Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation

Shawn D. Ryan

Spring 2012

1 Complex Roots of the Characteristic Equation

Last Time: We considered the Wronskian and used it to determine when we have solutions to a second order linear equation or if given one solution we can find another which is linearly independent.

1.1 Review Real, Distinct Roots

Recall that a second order linear homogeneous differential equation with constant coefficients

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

is solved by $y(t)=e^{r t}$, where r solves the characteristic equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

So when there are two distinct roots $r_{1} \neq r_{2}$, we get two solutions $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$. Since they are distinct we can immediately conclude the general solution is

$$
\begin{equation*}
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \tag{3}
\end{equation*}
$$

Then given initial conditions we can solve c_{1} and c_{2}.
Exercises:
(1) $y^{\prime \prime}+3 y^{\prime}-18 y=0, \quad y(0)=0, \quad y^{\prime}(0)=-1$.

ANS: $y(t)=\frac{1}{9} e^{-6 t}-\frac{1}{9} e^{3 t}$.
(2) $y^{\prime \prime}-7 y^{\prime}+10 y=0, \quad y(0)=3, \quad y(0)=2$

ANS: $y(t)=-\frac{4}{3} e^{5 t}+\frac{13}{3} e^{2 t}$
(3) $2 y^{\prime \prime}-5 y^{\prime}+2 y=0, \quad y(0)=-3, \quad y^{\prime}(0)=3$

ANS: $y(t)=-6 e^{\frac{1}{2} t}+3 e^{2 t}$.
(4) $y^{\prime \prime}+5 y^{\prime}=0, \quad y(0)=2, \quad y^{\prime}(0)=-5$

ANS: $y(t)=1+e^{-5 t}$
(5) $y^{\prime \prime}-2 y^{\prime}-8=0, \quad y(2)=1, \quad y^{\prime}(2)=0$

ANS: $y(t)=\frac{1}{3 e^{8}} e^{4 t}+\frac{2 e^{4}}{3} e^{-2 t}$
(6) $y^{\prime \prime}+y^{\prime}-3 y=0$

ANS: $y(t)=c_{1} e^{\frac{-1+\sqrt{13}}{2} t}+c_{2} e^{\frac{-1-\sqrt{13}}{2} t}$.

1.2 Complex Roots

Now suppose the characteristic equation has complex roots of the form $r_{1,2}=\alpha \pm i \beta$. This means we have two solutions to our differential equation

$$
\begin{equation*}
y_{1}(t)=e^{(\alpha+i \beta) t}, \quad y_{2}(t)=e^{(\alpha-i \beta) t} \tag{4}
\end{equation*}
$$

This is a problem since $y_{1}(t)$ and $y_{2}(t)$ are complex-valued. Since our original equation was both simple and had real coefficients, it would be ideal to find two real-valued "different" enough solutions so that we can form a real-valued general solution. There is a way to do this.

Theorem 1. (Euler's Formula)

$$
\begin{equation*}
e^{i \theta}=\cos (\theta)+i \sin (\theta) \tag{5}
\end{equation*}
$$

In other words, we can write an imaginary exponential as a sum of \sin and cos. How do we establish this fact? There are two ways:
(1) Differential Equations: First we want to write $e^{i \theta}=f(\theta)+i g(\theta)$. We also have

$$
\begin{equation*}
f^{\prime}+i g^{\prime}=\frac{d}{d \theta}\left[e^{i \theta}\right]=i e^{i \theta}=i f-g \tag{6}
\end{equation*}
$$

Thus $f^{\prime}=-g$ and $g^{\prime}=f$, so $f^{\prime \prime}=-f$ and $g^{\prime \prime}=-g$. Since $e^{0}=1$, we know that $f(0)=1$ and $g(0)=0$. We conclude that $f(\theta)=\cos (\theta)$ and $g(\theta)=\sin (\theta)$, so

$$
\begin{equation*}
e^{i \theta}=\cos (\theta)+i \sin (\theta) \tag{7}
\end{equation*}
$$

