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1 Solutions of Linear Homogeneous Equations and the Wron-
skian

Last Time: We studied linear homogeneous equations, the principle of linear superposition, and
the characteristic equation.

1.1 Existence and Uniqueness

Given an initial value problem involving a linear second order equation, when does a solution
exist? We had a theroem in the previous chapter for the first order case so the following theorem
will cover second order equations.

Theorem 1. Consider the initial value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′

0. (1)

If p(t), q(t), andg(t) are all continuous on some interval(a, b) such thata < t0 < b, then the
initial value problem has a unique solution defined on(a, b).

1.2 Wronskian

Let’s suppose we are given the initial value problem

p(t)y′′ + q(t)y′ + r(t)y = 0, y(t0) = y0, y′(t0) = y′

0 (2)

and that we know two solutionsy1(t) andy2(t). Since the differential equation is linear and homo-
geneous, the Principle of Superposition says that any linear combination

y(t) = c1y1(t) + c2y2(t) (3)
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is also a solution. When is this the general solution? For this to be the case it must satisfy its initial
conditions. As long ast0 does not make any of the coefficient discontinuous, Theorem 1saysy(t)
meeting the initial conditions is the general solution. Start by differentiating our candidatey(t)
and using the initial conditions

y0 = y(t0) = c1y1(t0) + c2y2(t0) (4)

y′

0 = y′(t0) = c1y
′

1(t0) + c2y
′

2(t0) (5)

Solve this system of equations to get

c1 =
y0 − c2y2(t0)

y1(t0)
(6)

Thus

y′

0 =
y0y

′

1(t0) − c2y2(t0)y
′

1(t0)

y1(t0)
+ c2y

′

2(t0) (7)

=
y0y

′

1(t0) − c2y2(t0)y
′

1(t0) + c2y
′

2(t0)y1(t0)

y1(t0)
(8)

and we compute

c2 =
y′

0y1(t0) − y0y
′

1(t0)

y1(t0)y′

2(t0) − y2(t0)y′

1(t0)
(9)

c1 =
y′

0y2(t0) − y0y
′

2(t0)

y1(t0)y′

2(t0) − y2(t0)y′

1(t0)
(10)

(11)

Notice thatc1 andc2 have the same quantity in their denominators, so the only time we can solve
for c1 andc2 is when this quantity is NOT zero.

Definition 2. The quantity

W (y1, y2)(t0) = y1(t0)y
′

2(t0) − y2(t0)y
′

1(t0) (12)

is called theWronskian of y1 andy2 at t0.

REMARK:
(1) When it’s clear what the two functions are, we will often denote the Wronskian byW .
(2) We can think of the Wronskian,W (y1, y2)(t), as a function oft and can be evaluated at any
t wherey1 andy2 are defined. For any two solutions satisfying the initial conditions we need the
WronskianW (y1, y2) to be nonzero at any valuet0 where Theorem 1 applies.
(3) We could have solved the system of equations fory(t0) and y′(t0) by Cramer’s Rule from
Linear Algebra and we have the following formula for the Wronskian

W (y1, y2)(t0) =

∣

∣

∣

∣

y1(t0) y2(t0)
y′

1(t0) y′

2(t0)

∣

∣

∣

∣

. (13)
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We will generally represent the Wronskian as a determinant.
Two solutions will form the general solution if they satisfythe general initial conditions. The

above computation showed that this will be the case so long as

W (y1, y2)(t0) =

∣

∣

∣

∣

y1(t0) y2(t0)
y′

1(t0) y′

2(t0)

∣

∣

∣

∣

= y1(t0)y
′

2(t0) − y2(t0)y
′

1(t0) 6= 0 (14)

If y1(t) andy2(t) are solutions to our second order equation andW (y1, y2) 6= 0, then the two
solutions are said to be afundamental set of solutionsand the general solution is

y(t) = c1y1(t) + c2y2(t). (15)

In other words, two solutions are ”different” enough to forma general solution if they are a funda-
mental set of solutions.

Example 3. If r1 andr2 are distinct real roots of the characteristic equation foray′′ + by′+ cy = 0,
check that

y1(t) = er1t and y2(t) = er2t (16)

form a fundamental set of solutions.
To show this, we compute the Wronskian

W =

∣

∣

∣

∣

er1t er2t

r1e
r1t r2e

r2t

∣

∣

∣

∣

= r2e
(r1+r2)t − r1e

(r2+r1) = (r2 − r1)e
(r2+r1)t (17)

Since the exponentials are never zero andr2 6= r1, we conclude thatW 6= 0 and so as claimedy1

andy2 form a fundamental set of solutions for the differential equation and the general solution is

y(t) = c1y1(t) + c2y2(t). (18)

