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1 Mechanical and Electrical Vibrations

Last Time: We studied the method of undetermined coefficients thoroughly, focusing mostly on
determining guesses for particular solutions once we have solved for the complimentary solution.

1.1 Applications

The first application is mechanical vibrations. Consider anobject of a given massm hanging from
a spring of natural lengthl, but there are a number of applications in engineering with the same
general setup as this.

We will establish the convention thatalways the downward displacement and forces areposi-
tive, while upward displacements and forces are negative. BE CONSISTENT. We also measure all
displacements from the equilibrium position. Thus if our displacement isu(y), u = 0 corresponds
to the center of gravity as it hangs at rest from a spring.

We need to develop a differential equation to model the displacementu of the object. Recall
Newton’s Second Law

F = ma (1)

wherem is the mass of the object. We want our equation to be for displacement, so we’ll replace
a by u′′, and Newton’s Second Law becomes

F (t, u, u′) = mu′′. (2)

What are the various forces acting on the object? We will consider four different forces, some of
which may or may not be present in a given situation.

(1) Gravity , Fg

The gravitational force always acts on an object. It is givenby

Fg = mg (3)
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whereg is the acceleration due to gravity. For simpler computations, you may takeg = 10 m/s.
Notice gravity is always positive since it acts downward.

(2) Spring, Fs

We attach an object to a spring, and the spring will exert a force on the object. Hooke’s Law
governs this force. The spring force is proportional to the displacement of the spring from its
natural length. What is the displacement of the spring? Whenwe attach an object to a spring,
the spring gets stretched. The length of the stretched spring is L. Then the displacement from its
natural length isL + u.

So the spring force is
Fs = −k(L + u) (4)

wherek > 0 is thespring constant. Why is it negative? It is to make sure the force is in the
correct direction. Ifu > −L, i.e. the spring has been stretched beyond its natural length, then
u + L > 0 and soFs < 0, which is what we expect because the spring would pull upwardon the
object in this situation. Ifu < −L, so the spring is compressed, then the spring force would push
the object back downwards and we expect to findFs > 0.

(3) Damping, Fd

We will consider some situations where the system experiences damping. This will not al-
ways be present, but always notice if damping is involved. Dampers work to counteract motion
(example: shocks on a car), so this will oppose the directionof the object’s velocity.

In other words, if the object has downward velocityu′ > 0, we would want the damping force
to be acting in the upwards direction, so thatFd < 0. Similarly, if u′ < 0, we wantFd > 0.
Assume all damping is linear.

Fd = −γu′ (5)

whereγ > 0 is thedamping constant.

(4) External Force, F (t)
This is encompasses all other forces present in a problem. Anexample is a spring hooked up

to a piston that exerts an extra force upon it. We callF (t) the forcing function , and it is just the
sum of any of the external forces we have in a particular problem.

The most important part of any problem is identifying all theforces involved in the problem.
Some may not be present. The forces will change depending on the particular situation. Let’s
consider the general form of our differential equation modeling a spring system. We have

F (t, u, u′) = Fg + Fs + Fd + F (t) (6)

so that Newton’s Second Law becomes

mu′′ = mg − k(L + u) − γu′ + F (t), (7)

or upon reordering it becomes

mu′′ + γu′ + ku = mg − kL + F (t). (8)
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What happens when the object is at rest. Equilibrium isu = 0, there are only two forces acting on
the object: gravity and the spring force. Since the object isat rest, these two forces must balance
to 0. SoFg + Fs = 0. In other words,

mg = kL. (9)

So our equation simplifies to
mu′′ + γu′ + ku = F (t), (10)

and this is the most general form of our equation, with all forces present. We have the correspond-
ing initial conditions

u(0) = u0 Initial displacement from equilibrium position (11)

u′(0) = u′
0

Initial Velocity (12)

Before we discuss individual examples, we need to touch on how we might figure out the
constantsk andγ if they are not explicitly given. Consider the spring constant k. We know if the
spring is attached to some object with massm, the object stretches the spring by some lengthL
when it is at rest. We know at equilibriummg = kL. Thus, if we know how much some object
with a known mass stretches the spring when it is at rest, we can compute

k =
mg

L
. (13)

How do we computeγ? If we do not know the damping coefficient from the beginning,we may
know how much force a damper exerts to oppose motion of a givenspeed. Then set|Fd| = γ|u′|,
where|Fd| is the magnitude of the damping force and|u′| is the speed of motion. So we have
γ = Fd

u′
. We will see how to compute in examples on damped motion. Let’s consider specific

spring mass systems.

