Lecture Notes for Math 251: ODE and PDE. Lecture 6:
2.3 Modeling With First Order Equations

Shawn D. Ryan
Spring 2012

1 Modeling With First Order Equations

Last Time: We solved separable ODEs and now we want to loakmaespplications to real world
situations

There are two key questions to keep in mind throughout tlusse
1. How do we write a differential equation to model a givenation?
2. What can the solution tell us about that situation?

Example 1. (Radioactive Decay)

dN
(0] ®

whereN (t) is the number of atoms of a radioactive isotope and 0 is the decay constant. The
equation is separable, and if the initial data\i§)) = N, the solution is

N(t) = Noe ™. (2)
SO we can see that radioactive decay is exponential.

Example 2. (Newton's Law of Cooling) If we immerse a body in an environment with a constant
temperaturd”, then if B(t) is the temperature of the body we have

dB

dt
wherex > 0 is a constant related to the material of the body and how itlgots heat. This
equation is separable. We solved it before with the initieddition B(0) = B, to get

= k(E — B), (3)

B(t):E—E_BO. (4)
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Approaches to writing down a model describing a situation:

1. Remember the derivative is thate of change. It's possible that the description of the problem
tells us directly what the rate of change is. Newton’s Law 0blihg tells us the rate of change of
the body’s temperature was proportional to the differendemperature between the body and the
environment. All we had to do was set the relevant terms equal

2. There are also cases where we are not explicitly givendhaula for the rate of change.
But we may be able to use the physical description to defineateeof change and then set the
derivative equal to that. Note: The derivative = increasecréase. This type of thinking is only
applicable to first order equations since higher order egsare not formulated as rate of change
equals something.

3. We may just be adapting a known differential equation taadigqular situation, i.e. New-
ton’s Second LawF' = ma. Itis either a first or second order equation depending onufgefine
it for position for velocity. Combine all forces and plug ialue for F' to yield the differential
equation. Used for falling bodies, harmonic motion, anddodums.

4. The last possibility is to determine two different exgiess for the same quantity and set
the equal to derive a differential equation. Useful wherasing PDEs later in the course.

The first thing one must do when approaching a modeling pnolidedetermining which of the

four situations we are in. It is crucial to practice this idBcation now it will be useful on exams

and later sections. Secondly, your differential equatiooutd not depend on the initial condition.
The IC only tells the starting position and should not eftemv a system evolves.

Typel: (Interest)

Suppose there is a bank account that givésnterest per year. If | withdraw a constantdollars
per month, what is the differential equation modeling this?

Ans. Let ¢ be time in years, and denote the balance aftgears asB(t). B'(t) is the rate of
change of my account balance from year to year, so it will leedifference between the amount
added and the amount withdrawn. The amount added is ineamdshe amount withdrawn iw.
Thus

B'(t) = 17’%3@) ~ 12w (5)

This is a linear equation, so we can solve by integratingpfa®ote: UNITS ARE IMPORTANT,
w is withdrawn each month, buRw is withdrawn per year.

Example 3. Bill wants to take out a 25 year loan to buy a house. He knowshéaan afford
maximum monthly payments ofi0. If the going interest rate on housing loand s, what is the
largest loan Bill can take out so that he will be able to payfitrotime?

Ans. Measure timée in years. The amount Bill owes will b8(¢). We wantB(25) = 0. The
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4% interest rate will take the form af4B added. He can make paymentsl@fx 400 = 4800

each year. So the IVP will be

B'(t) = .04B(t) — 4800, B(25) =0

This is a linear equation in standard form, use integrat@otolr

B(t) =
B(25) =
B(t) =

—4800

" —.04dt — ,—-04¢

6‘/ (&

—4800e 105t
— 4800 / e~ 100t dt = 120000e~ 100t + ¢
120000 -+ ceTos!

0 = 120000 + ce = ¢ = —120000e "
120000 — 120000¢ 700 (:~25)

We want the size of the loan, which is the amount Bill beginsid(0):

B(0) = 120000 — 120000e ™" = 120000(1 — e 1)

Typell: (Mixing Problems)

We have a mixing tank containing some liquid inside. Contemt is being added to the tank at

1 Out

(6)

(7)
(8)
(9)
(10)
(11)
(12)
(13)

(14)

some constant rate and the mixed solution is drained outpatssibly different) rate. We will want
to find the amount of contaminant in the tank at a given time.

