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1 Forced Vibrations

Last Time: We studied non-forced vibrations with and without damping. We studied the four
forces acting on an object gravity, spring force, damping, and external forces.

1.1 Forced, Undamped Motion

What happens when the external forceF (t) is allowed to act on our system. The functionF (t) is
called theforcing function. We will consider the undamped case

mu′′ + ku = F (t). (1)

This is a nonhomogeneous equation, so we will need to find boththe complimentary and particular
solution.

u(t) = uc(t) + Up(t), (2)

Recall thatuc(t) is the solution to the associated homogeneous equation. We will use undetermined
coefficients to find the particular solutionUp(t) (if F (t) has an appropriate form) or variation of
parameters.

We restrict our attention to the case which appears frequently in applications

F (t) = F0 cos(ωt) or F (t) = F0 sin(ωt) (3)

The force we are applying to our spring-mass system is a simple periodic function with frequency
ω. For now we assumeF (t) = F0 cos(ωt), but everything is analogous if it is a sine function. So
consider

mu′′ + ku′ = F0 cos(ωt). (4)

Where the complimentary solution to the analogous free undamped equation is

uc(t) = c1 cos(ω0t) + c2 sin(ω0t), (5)
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whereω0 =
√

k

m
is the natural frequency.

We can use the method of undetermined coefficients for this nonhomogeneous termF (t). The
initial guess for the particular solution is

Up(t) = A cos(ωt) + B sin(ωt). (6)

We need to be careful, note that we are okay sinceω0 6= ω, but if the frequency of the forcing
function is the same as the natural frequency, then this guess is the complimentary solutionuc(t).
Thus, ifω0 = ω, we need to multiply by a factor oft. So there are two cases.

(1) ω 6= ω0

In this case, our initial guess is not the complimentary solution, so the particular solution will
be

Up(t) = A cos(ωt) + B sin(ωt). (7)

Differentiating and plugging in we get

mω2(−A cos(ωt) − B sin(ωt)) + k(A cos(ωt) + B sin(ωt)) = F0 cos(ωt) (8)

(−mω2A + kA) cos(ωt) + (−mω2B + kB) sin(ωt) = F0 cos(ωt). (9)

Setting the coefficients equal, we get

cos(ωt) : (−mω2 + k)A = F0 ⇒ A =
F0

k − mω2
(10)

sin(ωt) : (−mω2 + k)B = 0 ⇒ B = 0. (11)

So our particular solution is

Up(t) =
F0

k − mω2
cos(ωt) (12)

=
F0

m( k

m
− ω2)

cos(ωt) (13)

=
F0

m(ω2

0
− ω2)

cos(ωt). (14)

Notice that the amplitude of the particular solution is dependent on the amplitude of the forcing
functionF0 and the difference between the natural frequency and the forcing frequency.

We can write our displacement function in two forms, depending on which form we use for
complimentary solution.

u(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

m(ω2

0
− ω2)

cos(ωt) (15)

u(t) = R cos(ω0t − δ) +
F0

m(ω2

0
− ω2)

cos(ωt) (16)
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Again, we get an analagous solution if the forcing function wereF (t) = F0 sin(ωt).
The key feature of this case can be seen in the second form. We have two cosine functions

with different frequencies. These will interfere with eachother causing the net oscillation to vary
between great and small amplitude. This phenomena has a name”beats” derived from musical
terminology. Thing of hitting a tuning fork after it has already been struck, the volume will increase
and decrease randomly. One hears the waves created here in the exact form of our solution.

