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1 Mechanical and Electrical Vibrations

Last Time: We studied the method of undetermined coeffisiémbroughly, focusing mostly on
determining guesses for particular solutions once we halved for the complimentary solution.

1.1 Applications

The first application is mechanical vibrations. Consideobject of a given mass hanging from
a spring of natural length but there are a number of applications in engineering viighsame
general setup as this.

We will establish the convention thatwaysthe downward displacement and forces posi-
tive, while upward displacements and forces are negative. BEERISNENT. We also measure all
displacements from the equilibrium position. Thus if owsplacement is(y), v = 0 corresponds
to the center of gravity as it hangs at rest from a spring.

We need to develop a differential equation to model the dsghent, of the object. Recall
Newton’s Second Law

F=ma (1)

wherem is the mass of the object. We want our equation to be for digpfent, so we’ll replace
a by v”, and Newton’s Second Law becomes

F(t,u,u') =mu". (2)

What are the various forces acting on the object? We will cendour different forces, some of
which may or may not be present in a given situation.

(1) Gravity, F,
The gravitational force always acts on an object. It is givgn

Fy=mg 3)



whereg is the acceleration due to gravity. For simpler computatjyou may takey = 10 m/s.
Notice gravity is always positive since it acts downward.

(2) Spring, F,

We attach an object to a spring, and the spring will exert efan the object. Hooke’s Law
governs this force. The spring force is proportional to tieplkhcement of the spring from its
natural length. What is the displacement of the spring? Wherattach an object to a spring,
the spring gets stretched. The length of the stretchedgwih. Then the displacement from its
natural length id, + u.

So the spring force is

Fy=—k(L+u) 4)

wherek > 0 is thespring constant Why is it negative? It is to make sure the force is in the
correct direction. Ifu > —L, i.e. the spring has been stretched beyond its naturalHetiggtn
u+ L > 0 and soF; < 0, which is what we expect because the spring would pull upwarthe
object in this situation. . < —L, so the spring is compressed, then the spring force would pus
the object back downwards and we expect to find> 0.

(3) Damping, Fy

We will consider some situations where the system expegg@amping. This will not al-
ways be present, but always notice if damping is involvedmpers work to counteract motion
(example: shocks on a car), so this will oppose the direaifdhe object’s velocity.

In other words, if the object has downward velocity> 0, we would want the damping force
to be acting in the upwards direction, so that < 0. Similarly, if «' < 0, we wantF,; > 0.
Assume all damping is linear.

Fy= —yu (5)

wherevy > 0 is thedamping constant

(4) External Force, F'(t)

This is encompasses all other forces present in a problenexample is a spring hooked up
to a piston that exerts an extra force upon it. We édll) theforcing function, and it is just the
sum of any of the external forces we have in a particular bl

The most important part of any problem is identifying all foeces involved in the problem.
Some may not be present. The forces will change dependinbeopdrticular situation. Let’'s
consider the general form of our differential equation mimdgea spring system. We have

F(t,u,u') = F, + Fs+ Fy + F(t) (6)
so that Newton’s Second Law becomes
mu” =mg — k(L +u) —yu' + F(t), (7)
or upon reordering it becomes

mu” + yu' + ku =mg — kL + F(t). (8)
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What happens when the object is at rest. Equilibrium is 0, there are only two forces acting on
the object: gravity and the spring force. Since the objeat i®st, these two forces must balance
to 0. SoF, + F, = 0. In other words,

mg = kL. (9)

So our equation simplifies to
mu” + yu' + ku = F(t), (10)

and this is the most general form of our equation, with altésrpresent. We have the correspond-
ing initial conditions

u(0) = wup Initial displacement from equilibrium position (12)
u'(0) = wug Initial Velocity (12)

Before we discuss individual examples, we need to touch am e might figure out the
constants: and~ if they are not explicitly given. Consider the spring comsta \We know if the
spring is attached to some object with massthe object stretches the spring by some length
when it is at rest. We know at equilibriumg = kL. Thus, if we know how much some object
with a known mass stretches the spring when it is at rest, weampute

myg
k= T (13)

How do we compute? If we do not know the damping coefficient from the beginning may
know how much force a damper exerts to oppose motion of a gigead. Then sef;| = ~|u/|,
where|Fy| is the magnitude of the damping force and is the speed of motion. So we have
v o= % We will see how to compute in examples on damped motion.slaghsider specific
spring mass systems.