1.2 Free, Undamped Motion

Start with free systems with no damping or external forces. This is the simplest situation since
γ = 0. Our differential equation is

mu′′ + ku = 0, (14)

wherem, k > 0. Solve by considering the characteristic equation

mr2 + k = 0, (15)

which has roots

r1,2 = ±i

√

k

m
. (16)

We’ll write
r1,2 = ±iω0, (17)

where we’ve substituted

ω0 =

√

k

m
. (18)
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ω0 is called thenatural frequency of the system, for reasons that will be clear shortly.
Since the roots of our characteristic equation are imaginary, the form of our general solution is

u(t) = c1 cos(ω0t) + c2 sin(ω0t) (19)

This is why we calledω0 the natural frequency of the system: it is the frequency of motion when
the spring-mass system has no interference from dampers or external forces.

Given initial conditions we can solve forc1 andc2. This is not the ideal form of the solution
though since it is not easy to read off critical information.After we solve for the constants rewrite
as

u(t) = R cos(ω0t − δ), (20)

whereR > 0 is theamplitude of displacementandδ is thephase angle of displacement, some-
times called thephase shift.

Before determining how to rewrite the general solution in this desired form lets compare the
two forms. When we keep it as the general solution is it easierto find the constantsc1 andc2. But
the new form is easier to work with since we can immediately see the amplitude making it much
easier to graph. So ideally we will find the general solution,solve forc1 andc2, and then convert
to the final form.

Assume we havec1 andc2 how do we findR andδ? Consider Equation (??) we can use a trig
identity to write it as

u(t) = R cos(δ) cos(ω0t) + R sin(δ) sin(ω0t). (21)

Comparing this to the general solution, we see that

c1 = R cos(δ), c2 = R sin(δ). (22)

Notice
c2

1
+ c2

2
= R2(cos2(δ) + sin2(δ)) = R2, (23)

so that, assumingR > 0,

R =
√

c2

1
+ c2

2
. (24)

Also,
c2

c1

=
sin(δ)

cos(δ)
= tan(δ). (25)

to find δ.

Example 1. A 2kg object is attached to a spring, which it stretches by5

8
m. The object is given an

initial displacement of1m upwards and given an initial downwards velocity of4m/sec. Assuming
there are no other forces acting on the spring-mass system, find the displacement of the object at
time t and express it as a single cosine.

The first step is to write down the initial value problem for this setup. We’ll need to find anm
andk. m is easy since we know the mass of the object is2kg. How aboutk? We know

k =
mg

L
=

(2)(10)
5

8

= 32. (26)
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So our differential equation is
2u′′ + 32u = 0. (27)

The initial conditions are given by

u(0) = −1, u′(0) = 4. (28)

The characteristic equation is
2r2 + 32 = 0, (29)

and this has rootsr1,2 = ±4i. Henceω0 = 4. Check:ω0 =
√

k
m

=
√

32/2 = 4. So our general
solution is

u(t) = c1 cos(4t) + c2 sin(4t). (30)

Using our initial conditions, we see

−1 = u(0) = c1 (31)

4 = u′(0) = 4c2 ⇒ c2 = 1. (32)

So the solution is
u(t) = − cos(4t) + sin(4t). (33)

We want to write this as a single cosine. ComputeR

R =
√

c2

1
+ c2

2
=

√
2. (34)

Now considerδ
tan(δ) =

c2

c1

= −1. (35)

Soδ is in Quadrants II or IV. To decide which look at the values ofcos(δ) andsin(δ). We have

sin(δ) = c2 > 0 (36)

cos(δ) = c1 < 0. (37)

Soδ must be in Quadrant II, since theresin > 0 andcos < 0. If we takearctan(−1) = −π
4
, this

has a value in Quadrant IV. Sincetan is π-periodic, however,−π
4

+ π = 3π
4

is in Quadrant II and
also has a tangent of−1 Thus our desired phase angle is

δ = arctan(
c2

c1

) + π = arctan(−1) + π =
3π

4
(38)

and our solution has the final form

u(t) =
√

2 cos(4t − 3π

4
). (39)
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1.3 Free, Damped Motion

Now, let’s consider what happens if we add a damper into the system with damping coefficientγ.
We still consider free motion soF (t) = 0, and our differential equation becomes

mu′′ + γu′ + ku = 0. (40)

The characteristic equation is
mr2 + γr + k = 0, (41)

and has solution

r1,2 =
−γ ±

√

γ2 − 4km

2m
. (42)

There are three different cases we need to consider, corresponding to the discriminant being posi-
tive, zero, or negative.