How do we write the DE to model this process? Eét) be the amount of pollutant (Note: Amount
of pollutant, not the concentration) in the tank at titn&e know the amount of pollutant that is
entering and leaving the tank each unit of time. So we canhessdcond approach

Rate of Change d@f(¢) = Rate of entry of contaminant Rate of exit of contaminant

(15)

Therate of entry can be defined in different ways. 1. Directly adding contaantn.e. pipe adding

food coloring to water. 2. We might be adding solution withmawn concentration of contaminant
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to the tank (amount = concentration x volume).

What is therate of exit? Suppose that we are draining the tank at a rate f The amount of
contaminant leaving the tank will be the amount containethendrained solution, that is given
by rate x concentration. We know the rate, and we need theeodration. This will just be the
concentration of the solution in the tank, which is in turaegi by the amount of contaminant in
the tank divided by the volume.

. . . . Amount of Contaminant
Rate of exit of contaminant Rate of drained solutior (16)
Volume of Tank

Rate of exit of contaminant routw. @an
V(t)
What isV'(t)? The Volume is decreasing by, at eacht. Is there anything being added to the
volume? That depends if we are adding some solution to tHeata certain rate;,, that will
add to the in-tank volume. If we directly add contaminant ima$olution, nothing is added. So
determine which situation by reading the problem. In the éese if the initial volume i$;, we’ll

getV(t) = Vo + t(rim — rowt), @and in the second; (t) = Vi — trou:-

or

Example 4. Suppose a 120 gallon well-mixed tank initially contains €. lof salt mixed with 90
gal. of water. Salt water (with a concentration of 2 Ib/galyes into the tank at a rate of 4 gal/min.
The solution flows out of the tank at a rate of 3 gal/min. How msalt is in the tank when it is full?

Ans. We can immediately write down the expression for voluifi¢). How much liquid is enter-
ing each minute? 4 gallons. How much is leaving the tank irsilee minute? 3 gallons. So each
minute the Volume increases by 1 gallon, and we Hay® = 90 + (4 — 3)t = 90 + ¢. This tells
us the tank will be full at = 30.

We let P(t) be the amount of salt (in pounds) in the tank at time t. Ultehatwe want to deter-
mine P(30), since this is when the tank will be full. We need to deterntmerates at which salt
is entering and leaving the tank. How much salt is enteringalkbns of salt water enter the tank
each minute, and each of those gallons has 2lb. of salt dex$ah it. Hence we are adding 8 Ibs.
of salt to the tank each minute. How much is exiting the tanlgal®ns leave each minute, and
the concentration in each of those gallon®i$)/V (¢). Recall

Rate of Change df(¢) = Rate of entry of contaminant Rate of exit of contaminant (18)
Amount of Contaminant

Rate of exit of contaminant Rate of drained solutior (29)
Volume of Tank
dP _ ., P@)lb 3P(t)
— = (4 20b - =8 —~=
o = (dgal/min)(21b/gal) (3gal/mln)(v(t) gal) 8= S0+1
(20)

This is the ODE for the salt in the tank, what is the IC? P(0) =a8@iven by the problem. Now



we have an IVP so solve (since linear) using integratingfact
dP

-+ P(t) = 8 (21)
,u(t) _ ] 90+tdt 31n(90+t) _ (90 + t)S (22)
(90 +t)°P(t)) = 8(90+1t)* (23)
(90 +t)*P(t) = / 8(90 +t)3dt = 2(90 +t)* + ¢ (24)
C
P(t) = 2(90+1t)+ m (25)
P(0) = 90=2(90)+ @ = c=—(90)* (26)
P(t) = 2(90+1t) — 90" (27)
- (90 + )3
Remember we wantef(30) which is the amount of salt when the tank is full. So
90* 3.5 27
P(30) = 240 — o =240 — 90(4) = 240 — 90(). (28)

We could ask for amount of salt at anytime before overflow dhd@uld be the same besides last
step where we replace 30 with the time wanted.

Exercise: What is the concentration of the tank when the tank is full?

Example 5. A full 20 liter tank has 30 grams of yellow food coloring didged in it. If a yellow
food coloring solution (with concentration of 2 gramshH)tés piped into the tank at a rate of 3
liters/minute while the well mixed solution is drained odittle tank at a rate of 3 liters/minute,
what is the limiting concentration of yellow food coloringlation in the tank?

Ans; The ODE would be
dP . P(t)g B 3P
o = (3L/min)(2g/L) — (3L/min) VL 6 — 20

Note that volume is constant since we are adding and remalvengame amount at each time step.
Use the method of integrating factor.

