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1 Complex Roots of the Characteristic Equation

Last Time: We considered the Wronskian and used it to determine when we have solutions to a
second order linear equation or if given one solution we can find another which is linearly inde-
pendent.

1.1 Review Real, Distinct Roots

Recall that a second order linear homogeneous differentialequation with constant coefficients

ay′′ + by′ + cy = 0 (1)

is solved byy(t) = ert, wherer solves thecharacteristic equation

ar2 + br + c = 0 (2)

So when there are two distinct rootsr1 6= r2, we get two solutionsy1(t) = er1t andy2(t) = er2t.
Since they are distinct we can immediately conclude the general solution is

y(t) = c1e
r1t + c2e

r2t (3)

Then given initial conditions we can solvec1 andc2.
Exercises:

(1) y′′ + 3y′ − 18y = 0, y(0) = 0, y′(0) = −1.
ANS: y(t) = 1

9
e−6t − 1

9
e3t.

(2) y′′ − 7y′ + 10y = 0, y(0) = 3, y(0) = 2
ANS: y(t) = −4

3
e5t + 13

3
e2t

(3) 2y′′ − 5y′ + 2y = 0, y(0) = −3, y′(0) = 3

ANS: y(t) = −6e
1

2
t + 3e2t.

(4) y′′ + 5y′ = 0, y(0) = 2, y′(0) = −5
ANS: y(t) = 1 + e−5t
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(5) y′′ − 2y′ − 8 = 0, y(2) = 1, y′(2) = 0
ANS: y(t) = 1

3e8 e
4t + 2e4

3
e−2t

(6) y′′ + y′ − 3y = 0

ANS: y(t) = c1e
−1+

√

13

2
t + c2e

−1−
√

13

2
t.

1.2 Complex Roots

Now suppose the characteristic equation has complex roots of the formr1,2 = α± iβ. This means
we have two solutions to our differential equation

y1(t) = e(α+iβ)t, y2(t) = e(α−iβ)t (4)

This is a problem sincey1(t) and y2(t) are complex-valued. Since our original equation was
both simple and had real coefficients, it would be ideal to findtwo real-valued ”different” enough
solutions so that we can form a real-valued general solution. There is a way to do this.

Theorem 1. (Euler’s Formula)
eiθ = cos(θ) + i sin(θ) (5)

In other words, we can write an imaginary exponential as a sumof sin andcos. How do we
establish this fact? There are two ways:

(1) Differential Equations: First we want to writeeiθ = f(θ) + ig(θ). We also have

f ′ + ig′ =
d

dθ
[eiθ] = ieiθ = if − g. (6)

Thusf ′ = −g andg′ = f , sof ′′ = −f andg′′ = −g. Sincee0 = 1, we know thatf(0) = 1 and
g(0) = 0. We conclude thatf(θ) = cos(θ) andg(θ) = sin(θ), so

eiθ = cos(θ) + i sin(θ) (7)

(2) Taylor Series: Recall that the Taylor series forex is

ex =

∞∑

n=0

xn

n
= 1 + x +

x2

2!
+

x3

3!
+ ... (8)

while the Taylor series forsin(x) andcos(x) are

sin(x) =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
= x − x3

3!
+

x5

5!
+ ... (9)

cos(x) =
∞∑

n−0

(−1)nx2n

(2n)!
= 1 − x2

2!
+

x4

4!
+ ... (10)

(11)
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If we setx = iθ in the first series, we get

eiθ =

∞∑

n=0

(iθ)n

n!
(12)

= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+

iθ5

5!
− ... (13)

= (1 − θ2

2!
+

θ4

4!
− ...) + i(θ − θ3

3!
+

iθ5

5!
− ...) (14)

=

∞∑

n=0

(−1)nθ2n

(2n!)
+ i

∞∑

n=0

(−1)nθ2n+1

(2n + 1)!
(15)

= cos(θ) + i sin(θ) (16)

So we can write our two complex exponentials as

e(α+iβ)t = eαteiβt = eαt(cos(βt) + i sin(βt)) (17)

e(α−iβ)t = eαte−iβt = eαt(cos(βt) − i sin(βt)) (18)

where the minus sign pops out of the sign in the second equation sincesin is odd andcos is even.
Notice our new expression is still complex-valued. However, by the Principle of Superposition, we
can obtain the following solutions

y1(t) =
1

2
(eαt(cos(βt) + i sin(βt))) +

1

2
(eαt(cos(βt) − i sin(βt))) = eαt cos(βt) (19)

y2(t) =
1

2i
(eαt(cos(βt) + i sin(βt))) − 1

2i
(eαt(cos(βt) − i sin(βt))) = eαt sin(βt) (20)

EXERCISE: Check thaty1(t) = eαt cos(βt) andy2(t) = eαt sin(βt) are in fact solutions to the
beginning differential equation when the roots areα ± iβ.

