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1 Solutions of Linear Homogeneous Equations and the Wron-
skian

Last Time: We studied linear homogeneous equations, timeipte of linear superposition, and
the characteristic equation.

1.1 Existence and Uniqueness

Given an initial value problem involving a linear second er@quation, when does a solution
exist? We had a theroem in the previous chapter for the fid#rarase so the following theorem
will cover second order equations.

Theorem 1. Consider the initial value problem
y' +pt)y +a(t)y = g(t), y(to) =0, y'(to) = vo. (1)

If p(t), q(t), and ¢(t) are all continuous on some intervéd, b) such thate < t, < b, then the
initial value problem has a unique solution defined(anb).

1.2 Wronskian
Let’s suppose we are given the initial value problem
Py +a@®)y +rt)y =0, ylto) =0, ¥'(t) =y 2

and that we know two solutiong (t) andy.(t). Since the differential equation is linear and homo-
geneous, the Principle of Superposition says that anyric@abination

y(t) = crya(t) + caya(t) 3)
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is also a solution. When is this the general solution? Fartthbe the case it must satisfy its initial
conditions. As long a does not make any of the coefficient discontinuous, Theorsay4y(t)
meeting the initial conditions is the general solution. rSky differentiating our candidatg(t)
and using the initial conditions

Yo =y(to) = cyi(to) + caya(to) (4)

Yo =Y (to) = cy(to) + cays(to) (5)

Solve this system of equations to get

_ Yo — caya(to)

C1 y1<t0) (6)
Thus
v = Yoy (to) — caya(to)yy (to) sl (to) 7)
y1(to)
Yoy (to) — caya(to)y) (to) + cays(to)yr(to)
_ (8)
y1(to)
and we compute
P yéyl (tO) - yOyi(tO) (9)
? y1(to)ys(to) — ya(to)y: (to)
_ Yoy2(to) — yoys(to)
= Tiuhlt) — valto)i(B) (0
(11)

Notice thatc; andc, have the same quantity in their denominators, so the onlg tim can solve
for ¢; andc, is when this quantity is NOT zero.

Definition 2. The quantity

W (y1, y2)(to) = y1(to)ya(to) — y2(to)y) (to) (12)
is called thewWronskian of y; andy, att,.

REMARK:
(1) When it’s clear what the two functions are, we will ofteendte the Wronskian bi’.
(2) We can think of the Wronskia}/ (y1,y2)(t), as a function of and can be evaluated at any
t wherey,; andy, are defined. For any two solutions satisfying the initialditions we need the
Wronskian¥ (y1, y») to be nonzero at any valug where Theorem 1 applies.
(3) We could have solved the system of equationsyf@s) andy'(to) by Cramer’'s Rule from
Linear Algebra and we have the following formula for the Wskian

W (y1,y2) (to) = ‘ zi(to) y?(to) ‘ . (13)
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We will generally represent the Wronskian as a determinant.
Two solutions will form the general solution if they satighe general initial conditions. The
above computation showed that this will be the case so long as

W)t = | 000 00 | = o) — mltabilt0) 20 (14)

If y1(t) andy,(t) are solutions to our second order equation &8ndy,, y») # 0, then the two
solutions are said to befandamental set of solutionsand the general solution is

y(t) = cryi(t) + caya(t). (15)

In other words, two solutions are "different” enough to foargeneral solution if they are a funda-
mental set of solutions.

Example 3. If r, andr, are distinct real roots of the characteristic equationfdr+ by’ +cy = 0,
check that
yi(t) =" and yo(t) = e (16)

form a fundamental set of solutions.
To show this, we compute the Wronskian

rot

W = — rze(r1+r2)t - Tle(rz-km) _ (7“2 _ Tl)e(r2+r1)t (17)

rie™t  pryert

Since the exponentials are never zero anekt r,, we conclude thatl” # 0 and so as claimeg,
andy, form a fundamental set of solutions for the differential @ipn and the general solution is

y(t) = a1y (t) + caya(t). (18)

