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1 Autonomous Equations with Population Dynamics

Last Time: We focused on the differences between linear and nonlinear equations as well as iden-
tifying intervals of validity without solving any initial value problems (IVP).

1.1 Autonomous Equations

First order differential equations relate the slope of a function to the values of the function and the
independent variable. We can visualize this using direction fields. This in principle can be very
complicated and it might be hard to determine which initial values correspond to which outcomes.
However, there is a special class of equations, calledautonomous equations, where this process
is simplified. The first thing to note is autonomous equationsdo not depend ont

y′ = f(y) (1)

REMARK: Notice that all autonomous equations are separable.

What we need to know to study the equation qualitatively is which values ofy makey′ zero,
positive, or negative. The values ofy makingy′ = 0 are theequilibrium solutions. They are
constant solutions and are indicated on the ty-plane by horizontal lines.

After we establish the equilibrium solutions we can study the positivity off(y) on the interme-
diate intervals, which will tell us whether the equilibriumsolutions attract nearby initial conditions
(in which case they are calledasymptotically stable), repel them (unstable), or some combination
of them (semi-stable).

Example 1. Consider
y′ = y2 − y − 2 (2)

Start by finding the equilibrium solutions, values ofy such thaty′ = 0. In this case we need to
solvey2 − y− 2 = (y − 2)(y + 1) = 0. So the equilibrium solutions arey = −1 andy = 2. There
are constant solutions and indicated by horizontal lines. We want to understand their stability. If

1



we ploty2 − y − 2 versusy, we can see that on the interval(−∞,−1), f(y) > 0. On the interval
(−1, 2), f(y) < 0 and on(2,∞), f(y) > 0. Now consider the initial condition.

(1) If the ICy(t0) = y0 < −1, y′ = f(y) > 0 andy(t) will increase towards -1.
(2) If the IC −1 < y0 < 2, y′ = f(y) < 0, so the solution will decrease towards -1. Since the
solutions below -1 go to -1 and the solutions above -1 go to -1,we concludey(t) = −1 is an
asymptotically stable equilibrium.
(3) If y0 > 2, y′ = f(y) > 0, so the solution increases away from 2. So aty(t) = 2 above and
below solutions move away so this is an unstable equilibrium.

Example 2. Consider
y′ = (y − 4)(y + 1)2 (3)

The equilibrium solutions arey = −1 andy = 4. To classify them, we graphf(y) = (y − 4)(y +
1)2.
(1) If y < −1, we can see thatf(y) < 0, so solutions starting below -1 will tend towards−∞.
(2) If −1 < y0 < 4, f(y) < 0, so solutions starting here tend downwards to -1. Soy(t) = 1 is
semistable.
(3) If y > 4, f(y) > 0, solutions starting above 4 will asymptotically increase to∞, soy(t) = 4 is
unstable since no nearby solutions converge to it.

1.2 Populations

The best examples of autonomous equations come from population dynamics. The most naive
model is the ”Population Bomb” since it grows without any deaths

P ′(t) = rP (t) (4)

with r > 0. The solution to this differential equation isP (t) = P0e
rt, which indicates that the

population would increase exponentially to∞. This is not realistic at all.
A better and more accurate model is the ”Logistic Model”

P ′(t) = rP (1 −
P

N
) = rP −

r

N
P 2 (5)

whereN > 0 is some constant. With this model we have a birth rate ofrP and a mortality rate of
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r

N
P 2. The equation is separable so let’s solve it.

dP

P (1 − P

N
)

= rdt (6)

∫
(
1

P
+

1/N

1 − P/N
)dP =

∫
rdt (7)

ln |P | − ln |1 −
P

N
| = rt + c (8)

P

1 − P

N

= Aert (9)

P = Aert =
1

N
AertP (10)

P (t) =
Aert

1 + A

N
ert

=
AN

Ne−rt + A
(11)

if P (0) = P0, thenA = P0N

N−P0

to yield

P (t) =
P0N

(N − P0)e−rt + P0

(12)

In its present form its hard to analyze what is going on so let’s apply the methods from the first
section to analyze the stability.

Looking at the logistic equation, we can see that our equilibrium solutions areP = 0 and
P = N . Graphingf(P ) = rP (1 − N

P
), we see that

(1) If P < 0, f(P ) < 0
(2) If 0 < P < N, f(P ) > 0
(3) If P > N, f(P ) < 0
Thus 0 is unstable while whileN is asymptotically stable, so we can conclude for initial population
P0 > 0

lim
t→∞

P (t) = N (13)

So what isN? It is the carrying capacity for the environment. If the population exists, it will grow
towardsN , but the closer it gets toN the slower the population will grow. If the population starts
off greater then the carrying capacity for the environmentP0 > N , then the population will die off
until it reaches that stable equilibrium position. And if the population starts off atN , the births and
deaths will balance out perfectly and the population will remain exactly atP0 = N .

Note: It is possible to construct similar models that have unstable equilibria above 0.

EXERCISE: Show that the equilibrium populationP (t) = N is unstable for the autonomous
equation

P ′(t) = rP (
P

N
− 1). (14)
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