(2) ω = ω0

If the frequency of the forcing function is the same as the natural frequency, so the guess for
the particular solution is

Up(t) = At cos(ω0t) + Bt sin(ω0t) (17)

Differentiate and plug in

(−mω2

0
+ k)At cos(ω0t) + (−mω2

0
+ k)Bt sin(ω0t)

+ 2mω0B cos(ω0t) − 2mω0A sin(ω0t) = F0 cos(ω0t).
(18)

To begin simplification recall thatω2

0
= k

m
, somω2

0
= k. this means the first two terms will vanish

(expected since no analogous terms on right side), and we get

2mω0B cos(ω0t) − 2mω0A sin(ω0t) = F0 cos(ω0t). (19)

Now set the coefficients equal

cos(ω0t) : 2mω0B = F0 B =
F0

2mω0

(20)

sin(ω0t) : −2mω0A = 0 A = 0 (21)

Thus the particular solution is

Up(t) =
F0

2mω0

t sin(ω0t) (22)

and the displacement is

u(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

2mω0

t sin(ω0t) (23)

or

u(t) = R cos(ω0t − δ) +
F0

2mω0

t sin(ω0t). (24)

What stands out most about this equation? Notice that ast → ∞, u(t) → ∞ due to the form
of the particular solution. Thus, in the case where the forcing frequency is the same as the natural
frequency, the oscillation will have an amplitude that continues to increase for all time since the
external force adds energy to the system in a way that reinforces the natural motion of the system.

This phenomenon is calledresonance. Resonance is the phenomenon behind microwave
ovens. The microwave radiation strikes the water moleculesin what’s being heated at their natural
frequency, causing them to vibrate faster and faster, whichgenerates heat. A similar trait is noticed
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in the Bay of Fundy, where tidal forces cause the ocean to resonate, yielding larger and larger tides.
Resonance in the ear causes us to be able to distinguish between tones in sound.

A common example is the Tacoma Narrows Bridge. This is incorrect because the oscillation
that led to the collapse of the bridge was from a far more complicated phenomenon than the simple
resonance we’re considering now. In general, for engineering purposes, resonance is something
we would like to avoid unless we understand the situation andthe effect on the system.

In summary when we drive our system at a different frequency than the natural frequency, the
two frequencies interfere and we observe beats in motion. When the system is driven at a natural
frequency, the natural motion of the system is reinforced, causing the amplitude of the motion to
increase to infinity.

Example 1. A 3kg object is attached to a spring, which it stretches by40cm. There is no damping,
but the system is forced with the forcing function

F (t) = 10 cos(ωt) (25)

such that the system will experience resonance. If the object is initially displaced20cm downward
and given an initial upward velocity of10cm/s, find the displacement at any timet.

We need to be aware of the units, convert all lengths to meters. Findk

k =
mg

L
=

(3)(10)

.4
= 75 (26)

Next, we are told the system experiences resonance. Thus theforcing frequencyω must be the
natural frequencyω0.

ω = ω0 =

√

k

m
=

√

75

3
= 5 (27)

Thus our initial value problem is

3u′′ + 75u = 10 cos(5t) u(0) = .2, u′(0) = −.1 (28)

The complimentary solution is the general solution of the associated free, undamped case. Since
we have computed the natural frequency already, the complimentary solution is just

uc(t) = c1 cos(5t) + c2 sin(5t). (29)

The particular solution (using formula derived above) is

1

3
t sin(5t), (30)

and so the general solution is

u(t) = c1 cos(5t) + c2 sin(5t) +
1

3
t sin(5t). (31)
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The initial conditions givec1 = 1

5
andc2 = − 1

50
, so the displacement can be given as

u(t) =
1

5
cos(5t) −

1

50
sin(5t) +

1

3
t sin(5t) (32)

Let’s convert the first two terms to a single cosine.

R =

√

(
1

5
)2 + (−

1

50
)2 =

√

101

2500
(33)

tan(δ) =
− 1

50

1

5

= −
1

10
(34)

Looking at the signs ofc1 andc2, we see thatcos(δ) > 0 andsin(δ) < 0. Thusδ is in Quadrant IV,
and so we can just take the arctangent.

δ = arctan(−
1

10
) (35)

The displacement is then

u(t) =

√

101

2500
cos

(

5t − arctan(−
1

10
)

)

+
1

3
t sin(5t) (36)

HW 3.8 # 2, 5, 6, 9, 18a, 19a

Hint: For # 2 recall identities forcos(α ± β) andsin(α ± β). Just set up 6 even though it has
damping. If given in pounds divide weight by 32 to get mass.
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