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1 Repeated Roots of the Characteristic Equation and Reduc-
tion of Order

Last Time: We considered cases of homogeneous second order equations where the roots of the
characteristic equation were complex.

1.1 Repeated Roots

The last case of the characteristic equation to consider is when the characteristic equation has
repeated rootsr1 = r2 = r. This is a problem since our usual solution method produces the same
solution twice

y1(t) = er1t = er2t = y2(t) (1)

But these are the same and are not linearly independent. So wewill need to find a second solution
which is ”different” fromy1(t) = ert. What should we do?

Start by recalling that if the quadratic equationar2 + br + c = 0 has a repeated rootr, it must
ber = −

b

2a
. Thus our solution isy1(t) = e−

b

2a . We know any constant multiple ofy1(t) is also a
solution. These will still be linearly dependent toy1(t). Can we find a solution of the form

y2(t) = v(t)y1(t) = v(t)e−
b

2a
t (2)

i.e. y2 is the product of a function oft andy1.
Differentiatey2(t):

y′

2(t) = v′(t)e−
b

2a
t
−

b

2a
v(t)e−

b

2a
t (3)

y′′

2(t) = v′′(t)e−
b

2a −
b

2a
v′(t)e−

b

2a
t
−

b

2a
v′(t)e−

b

2a
t +

b2

4a2
v(t)e−

b

2a
t (4)

= v′′(t)e−
b

2a
t
−

b

a
v′(t)e−

b

2a
t +

b2

4a2
v(t)e−

b

2a
t. (5)
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Plug in differential equation:

a(v′′e−
b

2a
t
−

b

a
v′e−

b

2a
t +

b2

4a2
ve−

b

2a
t) + b(v′e−

b

2a
t
−

b

2a
ve−

b

2a
t) + c(ve−

b

2a
t) = 0 (6)

e−
b

2a
t
(

av′′ + (−b + b)v′ + (
b2

4a
−

b2

2a
+ c)v

)

= 0 (7)

e−
b

2a
t
(

av′′
−

1

4a
(b2

− 4ac)v
)

= 0 (8)

Since we are in the repeated root case, we know the discriminant b2
− 4ac = 0. Since exponentials

are never zero, we have
av′′ = 0 ⇒ v′′ = 0 (9)

We can drop thea since it cannot be zero, ifa were zero it would be a first order equation! So what
doesv look like

v(t) = c1t + c2 (10)

for constantsc1 andc2. Thus for any suchv(t), y2(t) = v(t)e−
b

2a
t will be a solution. The most

general possiblev(t) that will work for us isc1t + c2. Takec1 = 1 andc2 = 0 to get a specificv(t)
and our second solution is

y2(t) = te−
b

2a
t (11)

and the general solution is
y(t) = c1e

−
b

2a
t + c2te

−
b

2a
t (12)

REMARK: Here’s another way of looking at the choice of constants. Suppose we do not make
a choice. Then we have the general solution

y(t) = c1e
−

b

2a
t + c2(ct + k)e−

b

2a
t (13)

= c1e
−

b

2a
t + c2cte

−
b

2a
t + c2ke−

b

2a
t (14)

= (c1 + c2k)e−
b

2a
t + c2cte

−
b

2a
t (15)

since they are all constants we just get

y(t) = c1e
−

b

2a
t + c2te

−
b

2a
t (16)

To summarize: if the characteristic equation has repeated roots r1 = r2 = r, the general
solution is

y(t) = c1e
rt + c2te

rt (17)

Now for examples:

Example 1. Solve the IVP

y′′
− 4y′ + 4y = 0, y(0) = −1, y′(0) = 6 (18)
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The characteristic equation is

r2
− 4r + 4 = 0 (19)

(r − 2)2 = 0 (20)

so we see that we have a repeated rootr = 2. The general solution and its derivative are

y(t) = c1e
2t + c2te

2t (21)

y′(t) = 2c1e
2t + c2e

2t + 2c2te
2t (22)

and plugging in initial conditions yields

−1 = c1 (23)

6 = 2c1 + c2 (24)

so we havec1 = −1 andc2 = 8. The particular solution is

y(t) = −e2t + 6te2t (25)

Example 2. Solve the IVP

16y′′ + 40y′ + 25y = 0, y(0) = −1, y′(0) = 2. (26)

The characteristic equation is

16r2 + 40r + 25 = 0 (27)

(4r + 5)2 = 0 (28)

and so we conclude that we have a repeated rootr = −
5
4

and the general solution and its derivative
are

y(t) = c1e
−

5

4
t + c2te

−
5

4
t (29)

y′(t) = −
5

4
c1e

−
5

4
t + c2e

−
5

4
t
−

5

4
c2te

−
5

4
t (30)

