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Last Time: We studied another fundamental equation in the study of partial differential equa-
tions, which is the wave equation. Today we will look at the final fundamental equation, which is
Laplace’s Equation.

1 Laplace’s Equation

We will consider the two-dimensional and three-dimensional Laplace Equations

(2D) : uxx + uyy = 0, (1)

(3D) : uxx + uyy + uzz = 0. (2)

1.1 Dirichlet Problem for a Rectangle

We want to find the functionu satisfying Laplace’s Equation

uxx + uyy = 0 (3)

in the rectangle0 < x < a, 0 < y < b, and satisfying the boundary conditions

u(x, 0) = 0, u(x, b) = 0, 0 < x < a, (4)

u(0, y) = 0, u(a, y) = f(y), 0 ≤ y ≤ b. (5)

We need four boundary conditions for the four spatial derivatives.
Start by using Separation of Variables and assumeu(x, y) = X(x)Y (y). Substituteu into

Equation (??). This yields
X ′′

X
= −

Y ′′

Y
= λ, (6)

whereλ is a constant. We obtain the following system of ODEs

X ′′
− λX = 0 (7)

Y ′′ + λY = 0. (8)
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From the boundary conditions we find

X(0) = 0 (9)

Y (0) = 0, Y (b) = 0. (10)

We first solve the ODE forY , which we have seen numerous times before. Using the BCs we find
there are nontrivial solutions if and only ifλ is an eigenvalue

λ =
(nπ

b

)

2

, n = 1, 2, 3, ... (11)

andYn(y) = sin(nπy
b

), the corresponding eigenfunction. Now substituting in forλ we want to
solve the ODE forX. This is another problem we have seen regularly and the solution is

Xn(x) = c1 cosh
(nπx

b

)

+ c2 sinh
(nπx

b

)

(12)

The BC implies thatc1 = 0. So the fundamental solution to the problem is

un(x, y) = sinh
(nπx

b

)

sin
(nπy

b

)

. (13)

By linear superposition the general solution is

u(x, y) =
∞

∑

n=1

cnun(x, y) =
∞

∑

n=1

cn sinh
(nπx

b

)

sin
(nπy

b

)

. (14)

Using the last boundary conditionu(a, y) = f(y) solve for the coefficientscn.

u(a, y) =
∞

∑

n=1

cn sinh
(nπa

b

)

sin
(nπy

b

)

= f(y) (15)

Using the Fourier Since Series coefficients we find

cn =
2

b sinh(nπa
b

)

∫ b

0

f(y) sin
(nπy

b

)

dy. (16)

1.2 Dirichlet Problem For A Circle

Consider solving Laplace’s Equation in a circular regionr < a subject to the boundary condition

u(a, θ) = f(θ) (17)

wheref is a given function on0 ≤ θ ≤ 2π. In polar coordinates Laplace’s Equation becomes

urr +
1

r
ur +

1

r2
uθθ = 0. (18)
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Try Separation of Variables in Polar Coordinates

u(r, θ) = R(r)Θ(θ), (19)

plug into the differential equation, Equation (??). This yields

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0 (20)

or

r2
R′′

R
+ r

R′

R
= −

Θ′′

Θ
= λ (21)

whereλ is a constant. We obtain the following system of ODEs

r2R′′ + rR′
− λR = 0, (22)

Θ′′ + λθ = 0. (23)

Since we have no homogeneous boundary conditions we must useinstead the fact that the solutions
must be bounded and also periodic inΘ with period2π. It can be shown that we needλ to be real.
Consider the three cases whenλ < 0, λ = 0, λ > 0.

If λ < 0, let λ = −µ2, whereµ > 0. So we find the equation forΘ becomesΘ′′ − µ2Θ = 0.
So

Θ(θ) = c1e
µθ + c2e

−µθ (24)

Θ can only be periodic ifc1 = c2 = 0, soλ cannot be negative (Since we do not get any nontrivial
solutions.

If λ = 0, then the equation forΘ becomesΘ′′ = 0 and thus

Θ(θ) = c1 + c2θ (25)

ForΘ to be periodicc2 = 0. Then the equation forR becomes

r2R′′ + rR′ = 0. (26)

This equation is an Euler equation and has solution

R(r) = k1 + k2 ln(r) (27)

Since we also need the solution bounded asr → ∞, thenk2 = 0. Sou(r, θ) is a constant, and thus
proportional to the solutionu0(r, θ) = 1.