(29)

ult) = el ot = et (30)
(ex'P(t)) = Gem! (31)
e%tP(t) = /66%tdt:406%t—|—0 (32)
P(t) = 40+ ,t (33)
P(0) = 20_Z(Q)O+c;»c:—2o (34)
Pt) = 40— 2 (35)
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Now what will happen to the concentration in the limit, ortas> co. We know the volume will
always be 20 liters. ‘
P(t) 40 — 20e~ 20
lim =lim ——— =2 36

e V() e 20 (36)
So the limiting concentration &g/ L. Why does this make physical sense? After a period of time
the concentration of the mixture will be exactly the samehegsdoncentration of the incoming
solution. It turns out that the same process will work if tb@eentration of the incoming solution

is variable.

Example 6. A 150 gallon tank has 60 gallons of water with 5 pounds of Sakalved in it. Water
with a concentration at + cos(t) Ibs/gal comes into the tank at a rate of 9 gal/hr. If the wekedi
solution leaves the tank at a rate of 6 gal/hour, how muchisaitthe tank when it overflows?

Ans. The only difference is the incoming concentration is Valea Given the Volume starts at
600 gal and increases at a rate of 3 gal/min

dP 6P
vl 9(2 4 cos(t)) — 60 1 3t (37)
Our ICisP(0) = 5 and use the method of integrating factor
,u(t _ ] 60+3tdt _ 621n(20-§—t) _ (20 + t)Z. (38)
(20 +1)2P(t)) = 9(2+ cos(t))(20 + t)? (39)
(20 4+ )2P(t) = / (2 + cos(£))(20 + )2dt (40)

_ 9(%(20 F 1) 4 (20 4+ 1) sin() + 2(20 + ) cos(t) — 2sin()) + ¢ (41)

P(t) = 9(%(20 +¢) +sin(t) + 22((:)()?_(? - égli(g?) + (20 j_ nE (42)
P0) = 5=9(§(20)+220)+ﬁ = 120+19_0+M (43)
¢ = —46360 (44)

We want to know how much salt is in the tank when it overflowsisFrappens when the volume
hits 150, or at = 30.

18cos(30)  18sin(30) 46360
50 2500 2500

P(30) = 300 4 9sin(30) + (45)

So P(t) ~ 272.63 pounds.

We could make the problem more complicated by assumingltleag will be a change in the situ-
ation if the solution ever reached a critical concentratibime process would still be the same, we
would just need to solve two different but limited IVPs.
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Typelll: (Falling Bodies)
Lets consider an object falling to the ground. This body wiley Newton's Second Law of Mo-
tion, p
v
mdt = F(t,v) (46)

wherem is the object’s mass anfl is the net force acting on the body. We will look at the
situation where the only forces are air resistance and tyraltiis crucial to be careful with the
signs. Throughout this courslewnwar d displacementsand forces are positive. Hence the force
due to gravity is given by = mg, whereg ~ 10m/s? is the gravitational constant.
Air Resistance acts against velocity. If the object is mguvip air resistance works downward,
always in opposite direction. We will assume air resistasdaearly dependant on velocity (ie
F, = av, whereF, is the force due to air resistance). This is not realisti¢,ibsimplifies the
problem. SaF'(t,v) = Fg + F4 = 10 — av, and our ODE is

m% = 10m — awv 47)
Example 7. A 50 kg object is shot from a cannon straight up with an inilbcity of 10 m/s off
the very tip of a bridge. If the air resistance is givenfy determine the velocity of the mass at
any timet and compute the rock’s terminal velocity.

Ans. Two parts: 1. When the object is moving upwards and 2. Whenatbject is moving
downwards. If we look at the forces it turns out we get the sBiae

500" = 500 — 5v (48)
The IC isv(0) = —10, since we shot the object upwards. Our DE is linear and we san u
integrating factor
"+ Ly - 10 (49)
(% 10U =
u(t) = eio (50)
(eou(t)) = 10e™ (51)
etou(t) = /1oe%odt: 100e70 + ¢ (52)
() = 100+ — (53)
€10
v(0) = —10=1004c= ¢ = —110 (54)
110
o(t) = 100 — —. (55)

€10
What is the terminal velocity of the rock? The terminal vétipcs given by the limit of the velocity

ast — oo, which is 100. We could also have computed the velocity ofrtdok when it hit the
ground if we knew the height of the bridge (integrate to gedifpan).
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Example 8. A 60kg skydiver jumps out of a plane with no initial velocissuming the magni-
tude of air resistance is given By8|v|, what is the appropriate initial value problem modeling his

velocity?
Ans. Air Resistance is an upward force, while gravity is actimgvdward. So our force should be

F(t,v) =mg— .8v (56)

thus our IVP is
60v" = 60g — .8v, v(0) =0 (57)

HW 23#2,3,8,10, 13,21



