Lecture Notes for Math 251: ODE and PDE. Lecture 4: 2.1 Linear Equations with Variable Coefficients

Shawn D. Ryan

Spring 2012

1 Linear Equations; Method of Integrating Factors

Last Time: We classified ODEs and PDEs in terms of Order (the highest derivative taken) and linearity.

Now we start Chapter 2: First Order Differential Equations
All equations in this chapter will have the form

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \tag{1}
\end{equation*}
$$

If f depends linearly on y the equation will be a first order linear equation.
Consider the general equation

$$
\begin{equation*}
\frac{d y}{d t}+p(t) y=g(t) \tag{2}
\end{equation*}
$$

We said in Chapter 1 if $p(t)$ and $g(t)$ are constants we can solve the equation explicitly. Unfortunately this is not the case when they are not constants. We need the method of integrating factor developed by Leibniz, who also invented calculus, where we multiply (2) by a certain function $\mu(t)$, chosen so the resulting equation is integrable. $\mu(t)$ is called the integrating factor. The challenge of this method is finding it.

Summary of Method:

1. Rewrite the equation as (MUST BE IN THIS FORM)

$$
\begin{equation*}
y^{\prime}+a y=f \tag{3}
\end{equation*}
$$

2. Find an integrating factor, which is any function

$$
\begin{equation*}
\mu(t)=e^{\int a(t) d t} \tag{4}
\end{equation*}
$$

3. Multiply both sides of (3) by the integrating factor.

$$
\begin{equation*}
\mu(t) y^{\prime}+a \mu(t) y=f \mu(t) \tag{5}
\end{equation*}
$$

4. Rewrite as a derivative

$$
\begin{equation*}
(\mu y)^{\prime}=\mu f \tag{6}
\end{equation*}
$$

5. Integrate both sides to obtain

$$
\begin{equation*}
\mu(t) y(t)=\int \mu(t) f(t) d t+C \tag{7}
\end{equation*}
$$

and thus

$$
\begin{equation*}
y(t)=\frac{1}{\mu(t)} \int \mu(t) f(t) d t+\frac{C}{\mu(t)} \tag{8}
\end{equation*}
$$

Now lets see some examples:
Example 1. Find the general solution of

$$
\begin{equation*}
y^{\prime}=y+e^{-t} \tag{9}
\end{equation*}
$$

Step 1:

$$
\begin{equation*}
y^{\prime}-y=e^{t} \tag{10}
\end{equation*}
$$

Step 2:

$$
\begin{equation*}
\mu(t)=e^{-\int 1 d t}=e^{-t} \tag{11}
\end{equation*}
$$

Step 3:

$$
\begin{equation*}
e^{-t}\left(y^{\prime}-y\right)=e^{-2 t} \tag{12}
\end{equation*}
$$

Step 4:

$$
\begin{equation*}
\left(e^{-t} y\right)^{\prime}=e^{-2 t} \tag{13}
\end{equation*}
$$

Step 5:

$$
\begin{equation*}
e^{-t} y=\int e^{-2 t} d t=-\frac{1}{2} e^{-2 t}+C \tag{14}
\end{equation*}
$$

Solve for y

$$
\begin{equation*}
y(t)=-\frac{1}{2} e^{-t}+C e^{t} \tag{15}
\end{equation*}
$$

Example 2. Find the general solution of

$$
\begin{equation*}
y^{\prime}=y \sin t+2 t e^{-\cos t} \tag{16}
\end{equation*}
$$

and $y(0)=1$.
Step 1:

$$
\begin{equation*}
y^{\prime}-y \sin t=2 t e^{-\cos t} \tag{17}
\end{equation*}
$$

Step 2:

$$
\begin{equation*}
\mu(t)=e^{-\int \sin t d t}=e^{\cos t} \tag{18}
\end{equation*}
$$

Step 3:

$$
\begin{equation*}
e^{\cos t}\left(y^{\prime}-y \sin t\right)=2 t \tag{19}
\end{equation*}
$$

Step 4:

$$
\begin{equation*}
\left(e^{\cos t} y\right)^{\prime}=2 t \tag{20}
\end{equation*}
$$

Step 5:

$$
\begin{equation*}
e^{\cos t} y=t^{2}+C \tag{21}
\end{equation*}
$$

So the general solution is:

$$
\begin{equation*}
y(t)=\left(t^{2}+C\right) e^{-\cos t} \tag{22}
\end{equation*}
$$