If λ > 0, we letλ = µ2, whereµ > 0. Then the system of equations becomes

r2R′′ + rR′
− µ2R = 0 (28)

Θ′′ + µ2Θ = 0 (29)

The equation forR is an Euler equation and has the solution

R(r) = k1r
µ + k2r

−µ (30)
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and the equation forΘ has the solution

Θ(θ) = c1 sin(µθ) + c2 cos(µθ). (31)

For Θ to be periodic we needµ to be a positive integern, soµ = n. Thus the solutionr−µis
unbounded asr → 0. Sok2 = 0. So the solutions to the original problem are

un(r, θ) = rn cos(nθ), vn(r, θ) = rn sin(nθ), n = 1, 2, 3, ... (32)

Together withu0(r, θ) = 1, by linear superposition we find

u(r, θ) =
c0

2
+

∞
∑

n=1

rn(cn cos(nθ) + kn sin(nθ)). (33)

Using the boundary condition from the beginning

u(a, θ) =
c0

2
+

∞
∑

n=1

an(cn cos(nθ) + kn sin(nθ)) = f(θ) (34)

for 0 ≤ θ ≤ 2π. We compute to coefficients by using our previous Fourier Series equations

cn =
1

πan

∫

2π

0

f(θ) cos(nθ)dθ, n = 1, 2, 3, ... (35)

kn =
1

πan

∫

2π

0

f(θ) sin(nθ)dθ, n = 1, 2, 3, ... (36)

Note we need both terms since sine and cosine terms remain throughout the general solution.

1.3 HW 10.8 # 2

Find the solutionu(x, y) of Laplace’s Equation in the rectangle0 < x < a, 0 < y < b, that
satisfies the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b (37)

u(x, 0) = h(x), u(x, b) = 0, 0 ≤ x ≤ a (38)

Answer: Using the method of Separation of Variables, writeu(x, y) = X(x)Y (y). We get the
following system of ODEs

X ′′ + λX = 0, X(0) = X(a) = 0 (39)

Y ′′
− λY = 0, Y (b) = 0 (40)

It follows thatλn = (nπ
a

)2 andXn(x) = sin(nπx
a

). The solution of the second ODE gives

Y (y) = d1 cosh(λ(b − y)) + d2 sinh(λ(b − y)). (41)
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Usingy(b) = 0, we find thatd1 = 0. Therefore the fundamental solutions are

un(x, y) = sin(
nπx

a
) sinh(λn(b − y)), (42)

and the general solution is

u(x, y) =

∞
∑

n=1

cn sin(
nπx

a
) sinh(

nπ(b − y)

a
). (43)

Using another boundary condition

h(x) =

∞
∑

n=1

cn sin(
nπx

a
) sinh(

nπb

a
). (44)

The coefficients are calculated using the equation from the Fourier Sine Series

cn =
2

a sinh(nπb
a

)

∫ a

0

h(x) sin(
nπx

a
)dx. (45)

1.4 HW 10.8 # 10a

Consider the problem of finding a solutionu(x, y) of Laplace’s Equation in the rectangle0 < x <

a, 0 < y < b, that satisfies the boundary conditions

ux(0, y) = 0, ux(a, y) = f(y), 0 < y < b, (46)

uy(x, 0) = 0, uy(x, b) = 0, 0 ≤ x ≤ a (47)

This is an example of a Neumann Problem. We want to find the fundamental set of solutions.

X ′′
− λX = 0, X ′(0) = 0 (48)

Y ′′ + λY = 0, Y ′(0) = Y ′(b) = 0. (49)

The solution to the equation forY is

Y (y) = c1 cos(λ1/2y) + c2 sin(λ1/2y), (50)

with Y ′(y) = −c1λ
1/2 sin(λ1/2y) + c2λ

1/2 cos(λ1/2y). Using the boundary conditions we find
c2 = 0 and the eigenvalues areλn = n2π2

b2
, for n = 1, 2, 3, .... The corresponding Eigenfunctions

areY (y) = cos(nπy
b

) for n = 1, 2, 3, ... The solution of the equation forX becomesX(x) =
d1 cosh(nπx

b
) + d2 sinh(nπx

b
), with

X ′(x) = d1

nπ

b
sinh(

nπx

b
) + d2

nπ

b
cosh(

nπx

b
). (51)
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Using the boundary conditions,X(x) = d1 cosh(nπx
b

).So the fundamental set of solutions is

un(x, y) = cosh(
nπx

b
) cos(

nπy

b
), n = 1, 2, 3, ... (52)

The general solution is given by

u(x, y) =
a0

2
+

∞
∑

n=1

an cosh(
nπx

b
) cos(

nπy

b
) (53)
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