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1 Exact Equations
Last Time: We solved problems involving population dynamics, plotted phase portraits, and deter-
mined the stability of equilibrium solutions.

The final category of first order differential equations we will consider are Exact Equations.
These nonlinear equations have the form

M(x, y) + N(x, y)
dy

dx
= 0 (1)

where y = y(x) is a function of x and find the

∂M

∂y
=

∂N

∂x
(2)

where these two derivatives are partial derivatives.

1.1 Multivariable Differentiation
If we want a partial derivative of f(x, y) with respect to x we treat y as a constant and differentiate
normally with respect to x. On the other hand, if we want a partial derivative of f(x, y) with
respect to y we treat x as a constant and differentiate normally with respect to y.

Example 1. Let f(x, y) = x2y = y2. Then

∂f

∂x
= 2xy (3)

∂f

∂y
= x2 + 2y. (4)

Example 2. Let f(x, y) = y sin(x)

∂f

∂x
= y cos(y) (5)

∂f

∂y
= sin(x) (6)
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We also need the crucial tool of the multivariable chain rule. If we have a function Φ(x, y(x))
depending on some variable x and a function y depending on x, then

dΦ

dx
=

∂Φ

∂x
+

∂Φ

∂y

dy

dx
= Φx + Φyy

′ (7)

1.2 Exact Equations
Start with an example to illustrate the method.

Example 3. Consider

2xy − 9x2 + (2y + x2 + 1)
dy

dx
= 0 (8)

The first step in solving an exact equation is to find a certain function Φ(x, y). Finding Φ(x, y) is
most of the work. For this example it turns out

Φ(x, y) = y2 + (x2 + 1)y − 3x3 (9)

Notice if we compute the partial derivatives of Φ, we obtain

Φx(x, y) = 2xy − 9x2 (10)
Φy(x, y) = 2y + x2 + 1. (11)

Looking back at the differential equation, we can rewrite it as

Φx + Φy
dy

dx
= 0. (12)

Thinking back to the chain rule we can express as

dΦ

dx
= 0 (13)

Thus if we integrate, Φ = c, where c is a constant. So the general solution is

y2 + (x2 + 1)y − 3x3 = c (14)

for some constant c. If we had an initial condition, we could use it to find the particular solution to
the initial value problem.

Let’s investigate the last example further. An exact equation has the form

M(x, y) + N(x, y)
dy

dx
= 0 (15)

with My(x, y) = Nx(x, y). The key is to construct Φ(x, y) such that the DE turns into

dΦ

dx
= 0 (16)
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by using the multivariable chain rule. Thus we require Φ(x, y) satisfy

Φx(x, y) = M(x, y) (17)
Φy(x, y) = N(x, y) (18)

REMARK: A standard fact from multivariable calculus is that mixed partial derivatives com-
mute. That is why we want My = Nx, so My = Φxy and Nx = Φyx, and so these should be
equal for Φ to exist. Make sure you check the function is exact before wasting time on the wrong
solution process.

Once we have found Φ, then dΦ
dx

= 0, and so

Φ(x, y) = c (19)

yielding an implicit general solution to the differential equation.
So the majority of the work is computing Φ(x, y). How can we find this desired function, let’s

retry Example 3, filling in the details.

Example 4. Solve the initial value problem

2xy − 9x2 + (2y + x2 + 1)
dy

dx
= 0, y(0) = 2 (20)

Let’s begin by checking the equation is in fact exact.

M(x, y) = 2xy − 9x2 (21)
N(x, y) = 2y + x2 + 1 (22)

(23)

Then My = 2x = Nx, so the equation is exact.
Now how do we find Φ(x, y)? We have Φx = M and Φy = N . Thus we could compute Φ in

one of two ways

Φ(x, y) =

∫
Mdx or Φ(x, y) =

∫
Ndy. (24)

In general it does not usually matter which you choose, one may be easier to integrate than the
other. In this case

Φ(x, y) =

∫
2xy − 9x2dx = x2y − 3x3 + h(y). (25)

Notice since we only integrate with respect to x we can have an arbitrary function only depending
on y. If we differentiate h(y) with respect to x we still get 0 like an arbitrary constant c. So in
order to have the highest accuracy we take on an arbitrary function of y. Note if we integrated N
with respect to y we would get an arbitrary function of x. DO NOT FORGET THIS!

Now all we need is to find h(y). We know if we differentiate Φ with respect to x, then h(y)
will vanish which is unhelpful. So instead differentiate with respect to y, since Φy = N in order to
be exact. so any terms in N that aren’t in Φy must be h′(y).
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So Φy = x2 +h′(y) and N = x2 + 2y+ 1. Since these are equal we have h′(y) = 2y+ 1, an so

h(y) =

∫
h′(y)dy = y2 + y (26)

REMARK: We will drop the constant of integration we get from integrating h since it will
combine with the constant c that we get in the solution process.