Example 4. Consider
2t%y" 4+ ty' — 3y = 0. (19)

given thaty, (t) = ¢! is a solution. Show(t) = t*/2 form a fundamental set of solutions. To do
this, we compute the Wronskian

t+1 t3/2

5
J— = /

T 20Vi
ThusW # 0, so they are a fundamental set of solutions. Notice we cgulogtint = 0, but this

is OK since we cannot plug= 0 into the solution anyway since it would make the coefficients
standard for discontinuous. So the general solution is

:gr2+r% (20)

y(t) =it + Cot 2 (22)



Example 5. Consider
t2y" + 2ty — 2y = 0. (22)

We are given thay, (t) = ¢ is a solution and want to tegt(¢) = ¢~ as our other solution. Check
the Wronskian

t 2
1 -2t

So the solutions are a fundamental set of solutions, andethergl solution is

W = = 22 —t72=_3t2#£0. (23)

y(t) = et + ot ™2 (24)

The last question is how we know if a fundamental set of sohgiwill exist for a given
differential equation. The following theorem has the answe

Theorem 6. Consider the differential equation
y'+pt)y +q(t) =0 (25)

wherep(t) and ¢(t) are continuous on some interval, b). Suppose: < t, < b. If yi(¢) is a
solution satisfying the initial conditions

y(to) =1, y'(to) =0 (26)
andys,(t) is a solution satisfying

y(to) =0, y'(t) =1, (27)
theny, (¢) andy,(t) form a fundamental set of solutions.

We cannot use this to compute our fundamental set of sokittrt the importance is it assures
us that as long gs(t) andgq(t) are continuous, then a fundamental set of solutions wilitexi

1.3 Linear Independence
Consider two functiong(¢) andg(t¢) and the equation

cLf(t) + cag(t) = 0. (28)
Notice thatc; = 0 andc, = 0 always solve this equation, regardless of whaindg are.

Definition 7. If there are nonzero constantsandc, such that the above equation is satisfied for
all ¢, thenf andg are said to bdéinearly dependent On the other hand, if the only constants for
which the equation holds are = ¢; = 0, thenf andg are said to béinearly independent.

REMARK: Two functions are linearly dependent when they avastant multiples of each
other. So there are nonzerpandc, such that

F(t) = —2g(t) (29)
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Example 8. Determine if the following pairs of functions are linearlgmendent or independent.
(1) f(x) = 9cos(2z), g(x) = 2 cos?(z) — 2sin?(x)
(2) f(t) =212, g(t) = t*

(1) Consider
9¢; cos(2x) + 2¢5(cos? () — sin?(z)) = 0. (30)

We want to determine if there are nonzero constangdc, so this equation is true. Note the trig
identity cos(2z) = cos?(z) — sin?(x). So our equation becomes

9cy cos(2z) + 2cg cos(2z) = 0 (31)
(9¢1 + 2¢9) cos(2z) = 0 (32)

This equation is true faf; = 2 andc, = —9, thusf andg are linearly dependent.
(2) Consider
201t2 + 02t4 =0 (33)

If this is true differentiate both sides and it will still beue
dert + deot® =0 (34)

Solve forc; andc,. The second equation tells us = —c,t?. Plug into the first equation to get
—cott = 0, which is only true when; = 0. If ¢ = 0, thence, = 0, so f andg are linearly
independent.

This can be involved and sometimes it is unclear how to prahc€lre Wronskian helps identify
when two functions are linearly independent.

Theorem 9. Given two functiong'(¢) and g(¢) which are differentiable on some interval, b),
(1) FW(f, g)(to) # 0 for somea < ty < b, thenf(t) andg(t) are linearly independent ofw, b)
and

(2) If f(t) andg(t) are linearly dependent ofu, b), thenWW (f, g)(t) = 0forall a < t < b.

REMARK: BE CAREFUL, this theorem DOES NOT say thatif(f, g)(x) = 0 thenf andg
are linearly dependent. It's possible for two linearly ipdadent functions to have a zero Wron-
skian.

Let's use the theorem to check an earlier example.

