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1 Existence and Uniqueness

Last Time: We developed 1st Order ODE models for physical systems and solved them using the
methods of Integrating Factor and Separable Equations.

In Section 1.3 we noted three common questions we would be concerned with this semester.
1. (Existence) Given an IVP, does a solution exist?
2. (Uniqueness) If a solution exists, is it unique?
3. If a solution exists, how do we find it?

We have spent a lot of time on developing methods, now we will spend time on the first two ques-
tions.Without Solving an IVP, what information can we derive about the existence and uniqueness
of solutions? Also we will note strong differences between linear and nonlinear equations.

1.1 Linear Equations

While we will focus on first order linear equations, the same basic ideas work for higher order
linear equations.

Theorem 1. (Fundamental Theorem of Existence and Uniqueness for Linear Equations)Consider
the IVP

y′ + p(t)y = q(t), y(t0) = y0. (1)

If p(t) andq(t) are continuous functions on an open intervalα < t0 < β, then there exists a unique
solution to the IVP defined on the interval(α, β).

REMARK: The same result holds for general IVPs. If we have theIVP

y(n) + an−1(t)y
(n−1) + ... + a1(t)y

′ + a0(t)y = g(t), y(t0) = y0, ..., y
(n−1)(t0) = y

(n−1)
0 (2)
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then if ai(t) (for i = 0, ..., n − 1) andg(t) are continuous on an open intervalα < t0 < β, there
exists a unique solution to the IVP defined on the interval(α, β).

What does Theorem 1 tell us?
(1) If the given linear differential equation is nice, not only do we knowEXACTLY ONE solution
exists. In most applications knowing a solution is unique ismore important than knowing a solu-
tion exists.
(2) If the interval(α, β) is the largest interval on whichp(t) andq(t) are continuous, then(α, β) is
the interval of validity to the unique solution guaranteed by the theorem. Thus given a ”nice” IVP
there is no need to solve the equation to find the interval of validity. The interval only depends on
t0 since the interval must contain it, but does not depend ony0.

Example 2. Without solving, determine the interval of validity for thesolution to the following
IVP

(t2 − 9)y′ + 2y = ln |20 − 4t|, y(4) = −3 (3)

Ans: If we look at Theorem 1, we need to write our equation in the form given in Theorem 1 (i.e.
coefficient ofy′ is 1). So rewrite as

y′ +
2

t2 − 9
=

ln |20 − 4t|
t2 − 9

(4)

Next we identify where either of the two other coefficients are discontinuous. By removing those
points we find all intervals of validity. Then the last step isto identify which interval of validity
containst0.

Using the notation in Theorem 1,p(t) is discontinuous whent = ±3, since at those points we
are dividing by zero.q(t) is discontinuous att = 5, since the natural log of 0 does not exists (only
defined on(0,∞)). This yields four intervals of validity where bothp(t) andq(t) are continuous

(−∞,−3), (−3, 3), (3, 5), (5,∞) (5)

Notice the endpoints are wherep(t) andq(t) are discontinuous, guaranteeing within each interval
both are continuous. Now all that is left is to identify which interval containst0 = 4. Thus our
interval of validity is(3, 5).

REMARK: The other intervals of validity we found are intervals of validity for the same dif-
ferential equation, but for different initial conditions.For example, if our IC wasy(2) = 5 then the
interval of validity must contain 2, so the answer would be(−3, 3).

What happens if our IC is at one of the bad points wherep(t) andq(t) are discontinuous? Un-
fortunately we are unable to conclude anything, since the theorem does not apply. On the other
hand we cannot say that a solution does not exist just becausethe hypothesis are not met, so the
bottom line is that we cannot conclude anything.

Example 3. Without solving, find the interval of validity for the following IVP

cos(x)y′ = sin(x)y −
√

x − 1, y(
3

2
) = 0 (6)
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First we need to put the equation in the form of Theorem 1

y′ − tan(x)y = −
√

x − 1

cos(x)
(7)

Using the notation in Theorem 1,p(t) is discontinuous atx = nπ
2

for odd integersn andq(t) is
discontinuous there and for anyx < 1. Thus we can list the possible intervals of validity

(1,
π

2
), (

π

2
,
3π

2
), ..., (

(2n + 1)

2
,
(2n + 3)π

2
) (8)

for all positive integersn. Since the IC isy(3
2
) = 0, then the I.O.V. must contain3

2
. Therefore the

answer is(1, π
2
).

1.2 Nonlinear Equations

We saw in the linear case every ”nice enough” equation has a unique solution except for if the
initial conditions are ill-posed. But even this seemingly simple nonlinear equation

(
dt

dx
)2 + x2 + 1 = 0 (9)

has no real solutions.

So we have the following revision of Theorem 1 that applies tononlinear equations as well. Since
this is applied to a broader class the conclusions are expected to be weaker.