(2) Taylor Series: Recall that the Taylor series for e^{x} is

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \tag{8}
\end{equation*}
$$

while the Taylor series for $\sin (x)$ and $\cos (x)$ are

$$
\begin{align*}
& \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \tag{9}\\
& \cos (x)=\sum_{n-0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \tag{10}
\end{align*}
$$

If we set $x=i \theta$ in the first series, we get

$$
\begin{align*}
e^{i \theta} & =\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!} \tag{12}\\
& =1+i \theta-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i \theta^{5}}{5!}-\ldots \tag{13}\\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{i \theta^{5}}{5!}-\ldots\right) \tag{14}\\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} \theta^{2 n}}{(2 n!)}+i \sum_{n=0}^{\infty} \frac{(-1)^{n} \theta^{2 n+1}}{(2 n+1)!} \tag{15}\\
& =\cos (\theta)+i \sin (\theta) \tag{16}
\end{align*}
$$

So we can write our two complex exponentials as

$$
\begin{align*}
e^{(\alpha+i \beta) t} & =e^{\alpha t} e^{i \beta t}=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \tag{17}\\
e^{(\alpha-i \beta) t} & =e^{\alpha t} e^{-i \beta t}=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t)) \tag{18}
\end{align*}
$$

where the minus sign pops out of the sign in the second equation since sin is odd and cos is even. Notice our new expression is still complex-valued. However, by the Principle of Superposition, we can obtain the following solutions

$$
\begin{align*}
& y_{1}(t)=\frac{1}{2}\left(e^{\alpha t}(\cos (\beta t)+i \sin (\beta t))\right)+\frac{1}{2}\left(e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))\right)=e^{\alpha t} \cos (\beta t) \tag{19}\\
& y_{2}(t)=\frac{1}{2 i}\left(e^{\alpha t}(\cos (\beta t)+i \sin (\beta t))\right)-\frac{1}{2 i}\left(e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))\right)=e^{\alpha t} \sin (\beta t) \tag{20}
\end{align*}
$$

EXERCISE: Check that $y_{1}(t)=e^{\alpha t} \cos (\beta t)$ and $y_{2}(t)=e^{\alpha t} \sin (\beta t)$ are in fact solutions to the beginning differential equation when the roots are $\alpha \pm i \beta$.

So now we have two real-valued solutions $y_{1}(t)$ and $y_{2}(t)$. It turns out they are linearly independent, so if the roots of the characteristic equation are $r_{1,2}=\alpha \pm i \beta$, we have the general solution

$$
\begin{equation*}
y(t)=c_{1} e^{\alpha t} \cos (\beta t)+c_{2} e^{\alpha t} \sin (\beta t) \tag{21}
\end{equation*}
$$

Let's consider some examples:
Example 2. Solve the IVP

$$
\begin{equation*}
y^{\prime \prime}-4 y^{\prime}+9 y=0, \quad y(0)=0, \quad y^{\prime}(0)=-2 \tag{22}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
r^{2}-4 r+9=0 \tag{23}
\end{equation*}
$$

which has roots $r_{1,2}=2 \pm i \sqrt{5}$. Thus the general solution and its derivatives are

$$
\begin{align*}
y(t) & =c_{1} e^{2 t} \cos (\sqrt{5} t)+c_{2} e^{2 t} \sin (\sqrt{5} t) \tag{24}\\
y^{\prime}(t) & =2 c_{1} e^{2 t} \cos (\sqrt{5} t)-\sqrt{5} c_{1} e^{2 t} \sin (\sqrt{5} t)+2 c_{2} e^{2 t} \sin (\sqrt{5} t)+\sqrt{5} c_{2} e^{2 t} \cos (\sqrt{5} t) \tag{25}
\end{align*}
$$

If we apply the initial conditions, we get

$$
\begin{align*}
0 & =c_{1} \tag{26}\\
-2 & =2 c_{1}+\sqrt{5} c_{2} \tag{27}
\end{align*}
$$

which is solved by $c_{1}=0$ and $c_{2}=-\frac{2}{\sqrt{5}}$. So the particular solution is

$$
\begin{equation*}
y(t)=-\frac{2}{\sqrt{5}} e^{2 t} \sin (\sqrt{5} t) \tag{28}
\end{equation*}
$$