So now we have two real-valued solutionsy1(t) andy2(t). It turns out they are linearly in-
dependent, so if the roots of the characteristic equation are r1,2 = α ± iβ, we have the general
solution

y(t) = c1e
αt cos(βt) + c2e

αt sin(βt) (21)

Let’s consider some examples:

Example 2. Solve the IVP

y′′ − 4y′ + 9y = 0, y(0) = 0, y′(0) = −2 (22)

The characteristic equation is
r2 − 4r + 9 = 0 (23)

which has rootsr1,2 = 2 ± i
√

5. Thus the general solution and its derivatives are

y(t) = c1e
2t cos(

√
5t) + c2e

2t sin(
√

5t) (24)

y′(t) = 2c1e
2t cos(

√
5t) −

√
5c1e

2t sin(
√

5t) + 2c2e
2t sin(

√
5t) +

√
5c2e

2t cos(
√

5t). (25)
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If we apply the initial conditions, we get

0 = c1 (26)

−2 = 2c1 +
√

5c2 (27)

which is solved byc1 = 0 andc2 = − 2√
5
. So the particular solution is

y(t) = − 2√
5
e2t sin(

√
5t). (28)

Example 3. Solve the IVP

y′′ − 8y′ + 17y = 0, y(0) = 2, y′(0) = 5. (29)

The characteristic equation is
r2 − 8r + 17 = 0 (30)

which has rootsr1,2 = 4 ± i. Hence the general solution and its derivatives are

y(t) = c1e
4t cos(t) = c2e

4t sin(t) (31)

y′(t) = 4c1e
4t cos(t) − c1e

4t sin(t) + 4c2e
4t sin(t) + c2e

4t cos(t) (32)

and plugging in initial conditions yields the system

2 = c1 (33)

5 = 4c1 + c2 (34)

so we concludec1 = 2 andc2 = −3 and the particular solution is

y(t) = 2e4t cos(t) − 3e4t sin(t) (35)

Example 4. Solve the IVP

4y′′ + 12y′ + 10y = 0, y(0) = −1, y′(0) = 3 (36)

The characteristic equation is
4r2 + 12r + 10 = 0 (37)

which has rootsr1,2 = −3
2
± 1

2
i. So the general solution and its derivative are

y(t) = c1e
3

2
t cos(

t

2
) + c2e

3

2
t sin(

t

2
) (38)

y′(t) =
3

2
c1e

3

2
t cos(

t

2
) − 1

2
c1e

3

2
t sin(

t

2
) +

3

2
c2e

3

2
t sin(

t

2
) +

1

2
c2e

3

2
t cos(

t

2
) (39)

Plugging in the initial condition yields

−1 = c1 (40)

3 =
3

2
c1 +

1

2
c2 (41)

which has solutionc1 = −1 andc2 = 9. The particular solution is

y(t) = −e
3

2
t cos(

t

2
) + 9e

3

2
t sin(

t

2
) (42)
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Example 5. Solve the IVP

y′′ + 4y = 0, y(
π

4
) = −10, y′(

π

4
) = 4. (43)

The characteristic equation is
r2 + 4 = 0 (44)

which has rootsr1,2 = ±2i. The general solution and its derivatives are

y(t) = c1 cos(2t) + c2 sin(2t) (45)

y′(t) = −2c1 sin(2t) + 2c2 cos(2t). (46)

The initial conditions give the system

−10 = c2 (47)

4 = −2c1 (48)

so we conclude thatc1 = −2 andc2 = −10 and the particular solution is

y(t) = −2 cos(2t) − 10 sin(2t). (49)

HW 3.3 # 1, 4, 14, 15, 18, 19
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