Thus, we have

Φ(x, y) = x2y − 3x3 + y2 + y = y2 + (x2 + 1)y − 3x3, (27)

which is precisely the Φ that we used in Example 3. Observe

dΦ

dx
= 0 (28)

and thus Φ(x, y) = y2 + (x2 + 1)y − 3x3 = c for some constant c. To compute c, we’ll use our
initial condition y(0) = 2

22 + 2 = c⇒ c = 6 (29)

and so we have a particular solution of

y2 + (x2 + 1)y − 3x3 = 6 (30)

This is a quadratic equation in y, so we can complete the square or use quadratic formula to get an
explicit solution, which is the goal when possible.

y2 + (x2 + 1)y − 3x3 = 6 (31)

y2 + (x2 + 1)y +
(x2 + 1)2

4
= 6 + 3x3 +

(x2 + 1)2

4
(32)

(y +
x2 + 1

2
)2 =

x4 + 12x3 + 2x2 + 25

4
(33)

y(x) =
−(x2 + 1)±

√
x4 + 12x3 + 2x2 + 25

2
(34)

Now we use the initial condition to figure out whether we want the + or− solution. Since y(0) = 2
we have

2 = y(0) =
−1±

√
25

2
=
−1± 5

2
= 2,−3 (35)

Thus we see we want the + so our particular solution is

y(x) =
−(x2 + 1) +

√
x4 + 12x3 + 2x2 + 25

2
(36)

Example 5. Solve the initial value problem

2xy2 + 2 = 2(3− x2y)y′, y(−1) = 1. (37)
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First we need to put it in the standard form for exact equations

2xy2 + 2− 2(3− x2y)y′ = 0. (38)

Now, M(x, y) = 2xy2 + 2 and N(x, y) = −2(3 − x2y). So My = 4xy = Nx and the equation is
exact.

The next step is to compute Φ(x, y). We choose to integrate N this time

Φ(x, y) =

∫
Ndy =

∫
2x2y − 6dy = x2y2 − 6y + h(x). (39)

To find h(x), we compute Φx = 2xy2 + h′(x) and notice that for this to be equal to M , h′(x) = 2.
Hence h(x) = 2x and we have an implicit solution of

x2y2 − 6y + 2x = c. (40)

Now, we use the IC y(−1) = 1:

1− 6− 2 = c⇒ c = −7 (41)

So our implicit solution is
x2y2 − 6y + 2x + 7 = 0. (42)

Again complete the square or use quadratic formula

y(x) =
6±

√
36− 4x2(2x + 7)

2x2
(43)

=
3±
√

9− 2x3 − 7x2

x2
(44)

and using the IC, we see that we want − solution, so the explicit particular solution is

y(x) =
3−
√

9− 2x3 − 7x2

x2
(45)

Example 6. Solve the IVP

2ty

t2 + 1
− 2t− (4− ln(t2 + 1))y′ = 0, y(2) = 0 (46)

and find the solution’s interval of validity.
This is already in the right form. Check if it is exact, M(t, y) = 2ty

t2+1
− 2t and N(t, y) =

ln(t2 + 1) − 4, so My = 2t
t2+1

= Nt. Thus the equation is exact. Now compute Φ(x, y). Integrate
M

Φ =

∫
Mdt =

∫
2ty

t2 + 1
dt = y ln(t2 + 1)− t2 + h(y). (47)

Φy = ln(t2 + 1) + h′(y) = ln(t2 + 1)− 4 = N (48)
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so we conclude h′(y) = −4 and thus h(y) = −4y. So our implicit solution is then

y ln(t2 + 1)− t2 − 4y = c (49)

and using the IC we find c = −4. Thus the particular solution is

y ln(t2 + 1)− t2 − 4y = −4 (50)

Solve explicitly to obtain

y(x) =
t2 − 4

ln(t2 + 1)− 4
. (51)

Now let’s find the interval of validity. We do not have to worry about the natural log since
t2 + 1 > 0 for all t. Thus we want to avoid division by 0.

ln(t2 + 1)− 4 = 0 (52)
ln(t2 + 1) = 4 (53)

t2 = e4 − 1 (54)
t = ±

√
e4 − 1 (55)

So there are three possible intervals of validity, we want the one containing t = 2, so (−
√
e4 − 1,

√
e4 − 1).

Example 7. Solve

3y3e3xy − 1 + (2ye3xy + 3xy2e3xy)y′ = 0, y(1) = 2 (56)

We have
My = 9y2e3xy + 9xy3e3xy = Nx (57)

Thus the equation is exact. Integrate M

Φ =

∫
Mdx =

∫
3y3e3xy − 1 = y2e3xy − x + h(y) (58)

and
Φy = 2ye3xy + 3xy2e3xy + h′(y) (59)

Comparing Φy to N , we see that they are already identical, so h′(y) = 0 and h(y) = 0. So

y2e3xy − x = c (60)

and using the IC gives c = 4e6 − 1. Thus our implicit particular solution is

y2e3xy − x = 4e6 − 1, (61)

and we are done because we will not be able to solve this explicitly.

HW 2.6 # 1, 3, 9, 11, 15
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