Plugging in the initial conditions yields

−1 = c1 (31)

2 = −
5

4
c1 + c2 (32)

soc1 = −1 andc2 = 5
4
. The particular solution is

y(t) = −e−
5

4
t +

3

4
te−

5

4
t (33)
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1.2 Reduction of Order

We have spent the last few lectures analyzing second order linear homogeneous equations with
constant coefficients, i.e. equations of the form

ay′′ + by′ + cy = 0 (34)

Let’s now consider the case when the coefficients are not constants

p(t)y′′ + q(t)y′ + r(t)y = 0 (35)

In general this is not easy, but if we can guess a solution, we can use the techniques developed
in the repeated roots section to find another solution. This method will be calledReduction Of
Order. Consider a few examples

Example 3. Find the general solution to

2t2y′′ + ty′
− 3y = 0 (36)

given thaty1(t) = t−1 is a solution.
ANS: Think back to repeated roots. We know we had a solutiony1(t) and needed to find a

distinct solution. What did we do? We asked which nonconstant function v(t) makey2(t) =
v(t)y1(t) is also a solution. They2 derivatives are

y2 = vt−1 (37)

y′

2 = v′t−1
− vt−2 (38)

y′′

2 = v′′t−1
− v′t−2 + 2vt−3 = v′′t−1

− 2v′t−2 + 2vt−3 (39)

The next step is to plug into the original equation so we can solve for v:

2t2(v′′t−1
− 2v′t−2 + 2vt−3) + t(v′t−1

− vt−2) − 3vt−1 = 0 (40)

2v′′t − 4v′ + 4vt−1 + v′
− vt−1

− 3vt−1 = 0 (41)

2tv′′
− 3v′ = 0 (42)

Notice that the only terms left involvev′′ andv′, not v. This also happened in the repeated root
case. Thev term should always disappear at this point, so we have a checkon our work. If there is
av term left we have done something wrong.

Now we know that ify2 is a solution, the functionv must satisfy

2tv′′
− 3v′ = 0 (43)

But this is a second order linear homogeneous equation with nonconstant coefficients. Letw(t) =
v′(t). By changing variables our equation becomes

w′
−

3

2t
w = 0. (44)
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So by Integrating Factor

µ(t) = e
∫

−
3

2t
dt = e−

3

2
ln(t) = t−

3

2 (45)

(t−
3

2 w)′ = 0 (46)

t−
3

2 w = c (47)

w(t) = ct
3

2 (48)

So we know whatw(t) must solve the equation. But to solve our original differential equation, we
do not needw(t), we needv(t). Sincev′(t) = w(t), integratingw will give our v

v(t) =

∫

w(t)dt (49)

=

∫

ct
3

2
tdt (50)

=
2

5
ct

5

2 + k (51)

Now this is the general form ofv(t). Pick c = 5/2 andk = 0. Thenv(t) = t
5

2 , so y2(t) =

v(t)y1(t) = t
3

2 , and the general solution is

y(t) = c1t
−1 + c2t

3

2 (52)

Reduction of Order is a powerful method for finding a second solution to a differential equation
when we do not have any other method, but we need to have a solution to begin with. Sometimes
even finding the first solution is difficult.

We have to be careful with these problems sometimes the algebra is tedious and one can make
sloppy mistakes. Make sure thev terms disappears when we plug in the derivatives fory2 and
check the solution we obtain in the end in case there was an algebra mistake made in the solution
process.

Example 4. Find the general solution to

t2y′′ + 2ty′
− 2y = 0 (53)

given that
y1(t) = t (54)

is a solution.
Start by settingy2(t) = v(t)y1(t). So we have

y2 = tv (55)

y′

2 = tv′ + v (56)

y′′

2 = tv′′ + v′ + v′ = tv′′ + 2v′. (57)
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Next, we plug in and arrange terms

t2(tv′′ + 2v′) + 2t(tv′ + v) − 2tv = 0 (58)

t3v′′ + 2t2v′ + 2t2v′ + 2tv − 2tv = 0 (59)

t3v′′ + 4t2v′ = 0. (60)

Notice thev drops out as desired. We make the change of variablesw(t) = v′(t) to obtain

t3w′ + 4t2w = 0 (61)

which has integrating factorµ(t) = t4.

(t4w)′ = 0 (62)

t4w = c (63)

w(t) = ct−4 (64)

So we have

v(t) =

∫

w(t)dt (65)

=

∫

ct−4dt (66)

= −
c

3
t−3 + k. (67)

A nice choice for the constants isc = −3 andk = 0, sov(t) = t−3, which gives a second solution
of y2(t) = v(t)y1(t) = t−2. So our general solution is

y(t) = c1t + c2t
−2 (68)

HW 3.4 # 7, 13, 18, 20, 23
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