(1) γ2 − 4mk = 0
This case gives a double root ofr = − γ

2m
, and so the general solution to our equation is

u(t) = c1e
γ

2m + c2te
− γ

2m (43)

Notice thatlimt→∞ u(t) = 0, which is good, since this signifies damping. This is calledcritical
damping and occurs when

γ2 − 4mk = 0 (44)

γ =
√

4mk = 2
√

mk (45)

This value ofγ − 2
√

mk is denoted byγCR and is called thecritical damping coefficient. Since
this case separates the other two it is generally useful to beable to calculate this coefficient for a
given spring-mass system, which we can do using this formula. Critically damped systems may
crossu = 0 once but will never cross more than that. No oscillation

(2) γ2 − 4mk > 0
In this case, the discriminant is positive and so we will get two distinct real rootsr1 andr2.

Hence our general solution is
u(t) = c1e

r1t + c2e
r2t (46)

But what is the behavior of this solution? The solution should die out since we have damping. We
need to checklimt→∞ u(t) = 0. Rewrite the roots

r1,2 =
−γ ±

√

γ2 − 4mk

2m
(47)

=
−γ ± γ(

√

1 − 4mk
γ2 )

2m
(48)

= − γ

2m
(1 ±

√

1 − 4mk

γ2
) (49)
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By assumption, we haveγ2 > 4mk. Hence

1 − 4mk

γ2
< 1 (50)

and so
√

1 − 4mk

γ2
< 1. (51)

so the quantity in parenthesis above is guaranteed to be positive, which means both of our roots
are negative.

Thus the damping in this case has the desired effect, and the vibration will die out in the limit.
This case, which occurs whenγ > γCR, is calledoverdamping. The solution won’t oscillate
around equilibrium, but settles back into place. The overdamping kills all oscillation

(3) γ2 < 4mk
The final case is whenγ < γCR. In this case, the characteristic equation has complex roots

r1,2 =
−γ ±

√

γ2 − 4mk

2m
= α + iβ. (52)

The displacement is

u(t) = c1e
αt cos(βt) + c2e

αt sin(βt) (53)

= eαt(c1 cos(βt) + c2 sin(βt)). (54)

In analogy to the free undamped case we can rewrite as

u(t) = Reαt cos(βt − δ). (55)

We knowα < 0. Hence the displacement will settle back to equilibrium. The difference is that
solutions will oscillate even as the oscillations have smaller and smaller amplitude. This is called
overdamped.

Notice that the solutionu(t) is not quite periodic. It has the form of a cosine, but the ampli-
tude is not constant. A functionu(t) is calledquasi-periodic, since it oscillates with a constant
frequency but a varying amplitude.β is called thequasi-frequencyof the oscillation.

So when we have free, damped vibrations we have one of these three cases. A good example
to keep in mind when considering damping is car shocks. If theshocks are new its overdamping,
when you hit a bump in the road the car settles back into place.As the shocks wear there is more
of an initial bump but the car still settles does not bounce around. Eventually when your shocks
where and you hit a bump, the car bounces up and down for a few minutes and then settles like
underdamping. The critical point where the car goes from overdamped to underdamped is the
critically damped case.

Another example is a washing machine. A new washing machine does not vibrate significantly
due to the presence of good dampers. Old washing machines vibrate a lot.
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In practice we want to avoid underdamping. We do not want carsto bounce around on the road
or buildings to sway in the wind. With critical damping we have the right behavior, but its too hard
to achieve this. If the dampers wear a little we are then underdamped. In practice we want to stay
overdamped.