Example 4. Consider
2t2y′′ + ty′ − 3y = 0. (19)

given thaty1(t) = t−1 is a solution. Showy2(t) = t3/2 form a fundamental set of solutions. To do
this, we compute the Wronskian

W =

∣

∣

∣

∣

t−1 t3/2

−t−2 3
2
t1/2

∣

∣

∣

∣

=
3

2
t−

1

2 + t−
1

2 =
5

2
√

t
(20)

ThusW 6= 0, so they are a fundamental set of solutions. Notice we cannotplug in t = 0, but this
is OK since we cannot plugt = 0 into the solution anyway since it would make the coefficientsin
standard for discontinuous. So the general solution is

y(t) = c1t
−1 + c2t

3

2 (21)
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Example 5. Consider
t2y′′ + 2ty′ − 2y = 0. (22)

We are given thaty1(t) = t is a solution and want to testy2(t) = t−2 as our other solution. Check
the Wronskian

W =

∣

∣

∣

∣

t t−2

1 −2t−3

∣

∣

∣

∣

= −2t−2 − t−2 = −3t−2 6= 0. (23)

So the solutions are a fundamental set of solutions, and the general solution is

y(t) = c1t + c2t
−2 (24)

The last question is how we know if a fundamental set of solutions will exist for a given
differential equation. The following theorem has the answer.

Theorem 6. Consider the differential equation

y′′ + p(t)y′ + q(t) = 0 (25)

wherep(t) and q(t) are continuous on some interval(a, b). Supposea < t0 < b. If y1(t) is a
solution satisfying the initial conditions

y(t0) = 1, y′(t0) = 0 (26)

andy2(t) is a solution satisfying

y(t0) = 0, y′(t0) = 1, (27)

theny1(t) andy2(t) form a fundamental set of solutions.

We cannot use this to compute our fundamental set of solutions, but the importance is it assures
us that as long asp(t) andq(t) are continuous, then a fundamental set of solutions will exist.

1.3 Linear Independence

Consider two functionsf(t) andg(t) and the equation

c1f(t) + c2g(t) = 0. (28)

Notice thatc1 = 0 andc2 = 0 always solve this equation, regardless of whatf andg are.

Definition 7. If there are nonzero constantsc1 andc2 such that the above equation is satisfied for
all t, thenf andg are said to belinearly dependent. On the other hand, if the only constants for
which the equation holds arec1 = c2 = 0, thenf andg are said to belinearly independent.

REMARK: Two functions are linearly dependent when they are constant multiples of each
other. So there are nonzeroc1 andc2 such that

f(t) = −c2

c1
g(t) (29)
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Example 8. Determine if the following pairs of functions are linearly dependent or independent.
(1) f(x) = 9 cos(2x), g(x) = 2 cos2(x) − 2 sin2(x)
(2) f(t) = 2t2, g(t) = t4

(1) Consider
9c1 cos(2x) + 2c2(cos2(x) − sin2(x)) = 0. (30)

We want to determine if there are nonzero constantsc1 andc2 so this equation is true. Note the trig
identitycos(2x) = cos2(x) − sin2(x). So our equation becomes

9c1 cos(2x) + 2c2 cos(2x) = 0 (31)

(9c1 + 2c2) cos(2x) = 0 (32)

This equation is true forc1 = 2 andc2 = −9, thusf andg are linearly dependent.
(2) Consider

2c1t
2 + c2t

4 = 0 (33)

If this is true differentiate both sides and it will still be true

4c1t + 4c2t
3 = 0 (34)

Solve forc1 andc2. The second equation tells usc1 = −c2t
2. Plug into the first equation to get

−c2t
4 = 0, which is only true whenc2 = 0. If c2 = 0, thenc1 = 0, so f andg are linearly

independent.

This can be involved and sometimes it is unclear how to proceed. The Wronskian helps identify
when two functions are linearly independent.

Theorem 9. Given two functionsf(t) andg(t) which are differentiable on some interval(a, b),
(1) If W (f, g)(t0) 6= 0 for somea < t0 < b, thenf(t) andg(t) are linearly independent on(a, b)
and
(2) If f(t) andg(t) are linearly dependent on(a, b), thenW (f, g)(t) = 0 for all a < t < b.

REMARK: BE CAREFUL, this theorem DOES NOT say that ifW (f, g)(x) = 0 thenf andg

are linearly dependent. It’s possible for two linearly independent functions to have a zero Wron-
skian.

Let’s use the theorem to check an earlier example.

Example 10. (1) f(t) = 9 cos(2x), g(x) = 2 cos2(x) − 2 sin2(x).