1.2 Free, Undamped Motion

Start with free systems with no damping or external forceBis Ts the simplest situation since
~ = 0. Our differential equation is

mu” + ku = 0, (14)
wherem, k > 0. Solve by considering the characteristic equation
mr® +k =0, (15)
which has roots
| k
7’172 = 41 —. (16)
m
We'll write
7’1’2 = :l:in, (17)

where we've substituted

Wy = \/g (18)



wy Is called thenatural frequency of the system, for reasons that will be clear shortly.
Since the roots of our characteristic equation are imagjniae form of our general solution is

u(t) = ¢1 cos(wpt) + co sin(wot) (19)

This is why we calledv, the natural frequency of the system: it is the frequency dfienovhen
the spring-mass system has no interference from dampexsesnal forces.

Given initial conditions we can solve fef andc,. This is not the ideal form of the solution
though since it is not easy to read off critical informatiédter we solve for the constants rewrite
as

u(t) = Rcos(wot — 9), (20)

whereR > 0 is theamplitude of displacementando is thephase angle of displacemensome-
times called thgphase shift

Before determining how to rewrite the general solution iis ttesired form lets compare the
two forms. When we keep it as the general solution is it edsiénd the constants, andc,. But
the new form is easier to work with since we can immediatet/tbe amplitude making it much
easier to graph. So ideally we will find the general solutsmiye forc; andc,, and then convert
to the final form.

Assume we have, andc, how do we findR andd? Consider Equatior?) we can use a trig
identity to write it as

u(t) = Rcos(d) cos(wot) + Rsin(d) sin(wyt). (21)
Comparing this to the general solution, we see that
c1 = Rcos(d), ¢ = Rsin(0). (22)
Notice
3+ c3 = R*(cos?(0) +sin(9)) = R?, (23)
so that, assuming > 0,
R=\/c+c2. (24)
Also, (5)
cp  sin(d)
c—l = COS((S) = tan(5) (25)
to find .

Example 1. A 2kg object is attached to a spring, which it stretche@by The object is given an
initial displacement of m upwards and given an initial downwards velocitylaf / sec. Assuming
there are no other forces acting on the spring-mass systednthie displacement of the object at
time ¢ and express it as a single cosine.
The first step is to write down the initial value problem foisteetup. We’'ll need to find am
andk. m is easy since we know the mass of the objeetig. How aboutt? We know
mg _ (2)(10)

e (26)
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So our differential equation is

2u" + 32u = 0. (27)
The initial conditions are given by
uw(0) = -1, «/(0)=4. (28)
The characteristic equation is
2r* +32 = 0, (29)

and this has roots, » = +4i. Hencew, = 4. Checkiw, = \/g = 4/32/2 = 4. So our general

solution is
u(t) = ¢1 cos(4t) + co sin(4t). (30)

Using our initial conditions, we see

4 = d(0)=4dcy == 1. (32)
So the solution is
u(t) = — cos(4t) + sin(4t). (33)

We want to write this as a single cosine. Comphte

R=\/d+3=V2 (34)

Now conside® .
tan(0) = = = —1. (35)

C1

Sod is in Quadrants Il or IV. To decide which look at the values@f(§) andsin(d). We have

sin(0) = ¢ >0 (36)
cos(0) = ¢ <0. (37)
So¢ must be in Quadrant I, since thesia > 0 andcos < 0. If we takearctan(—1) = —7, this

has a value in Quadrant IV. Sincen is w-periodic, however;-7 + m = 3@{ is in Quadrant Il and
also has a tangent ef1 Thus our desired phase angle is

d= arctan(?) + 7 = arctan(—1) + 7 = ?%T (38)
1
and our solution has the final form
u(t) = V2 cos(4t — ??Tﬂ) (39)