Example 10. (1) f(t) = 9cos(2z), g(x) = 2cos?(z) — 2sin®(z).

B 9 cos(2z) 2 cos?(z) — 2sin’(x)

W= ‘ _18sin(2) —4 cos(x) sin(z) — 4 cos(x) sin(z) (35)
B 9cos(2z)  2cos(2x)
= ‘ _18sin(2z) —4sin(22) (36)
= —36 cos(2x) sin(2z) + 36 cos(2z) sin(2x) = 0 (37)
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We get zero which we expected since the two functions arafdipeependent.
(2) Now let’s takef (t) = 2t* andg(t) = t*.

22t
W= ‘ 4t 443 (38)
= 8t —4t° = 4t° (39)

The Wronskian will be nonzero so long &s-= 0, which is OK, we just do not want it to be zero
for all t.

1.4 More On The Wronskian

We have established when the Wronskian is nonzero the twaiifuns are linearly independent.
We also have seen whei andy, are solutions to the linear homogeneous equation

p()y" +q)y +r(t)y =0 (40)
W (y1,y2)(t) # 0 is precisely the condition for the general solution of thiéedéntial equation to
be
y(t) = cryi(t) + caya(t) (41)
wherey;, andy, form a fundamental set of solutions.

1.5 Abel's Theorem

Through the discussion of the Wronskian we have yet to usditfegential equation. 1f;; andy,
are solutions to a linear homogeneous equation we can sayabout the Wronskian.

Theorem 11. Supposey, (t) andy,(t) solve the linear homogeneous equation

y'(t) + p(t)y + q(t)y =0, (42)

wherep(t) andq(t) are continuous on some intervial, b). Then, fora < t < b, their Wronskian
is given by

W (y1,y2)(t) = W (y1, y2)(to)e lo p(m)dxa (43)
wheret, is in (a, b).

If W(y1,y2)(to) # 0 at some point, in the interval(a, b), then Abel’s Theorem tell us that the
Wronskian can’t be zero for anyin (a, b), since exponentials are never zero. We can thus change
our initial data without worry that our general solution Mahange.

Another advantage to Abel's Theorem is that it lets us comfpilut general form of the Wron-
skian of any two solutions to the differential equation wililh knowing them explicitly. The for-
mulation in the theorem is not computationally useful, batmight not have a preciggin mind.

But applying the Fundamental Theorem of Calculus

W (g1, 2)(t) = Wy, o) (to)e ™ o = cem 0, (44)
What isc? We only care that # 0.



Example 12. Compute, up to a constant, the Wronskian of two solutigremdy, of the differen-
tial equation
thy" — 263y — 3y = 0. (45)

First we put the equation in the form of Abel’'s Theorem.
" 2 ! 4

So, Abel's Theorem tells us ,
W = ce™ ) —7dt = 2100 — 42 (47)

The main reason this is important is it is an alternative veagampute the Wronskian. We know
by Abel’s Theorem '
W (g, y2) (1) = ce™ T PO, (48)

On the other hand, by definition
| n(®) we() | _ / ,
Wy, y2)(t) = ‘ yi(t) ?/Z(t) ‘ = y1(H)ys(t) — y2()ys (1) (49)

Setting these equal, if we know one solutigrit), we're left with a first order differential equation
for y, that we can then solve.

Example 13. Suppose we want to find a general solutiodtd,” + ty’ — 3y = 0 and we're given
thaty,(t) = ¢t~ is a solution. We need to find a second solution that will forfaredamental set
of solutions withy;. Let's compute the Wronskian both ways.

cemTat = W yo)(t) = ypt ™ + gt (50)
Yot et = ce 20 = 73 (51)

This is a first order linear equation with integrating fagigt) = e/t = ¢ = ¢, Thus

(tys) = ct? (52)
2 5
ty, = gcﬁ +k (53)
2 4
ya(t) = gct2 + kt (54)

Now we can choose constantandk. Notice thatk is the coefficient of !, which is justy, (¢).
So we do not have to worry about that term, and we can kake). We can similarly take = g

and so we'll getyy(t) = t2 .
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