W =

∣

∣

∣

∣

9 cos(2x) 2 cos2(x) − 2 sin2(x)
−18 sin(2x) −4 cos(x) sin(x) − 4 cos(x) sin(x)

∣

∣

∣

∣

(35)

=

∣

∣

∣

∣

9 cos(2x) 2 cos(2x)
−18 sin(2x) −4 sin(2x)

∣

∣

∣

∣

(36)

= −36 cos(2x) sin(2x) + 36 cos(2x) sin(2x) = 0 (37)
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We get zero which we expected since the two functions are linearly dependent.
(2) Now let’s takef(t) = 2t2 andg(t) = t4.

W =

∣

∣

∣

∣

2t2 t4

4t 4t3

∣

∣

∣

∣

(38)

= 8t5 − 4t5 = 4t5 (39)

The Wronskian will be nonzero so long ast = 0, which is OK, we just do not want it to be zero
for all t.

1.4 More On The Wronskian

We have established when the Wronskian is nonzero the two functions are linearly independent.
We also have seen wheny1 andy2 are solutions to the linear homogeneous equation

p(t)y′′ + q(t)y′ + r(t)y = 0 (40)

W (y1, y2)(t) 6= 0 is precisely the condition for the general solution of the differential equation to
be

y(t) = c1y1(t) + c2y2(t) (41)

wherey1 andy2 form a fundamental set of solutions.

1.5 Abel’s Theorem

Through the discussion of the Wronskian we have yet to use thedifferential equation. Ify1 andy2

are solutions to a linear homogeneous equation we can say more about the Wronskian.

Theorem 11. Supposey1(t) andy2(t) solve the linear homogeneous equation

y′′(t) + p(t)y′ + q(t)y = 0, (42)

wherep(t) andq(t) are continuous on some interval(a, b). Then, fora < t < b, their Wronskian
is given by

W (y1, y2)(t) = W (y1, y2)(t0)e
−

∫

t

t0
p(x)dx

, (43)

wheret0 is in (a, b).

If W (y1, y2)(t0) 6= 0 at some pointt0 in the interval(a, b), then Abel’s Theorem tell us that the
Wronskian can’t be zero for anyt in (a, b), since exponentials are never zero. We can thus change
our initial data without worry that our general solution will change.

Another advantage to Abel’s Theorem is that it lets us compute the general form of the Wron-
skian of any two solutions to the differential equation without knowing them explicitly. The for-
mulation in the theorem is not computationally useful, but we might not have a preciset0 in mind.
But applying the Fundamental Theorem of Calculus

W (y1, y2)(t) = W (y1, y2)(t0)e
−

∫

t

t0
p(x)dx

= ce−
∫

p(t)dt. (44)

What isc? We only care thatc 6= 0.
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Example 12.Compute, up to a constant, the Wronskian of two solutionsy1 andy2 of the differen-
tial equation

t4y′′ − 2t3y′ − t3y = 0. (45)

First we put the equation in the form of Abel’s Theorem.

y′′ − 2

t
y′ − t4y = 0 (46)

So, Abel’s Theorem tells us
W = ce−

∫

−
2

t
dt = ce2 ln(t) = ct2 (47)

The main reason this is important is it is an alternative way to compute the Wronskian. We know
by Abel’s Theorem

W (y1, y2)(t) = ce−
∫

p(t)dt. (48)

On the other hand, by definition

W (y1, y2)(t) =

∣

∣

∣

∣

y1(t) y2(t)
y′

1(t) y′

2(t)

∣

∣

∣

∣

= y1(t)y
′

2(t) − y2(t)y
′

1(t) (49)

Setting these equal, if we know one solutiony1(t), we’re left with a first order differential equation
for y2 that we can then solve.

Example 13. Suppose we want to find a general solution to2t2y′′ + ty′ − 3y = 0 and we’re given
thaty1(t) = t−1 is a solution. We need to find a second solution that will form afundamental set
of solutions withy1. Let’s compute the Wronskian both ways.

ce−
∫

1

2t
dt = W (t−1, y2)(t) = y′

2t
−1 + y2t

−2 (50)

y′

2t
−1 + y2t

−2 = ce−
1

2
ln(t) = ct−

1

2 (51)

This is a first order linear equation with integrating factorµ(t) = e
∫

t−1dt = eln(t) = t. Thus

(ty2)
′ = ct

3

2 (52)

ty2 =
2

5
ct

5

2 + k (53)

y2(t) =
2

5
ct

3

2 + kt−1 (54)

Now we can choose constantsc andk. Notice thatk is the coefficient oft−1, which is justy1(t).
So we do not have to worry about that term, and we can takek = 0. We can similarly takec = 5

2
,

and so we’ll gety2(t) = t
3

2 .
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