1.3 Free, Damped Motion

Now, let’s consider what happens if we add a damper into teeegay with damping coefficient.
We still consider free motion sB(¢) = 0, and our differential equation becomes

mau” + yu' + ku = 0. (40)
The characteristic equation is
mr® +yr + k=0, (42)

=y E /2 —4km (42)
B 2m '

There are three different cases we need to consider, corrds to the discriminant being posi-
tive, zero, or negative.

and has solution

r1,2

(1)y* —4mk =0
This case gives a double rootof= —3-, and so the general solution to our equation is

u(t) = crem + cote” m (43)

Notice thatlim, .., u(t) = 0, which is good, since this signifies damping. This is catigtical
damping and occurs when

¥ —dmk = 0 (44)
v =Vimk = 2vVmk (45)

This value ofy — 2v/mk is denoted byy. and is called theritical damping coefficient. Since
this case separates the other two it is generally useful tbheeto calculate this coefficient for a
given spring-mass system, which we can do using this form@f#ically damped systems may
crossu = 0 once but will never cross more than that. No oscillation

(2)7? —4mk >0
In this case, the discriminant is positive and so we will get distinct real roots; andrs.
Hence our general solution is
u(t) = cre™ + coe™! (46)
But what is the behavior of this solution? The solution sdalié out since we have damping. We
need to checkim, .., u(t) = 0. Rewrite the roots

—v £ /7% — dmk (47)
2m

a2 =
—y£9(y/1 — )
— (48)
2m
~y 4mk
= —(1%4/1— — 49
L ) (49)



By assumption, we have® > 4mk. Hence

4dmk
-2 (50)
v
and so
4
1—if<1. (51)
v

so the quantity in parenthesis above is guaranteed to bévegsvhich means both of our roots
are negative.

Thus the damping in this case has the desired effect, andliregion will die out in the limit.
This case, which occurs when > ~cg, is calledoverdamping. The solution won’t oscillate
around equilibrium, but settles back into place. The ovenpiag kills all oscillation

(3) 72 < 4mk
The final case is whef < v¢g. In this case, the characteristic equation has complesroot

N A2 4
7 an i, (52)

T12 =
The displacement is

u(t) = c1e® cos(Bt) + cpe™ sin(Bt) (53)
= e™(cy cos(Bt) + casin(Bt)). (54)

In analogy to the free undamped case we can rewrite as
u(t) = Re® cos(Bt — 6). (55)

We knowa < 0. Hence the displacement will settle back to equilibrium e Tifference is that
solutions will oscillate even as the oscillations have senand smaller amplitude. This is called
overdamped

Notice that the solutiom(t) is not quite periodic. It has the form of a cosine, but the &mpl
tude is not constant. A function(t) is calledquasi-periodic, since it oscillates with a constant
frequency but a varying amplitudg.is called thequasi-frequencyof the oscillation.

So when we have free, damped vibrations we have one of these ¢hses. A good example
to keep in mind when considering damping is car shocks. Istieecks are new its overdamping,
when you hit a bump in the road the car settles back into plaseghe shocks wear there is more
of an initial bump but the car still settles does not bounaaiad. Eventually when your shocks
where and you hit a bump, the car bounces up and down for a fewrtes and then settles like
underdamping. The critical point where the car goes fronradamaped to underdamped is the
critically damped case.

Another example is a washing machine. A new washing mactoes dot vibrate significantly
due to the presence of good dampers. Old washing machinedeséolot.
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In practice we want to avoid underdamping. We do not wantttab®unce around on the road
or buildings to sway in the wind. With critical damping we leathe right behavior, but its too hard
to achieve this. If the dampers wear a little we are then wataped. In practice we want to stay
overdamped.