Example 2. A 2kg object stretches a spring by5
8
m. A damper is attached that exerts a resistive

force of48N when the speed is3m/sec. If the initial displacement is1m upwards and the initial
velocity is2m/sec downwards, find the displacementu(t) at any timet.

This is actually the example from the last class with dampingadded and different initial condi-
tions. We already knowk = 32. What is the damping coefficientγ? We know|Fd| = 48 when the
speed is|u′| = 3. So the damping coefficients is given by

γ =
|Fd|
|u′| =

48

3
= 16. (56)

Thus the initial value problem is

2u′′ + 16u′ + 32u = 0, u(0) = −1, u′(0) = 2. (57)

Before we solve it, see which case we’re in. To do so, let’s calculate the critical damping coeffi-
cient.

γCR = 2
√

mk = 2
√

64 = 16. (58)

So we are critically damped, sinceγ = γCR. This means we will get a double root. Solving the
characteristic equation we getr1 = r2 = −4 and the general solution is

u(t) = c1e
−4t + c2te

−4t. (59)

The initial conditions give coefficientsc1 = −1 andc2 = −2. So the solution is

u(t) = −e−4t − 2te−4t (60)

Notice there is no oscillations in this case.

Example 3. For the same spring-mass system as in the previous example, attach a damper that
exerts a force of40N when the speed is2m/s. Find the displacement at any timet.

the only difference from the previous example is the dampingforce. Lets computeγ

γ =
|Fd|
|u′| =

40

2
= 20. (61)

Since we computedγCR = 16, this means we are overdamped and the characteristic equation
should give us distinct real roots. The IVP is

2u′′ + 20u′ + 32u = 0, u(0) = −1, u(0) = 2. (62)

The characteristic equation has rootsr1 = −8 andr2 = −2. So the general solution is

u(t) = c1e
−8t + c2e

−2t (63)
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The initial conditions givec1 = 0 andc2 = −1, so the displacement is

u(t) = −e−2t (64)

Notice here we do not actually have a ”vibration” as we normally think of them. The damper is
strong enough to force the vibrations to die out so quickly that we do not notice much if any of
them.

Example 4. For the same spring-mass system as in the previous two examples, add a damper that
exerts a force of16N when the speed is2m/s.

In this case, the damping coefficient is

γ =
16

2
= 8, (65)

which tells us that this case is underdamped asγ < γCR = 16. We should expect complex roots of
the characteristic equation. The IVP is

2u′′ + 8u′ + 32u = 0, u(0) = −1, u′(0) = 3. (66)

The characteristic equation has roots

r1,2 =
−8 ±

√
192

4
= −2 ± i

√
12. (67)

Thus our general solution is

u(t) = c1e
−2t cos(

√
12t) + c2e

2t sin(
√

12t) (68)

The initial conditions give the constantsc1 = 1 andc2 = 1√
12

, so we have

u(t) = −e−2t cos(
√

12t) +
1√
12

e2t sin(
√

12t). (69)

Let’s write this as a single cosine

R =

√

(−1)2 + (
1√
12

)2 =

√

13

12
(70)

tan(δ) = − 1√
12

(71)

As in the undamped case, we look at the signs ofc1 andc2 to figure out what quadrantδ is in. By
doing so, we see thatδ has negative cosine and positive sine, so it is in Quadrant II. Hence we need
to take the arctangent and addπ to it

δ = arctan(− 1√
12

) + π. (72)

9



Thus our displacement is

u(t) =

√

13

12
e−2t cos(

√
12t − arctan(− 1√

12
− π). (73)

In this case, we actually get a vibration, even though its amplitude steadily decreases until it is
negligible. The vibration has quasi-frequency

√
12.

HW 3.7 # 1, 6, 11, 13, 14, 26ab3 additional problems Hint: PeriodT = 2π
frequency

.
HW 1: A 2kg object stretches a spring by1

2
m. A damper is attached that exerts a resistive

force of24N when the speed is3m/sec. If the initial displacement is1m upwards and the initial
velocity is2m/sec downwards, find the displacementu(t) at any timet. Find quasi-frequencyµ,
phase angleδ, and amplitudeR.

HW 2: Same problem with massm = .5kg. Just find the displacement. Don’t need to findµ,
δ, or R.

HW 3: Determine the critical valueγCR that determines when the system is critically damped
for HW1 and HW2.
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