Theorem 4. Consider the IVP
y′ = f(t, y), y(t0) = y0. (10)

If f and ∂f
∂y

are continuous functions on some rectangleα < t0 < β, γ < y0 < δ containing the
point (t0, y0), then there is a unique solution to the IVP defined on some interval (a, b) satisfying
α < a < t0 < b ≤ β.

OBSERVATION:
(1) Unlike Theorem 1, Theorem 2 does not tell us the interval of a unique solution guaranteed by
it. Instead, it tells us the largest possible interval that the solution will exist in, we would need to
actually solve the IVP to get the interval of validity.
(2) For nonlinear differential equations, the value ofy0 may affect the interval of validity, as we
will see in a later example. We want our IC to NOT lie on the boundary of a region wheref
or its partial derivative are discontinuous. Then we find thelargestt-interval on the liney = y0

containingt0 where everything is continuous.

REMARK: Theorem 2 refers topartial derivative ∂f
∂y

of the function of two variablesf(t, y).
We will talk extensively about this later, but for now we treat t as a constant and take a normal
derivative with respect toy. For example

f(t, y) = t2 − 2y3t, then
∂f

∂y
= −6y2t. (11)
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Example 5. Determine the largest possible interval of validity for theIVP

y′ = x ln(y), y(2) = e (12)

We havef(x, y) = x ln(y), so ∂f
∂y

= x
y
. f is discontinuous wheny ≤ 0, andfy (partial derivative

with respect toy) is discontinuous wheny = 0. Since our ICy(2) = e > 0 there is no problem
sincey0 is never in the discontinuous region. Since there are no discontinuities involvingx, then
the rectangle is−∞ < x0 < ∞, 0 < y0 < ∞. Thus the theorem concludes that the unique solution
exists somewhere inside(−∞,∞).

REMARK: Note that this basically told us nothing, and nonlinear problems are quite harder to
deal with than linear.

Example 6. Determine the largest possible interval of validity for theIVP

y′ =
√

y − t2, y(0) = 1. (13)

f(t, y) =
√

y − t2 andfy = 1

2
√

y−t2
. The region of discontinuities is given byy ≤ t2. Our IC

is y(0) = 1 does not lie in this region, so we can continue. The liney = 1 is continuous for
−1 < t < 1, so our conclusion is that the interval of validity of the guaranteed unique solution is
contained somewhere within(−1, 1).

What can happen if the conditions of Theorem 2 are NOT met?

Example 7. Determine all possible solutions to the IVP

y′ = y
1

3 , y(0) = 0. (14)

First note this does not satisfy the conditions of the theorem, sincefy = 1
3y2/3

is not continuous at
y0 = y = 0. Now solve the equation it is separable. Notice the equilibrium solution isy = 0. This
satisfies the IC, but let’s solve the equation.

∫

y−1/3dy =

∫

dt (15)

3

2
y2/3 = t + c (16)

y(0) = 0 (17)

y(t) = ±(
2

3
t)

3

2 (18)

(19)

The IC does not rule out either of these possibilities, so we end up with three possible solutions
(these two and the equilibrium solutiony(t) ≡ 0).

In our class we will be mostly dealing with nice equations andunique solutions, but be aware
this is not always the case. Consider the next example which illustrates the dependence of the
interval of validity ony0.
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Example 8. Determine the interval of validity for the IVP

y′ = y2, y(0) = y0 (20)

First notice its nonlinear so Theorem 1 does not apply.y2 is continuous everywhere, so for every
y0 there will be a unique solution. It is defined somewhere in(−∞,∞). So let’s solve. Notice first
the equilibrium solution ify0 = 0 we havey ≡ 0. So assumey0 6= 0.

∫

1

y2
dy =

∫

dt (21)

−1

y
= t + c (22)

c = − 1

y0
(23)

−1

y
= t − 1

y0
(24)

y(t) =
y0

1 − y0t
(25)

What is the interval of validity? The only point of discontinuity is t = 1
y0

. So the two possible
intervals of validity are

(−∞,
1

y0
), (

1

y0
,∞) (26)

The correct choice will be the interval containingt0 = 0. But this will depend ony0. If y0 > 0, 0
will be contained in the interval(−∞, 1

y0

) and so this is the interval of validity. On the other hand,
if y0 < 0, 0 is contained inside( 1

y0

,∞) and so this is the interval of validity. Thus we have the
following possible intervals of validity, depending ony0.
(1) If y0 > 0, (−∞, 1

y0

) is the interval of validity
(2) If y0 = 0, (−∞,∞) is the interval of validity
(3) If y0 < 0, (− 1

y0

,∞) is the interval of validity

1.3 Summary

We established conditions for existence and uniqueness of solutions to first order ODEs. Intervals
of validity for linear equations do not depend on the initialchoice ofy0, while nonlinear equations
may. Secondly, we can find intervals of validity for solutions for linear equations without having
to solve the equation. For a nonlinear equation, we would need to solve the equation to get the
actual interval of validity. But we can still find all places where the interval of validity definitely
will not be defined.

HW 2.4 # 1, 3, 5, 7, 10
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