Example 2. A 2kg object stretches a spring @n A damper is attached that exerts a resistive
force of 48 N when the speed i&mn/sec. If the initial displacement i$m upwards and the initial
velocity is2m/sec downwards, find the displacemer(t) at any time.

This is actually the example from the last class with dampisided and different initial condi-
tions. We already know = 32. What is the damping coefficien®? We know|F,;| = 48 when the
speed isu’| = 3. So the damping coefficients is given by

_ [l 48

— = 16. 56
=l T3 (56)

Thus the initial value problem is
2u" 4+ 160"+ 32u =0, w(0)=-1, «'(0)=2. (57)

Before we solve it, see which case we're in. To do so, let’sudate the critical damping coeffi-
cient.

Yor = 2Vmk = 2v/64 = 16. (58)

So we are critically damped, sinee= ~-r. This means we will get a double root. Solving the
characteristic equation we get= r, = —4 and the general solution is

u(t) = cre™ + cote™ ™. (59)
The initial conditions give coefficients = —1 andc, = —2. So the solution is
u(t) = —e 4 — 2te™4 (60)

Notice there is no oscillations in this case.

Example 3. For the same spring-mass system as in the previous exantjgleh @ damper that
exerts a force ol0N when the speed &n/s. Find the displacement at any time
the only difference from the previous example is the damfonge. Lets compute

_ |Fal 40
Tl T2

20. (61)

Since we computed.r = 16, this means we are overdamped and the characteristic eguati
should give us distinct real roots. The IVP is

20" +20u' 4+ 32u =0, u(0)=-1, u(0)=2. (62)
The characteristic equation has rogts= —8 andr, = —2. So the general solution is

u(t) = cre® + cpe™ (63)
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The initial conditions give:; = 0 andc, = —1, so the displacement is
u(t) = —e (64)

Notice here we do not actually have a "vibration” as we nolyniddink of them. The damper is
strong enough to force the vibrations to die out so quickt the do not notice much if any of
them.

Example 4. For the same spring-mass system as in the previous two eganguld a damper that
exerts a force of6 N when the speed &n/s.
In this case, the damping coefficient is

which tells us that this case is underdamped asvyc-r = 16. We should expect complex roots of
the characteristic equation. The IVP is

20" +8u' +32u =0, u(0)=-1, «/(0)=3. (66)

The characteristic equation has roots

-8+ 192
rie = % = -2+ Z\/ﬁ (67)
Thus our general solution is
u(t) = cre 2 cos(V12t) + o€ sin(vV12t) (68)
The initial conditions give the constants= 1 andc, = \/% so we have
1
u(t) = —e % cos(V12t) + ——e* sin(V12t). (69)
V12
Let’s write this as a single cosine
1 13
— —1)2 2 — — 70
R \/ (P (=P = 5 (70)

tan(d) = — (71)

(\]

As in the undamped case, we look at the signs, @ndc, to figure out what quadrantis in. By
doing so, we see thathas negative cosine and positive sine, so itis in QuadraHelhce we need
to take the arctangent and addo it

d = arctan(————=) + . (72)



Thus our displacement is

u(t) = \/%6_% cos(V12t — arctan(—\/% — 7). (73)

In this case, we actually get a vibration, even though itsldange steadily decreases until it is
negligible. The vibration has quasi-frequengy2.

HW 3.7 #1, 6, 11, 13, 14, 26aB additional problems Hint: Peridtl = frejjemy.

HW 1: A 2kg object stretches a spring @yn A damper is attached that exerts a resistive
force of24 N when the speed i&n/sec. If the initial displacement i$m upwards and the initial
velocity is2m/sec downwards, find the displacemen(tt) at any timet. Find quasi-frequency,
phase anglé, and amplituder.

HW 2: Same problem with mass = .5kg. Just find the displacement. Don’t need to find
J, or R.

HW 3: Determine the critical valug-r that determines when the system is critically damped
for HW1 and HW2.
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