Example 3. Solve the IVP

$$
\begin{equation*}
y^{\prime \prime}-8 y^{\prime}+17 y=0, \quad y(0)=2, \quad y^{\prime}(0)=5 \tag{29}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
r^{2}-8 r+17=0 \tag{30}
\end{equation*}
$$

which has roots $r_{1,2}=4 \pm i$. Hence the general solution and its derivatives are

$$
\begin{align*}
y(t) & =c_{1} e^{4 t} \cos (t)=c_{2} e^{4 t} \sin (t) \tag{31}\\
y^{\prime}(t) & =4 c_{1} e^{4 t} \cos (t)-c_{1} e^{4 t} \sin (t)+4 c_{2} e^{4 t} \sin (t)+c_{2} e^{4 t} \cos (t) \tag{32}
\end{align*}
$$

and plugging in initial conditions yields the system

$$
\begin{align*}
& 2=c_{1} \tag{33}\\
& 5=4 c_{1}+c_{2} \tag{34}
\end{align*}
$$

so we conclude $c_{1}=2$ and $c_{2}=-3$ and the particular solution is

$$
\begin{equation*}
y(t)=2 e^{4 t} \cos (t)-3 e^{4 t} \sin (t) \tag{35}
\end{equation*}
$$

Example 4. Solve the IVP

$$
\begin{equation*}
4 y^{\prime \prime}+12 y^{\prime}+10 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=3 \tag{36}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
4 r^{2}+12 r+10=0 \tag{37}
\end{equation*}
$$

which has roots $r_{1,2}=-\frac{3}{2} \pm \frac{1}{2} i$. So the general solution and its derivative are

$$
\begin{align*}
y(t) & =c_{1} e^{\frac{3}{2} t} \cos \left(\frac{t}{2}\right)+c_{2} e^{\frac{3}{2} t} \sin \left(\frac{t}{2}\right) \tag{38}\\
y^{\prime}(t) & =\frac{3}{2} c_{1} e^{\frac{3}{2} t} \cos \left(\frac{t}{2}\right)-\frac{1}{2} c_{1} e^{\frac{3}{2} t} \sin \left(\frac{t}{2}\right)+\frac{3}{2} c_{2} e^{\frac{3}{2} t} \sin \left(\frac{t}{2}\right)+\frac{1}{2} c_{2} e^{\frac{3}{2} t} \cos \left(\frac{t}{2}\right) \tag{39}
\end{align*}
$$

Plugging in the initial condition yields

$$
\begin{align*}
-1 & =c_{1} \tag{40}\\
3 & =\frac{3}{2} c_{1}+\frac{1}{2} c_{2} \tag{41}
\end{align*}
$$

which has solution $c_{1}=-1$ and $c_{2}=9$. The particular solution is

$$
\begin{equation*}
y(t)=-e^{\frac{3}{2} t} \cos \left(\frac{t}{2}\right)+9 e^{\frac{3}{2} t} \sin \left(\frac{t}{2}\right) \tag{42}
\end{equation*}
$$

Example 5. Solve the IVP

$$
\begin{equation*}
y^{\prime \prime}+4 y=0, \quad y\left(\frac{\pi}{4}\right)=-10, \quad y^{\prime}\left(\frac{\pi}{4}\right)=4 \tag{43}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
r^{2}+4=0 \tag{44}
\end{equation*}
$$

which has roots $r_{1,2}= \pm 2 i$. The general solution and its derivatives are

$$
\begin{align*}
y(t) & =c_{1} \cos (2 t)+c_{2} \sin (2 t) \tag{45}\\
y^{\prime}(t) & =-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \tag{46}
\end{align*}
$$

The initial conditions give the system

$$
\begin{align*}
-10 & =c_{2} \tag{47}\\
4 & =-2 c_{1} \tag{48}
\end{align*}
$$

so we conclude that $c_{1}=-2$ and $c_{2}=-10$ and the particular solution is

$$
\begin{equation*}
y(t)=-2 \cos (2 t)-10 \sin (2 t) . \tag{49}
\end{equation*}
$$

HW 3.3 \# 1, 4, 14, 15, 18, 19

