $u(x, y)=X(x) Y(y)$. We get the following system of ODEs

$$
\begin{align*}
X^{\prime \prime}+\lambda X & =0, \quad X(0)=X(a)=0 \tag{39}\\
Y^{\prime \prime}-\lambda Y & =0, \quad Y(b)=0 \tag{40}
\end{align*}
$$

It follows that $\lambda_{n}=\left(\frac{n \pi}{a}\right)^{2}$ and $X_{n}(x)=\sin \left(\frac{n \pi x}{a}\right)$. The solution of the second ODE gives

$$
\begin{equation*}
Y(y)=d_{1} \cosh (\lambda(b-y))+d_{2} \sinh (\lambda(b-y)) . \tag{41}
\end{equation*}
$$

Using $y(b)=0$, we find that $d_{1}=0$. Therefore the fundamental solutions are

$$
\begin{equation*}
u_{n}(x, y)=\sin \left(\frac{n \pi x}{a}\right) \sinh \left(\lambda_{n}(b-y)\right), \tag{42}
\end{equation*}
$$

and the general solution is

$$
\begin{equation*}
u(x, y)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi(b-y)}{a}\right) \tag{43}
\end{equation*}
$$

Using another boundary condition

$$
\begin{equation*}
h(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi b}{a}\right) . \tag{44}
\end{equation*}
$$

The coefficients are calculated using the equation from the Fourier Sine Series

$$
\begin{equation*}
c_{n}=\frac{2}{a \sinh \left(\frac{n \pi b}{a}\right)} \int_{0}^{a} h(x) \sin \left(\frac{n \pi x}{a}\right) d x \tag{45}
\end{equation*}
$$

1.4 HW 10.8 \# 10a

Consider the problem of finding a solution $u(x, y)$ of Laplace's Equation in the rectangle $0<x<$ $a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{align*}
& u_{x}(0, y)=0, \quad u_{x}(a, y)=f(y), \quad 0<y<b \tag{46}\\
& u_{y}(x, 0)=0, \quad u_{y}(x, b)=0, \quad 0 \leq x \leq a \tag{47}
\end{align*}
$$

This is an example of a Neumann Problem. We want to find the fundamental set of solutions.

$$
\begin{array}{r}
X^{\prime \prime}-\lambda X=0, \quad X^{\prime}(0)=0 \\
Y^{\prime \prime}+\lambda Y=0, \quad Y^{\prime}(0)=Y^{\prime}(b)=0 \tag{49}
\end{array}
$$

The solution to the equation for Y is

$$
\begin{equation*}
Y(y)=c_{1} \cos \left(\lambda^{1 / 2} y\right)+c_{2} \sin \left(\lambda^{1 / 2} y\right) \tag{50}
\end{equation*}
$$

with $Y^{\prime}(y)=-c_{1} \lambda^{1 / 2} \sin \left(\lambda^{1 / 2} y\right)+c_{2} \lambda^{1 / 2} \cos \left(\lambda^{1 / 2} y\right)$. Using the boundary conditions we find $c_{2}=0$ and the eigenvalues are $\lambda_{n}=\frac{n^{2} \pi^{2}}{b^{2}}$, for $n=1,2,3, \ldots$. The corresponding Eigenfunctions are $Y(y)=\cos \left(\frac{n \pi y}{b}\right)$ for $n=1,2,3, \ldots$ The solution of the equation for X becomes $X(x)=$ $d_{1} \cosh \left(\frac{n \pi x}{b}\right)+d_{2} \sinh \left(\frac{n \pi x}{b}\right)$, with

$$
\begin{equation*}
X^{\prime}(x)=d_{1} \frac{n \pi}{b} \sinh \left(\frac{n \pi x}{b}\right)+d_{2} \frac{n \pi}{b} \cosh \left(\frac{n \pi x}{b}\right) . \tag{51}
\end{equation*}
$$

Using the boundary conditions, $X(x)=d_{1} \cosh \left(\frac{n \pi x}{b}\right)$. So the fundamental set of solutions is

$$
\begin{equation*}
u_{n}(x, y)=\cosh \left(\frac{n \pi x}{b}\right) \cos \left(\frac{n \pi y}{b}\right), \quad n=1,2,3, \ldots \tag{52}
\end{equation*}
$$

The general solution is given by

$$
\begin{equation*}
u(x, y)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cosh \left(\frac{n \pi x}{b}\right) \cos \left(\frac{n \pi y}{b}\right) \tag{53}
\end{equation*}
$$