With IC

$$
\begin{equation*}
y(t)=\left(t^{2}+e\right) e^{-\cos t} \tag{23}
\end{equation*}
$$

Example 3. Find General Solution to

$$
\begin{equation*}
y^{\prime}=y \tan t+\sin t \tag{24}
\end{equation*}
$$

with $y(0)=2$. Note Integrating factor

$$
\begin{equation*}
\mu(t)=e^{-\int \tan d t}=e^{\ln (\cos t)}=\cos t \tag{25}
\end{equation*}
$$

Final Answer

$$
\begin{equation*}
y(t)=-\frac{\cos t}{2}+\frac{5}{2 \cos t} \tag{26}
\end{equation*}
$$

Example 4. Solve

$$
\begin{equation*}
2 y^{\prime}+t y=2 \tag{27}
\end{equation*}
$$

with $y(0)=1$. Integrating Factor

$$
\begin{equation*}
\mu(t)=e^{t^{2} / 4} \tag{28}
\end{equation*}
$$

Final Answer

$$
\begin{equation*}
y(t)=e^{-t^{2} / 4} \int_{0}^{t} e^{s^{2} / 4} d s+e^{-t^{2} / 4} \tag{29}
\end{equation*}
$$

1.1 REVIEW: Integration By Parts

This is the most important integration technique learned in Calculus 2 . We will derive the method. Consider the product rule for two functions of t.

$$
\begin{equation*}
\frac{d}{d t}[u v]=u \frac{d v}{d t}+v \frac{d u}{d t} \tag{30}
\end{equation*}
$$

Integrate both sides from a to b

$$
\begin{equation*}
\left.u v\right|_{a} ^{b}=\int_{a}^{b} u \frac{d v}{d t}+\int_{a}^{b} v \frac{d u}{d t} \tag{31}
\end{equation*}
$$

Rearrange the resulting terms

$$
\begin{equation*}
\int_{a}^{b} u \frac{d v}{d t}=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v \frac{d u}{d t} \tag{32}
\end{equation*}
$$

Practicing this many times will be helpful on the homework. Consider two examples.
Example 5. Find the integral $\int_{1}^{9} \ln (t) d t$. First define $u, d u, d v$, and v.

$$
\begin{array}{ll}
u=\ln (t) & d v=d t \\
d u=\frac{1}{t} d t & v=t \tag{34}
\end{array}
$$

Thus

$$
\begin{align*}
\int_{1}^{9} \ln (t) d t & =\left.t \ln (t)\right|_{1} ^{9}-\int_{1}^{9} 1 d t \tag{35}\\
& =9 \ln (9)-\left.t\right|_{1} ^{9} \tag{36}\\
& =9 \ln (9)-9+1 \tag{37}\\
& =9 \ln (9)-8 \tag{38}
\end{align*}
$$

Example 6. Find the integral $\int e^{x} \cos (x) d x$. First define $u, d u, d v$, and v.

$$
\begin{array}{rl}
u=\cos (x) & d v=e^{x} d x \\
d u=-\sin (x) d x & v=e^{x} \tag{40}
\end{array}
$$

Thus

$$
\begin{equation*}
\int e^{x} \cos (x) d x=e^{x} \cos (x)-\int e^{x} \sin (x) d x \tag{41}
\end{equation*}
$$

Do Integration By Parts Again

$$
\begin{array}{rl}
u=\sin (x) & d v=e^{x} d x \\
d u=\cos (x) d x & v=e^{x} \tag{43}
\end{array}
$$

So

$$
\begin{align*}
\int e^{x} \cos (x) d x & =e^{x} \cos (x)-\int e^{x} \sin (x) d x \tag{44}\\
& =e^{x} \cos (x)+e^{x} \sin (x)-\int e^{x} \cos (x) d x \tag{45}\\
2 \int e^{x} \cos (x) d x & =e^{x}(\cos (x)+\sin (x)) \tag{46}\\
\int e^{x} \cos (x) d x & =\frac{1}{2} e^{x}(\cos (x)+\sin (x))+C \tag{47}
\end{align*}
$$

Notice when we do not have limits of integration we need to include the arbitrary constant of integration C.

HW 2.1 \# 1, 3c, 4c, 7c, 8c, 12c, 13, 16, 19, 28 (solve)

