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1 Definition of the Laplace Transform

Last Time: We studiedth order linear differential equations and used the metlictaracteristics
to solve them.

We have spent most of the course solving differential equatdirectly, but sometimes a trans-
formation of the problem can make it much easier. One sucimpbeis the Laplace Transform.

1.1 The Definition

Definition 1. A function f is calledpiecewise continuou®n an intervala, b}, if [, b] can be bro-
ken into a finite number of subintervdls,, b,,] such thatf is continuous on each open subinterval
(an, b,) and has a finite limit at each endpoint b,.

So a piecewise continuous function has only finitely manygsi@ind does not have any asymp-
totes where it blows up to infinity or minus infinity.

Definition 2. (Laplace Transformation) Suppose thaf(¢) is a piecewise continuous function. The
Laplace Transform of (¢), denoted byC{ f(¢)}, is given by

C{f()} = / et (. 1)

REMARK: There is an alternate notation for the Laplace Tiams that we will commonly
use. Notice that the definition @f{ f(¢) } introduces a new variable, in the definite integral with
respect td. As a result, computing the transform yields a function watdepends or. Thus

L{f{)} = F(s) (2)

It should also be noted that the integral definitionddff (¢)} is an improper integral. In our
first examples of computing Laplace Transforms, we will egwhow to handle them.



Example 3. ComputeC{1}. Pluggingf(t) = 1 into the definition we have

£{1} = /0 " 3)

Recall we need to convert the improper integral into a limit

N
. . —st
= AP_r}rCl)O ; e °'dt (4)
. 1 —st1N
= Jim [ (5)
1 1
= lim (——e V4 - 6
i (—2e™™ + ) (6)

Note the value of will affect our answer. Ifs < 0, the exponent of our exponential is positive, so
the limit in question will diverge as the exponential goegiftity. On the other hand, i > 0,
the exponential will go to 0 and the limit will converge.

Thus, we restrict our attention to the case where 0 and conclude that

L{1} = % for s>0 (7)

Notice that we had to put a restriction on the domain of ourlaeg Transform. This will
always be the case: these integrals will not always convergany s.

Example 4. ComputeL{e®} for a # 0.

By definition
L{e"} = / e St dt (8)
0
= / el (9)
0
. . a—s)t1 N
= e (10)
1
= 1 (a=s)N 11
s (G ) an
1
= for s> a. (12)
S—a

Example 5. ComputeL{sin(at)}.

L{sin(at)} = / e * sin(at)dt (13)
’ N

= lim e sin(at)dt (14)
N—oo [



Integration By Parts (twice) yields

= lim <1(1 — eV cos(aN)) - <1€_SN sin(aN) + s /N e sin(at)dt). (15)
0

N—oo \ a a\a a

After rewriting, we get

) = - 5p) (16)
L{sin(at)} = F(s) = ﬁ“a? provided s > 0. (17)

Example 6. If f(t) is a piecewise continuous function with piecewise contirsuderivativef’(t),
expressC{ f'(t)} interms of C{ f(¢)}.

We plug f’ into the definition for the Laplace transform

c{fy = /O et f'dt (18)
= lim_ ONe—Stf’dt (19)

The next step is to integrate by parts

N
~ Jim ( AN 4 /O fdt) (20)
= lim e NF(N) = f(0) + 5 /Ome‘stfdt (21)
= sL{f(t)} — f(0) provided s >0 (22)

Doing this repeatedly one finds
LU0} = s"L{f ()} = 8" f(0) = 8" 2f/(0) — .. = sfO72(0) = F7D(0).  (23)

Example 7.1f f(t) is a piecewise continuous function, expré&qg® f(¢)} in terms ofL{e“ f(¢)}
We begin by plugging into the definition

L{e*f(t)} = /0 " sttty (24)

= /0 T plam f(t)dt (25)

This looks like the definition of'(s), but its not the same, since the exponent is s. However,
if we substituteu = s — a, we get

_ / e ()t (26)
0

= F(u) (27)

= F(s—a) (28)
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Thus if we take the Laplace transform of a function multiglgy %, we’'ll get the Laplace
Transform of the original function shifted lay

1.2 Laplace Transforms

In general, we won’t be using the definition we will be usingahlé of Laplace Transforms. |

would make an effort to know all the common transforms ab®/evell as the definition. From

now on we will use a table, but be prepared on an exam to do atrassform using the definition.
Note the Laplace Transform is linear

Theorem 8. Given piecewise continuous functions f(t) and g(¢),

L{af(t) +bg(t)} = al{f(t)} +0L{g(t)} (29)
for any constants a, b.

This follows from the linearity of integration. From a pretl perspective we will not have to
worry about constants or sums. We can decompose our funotimmdividual pieces, transform
them, and then put everything back together.

Example 9. Find the Laplace Transforms of the following functions
(i) f(t) =6e5 +e3t + 513 -9

F(s)=L{f(t)} = 6L{e ™} + L{e*} +5L{t’} —9L{1} (30)
1 1 3! 1

= 65_(_5)+8_3+583+1 -9 (31)

_ 6,1 39 @2)

s+5 s—3 st s
(i) g(t) = 4 cos(4t) — 2sin(4t) — 3 cos(8t)

G(s) = L{g(t)} = 4L{cos(4t)} — 2L{sin(4t)} — 3L{cos(10t)} (33)
1

B 452j—42_252+42_3524—5102 (34)

_ 4s — 8 35 (35)

s2+16 2+ 100
(iii) h(t) = €* + cos(3t) + e* cos(3t)

H(t) = L{n(t)} = L{e*}+ L{cos(3t)} — L{e* cos(3t)} (36)
B 1 s s—2 37
s—2+52+32—(s—2)2+32 (37)

_ 1 s—2 -

s—2 249 (s—2)2+9



1.3 Initial Value Problems

We study Laplace Transforms to solve Initial Value Problems
Example 10. Solve the following initial value problem using Laplace iséorms.
y'—6y +5y="71t, y(0)=-1, y(0)=2. (39)

The first step is using the Laplace Transform to solve an IMB tsansform both sides of the
equation.

L{y"} = 6L{y'} +5L{y} = TL{t} (40)
Y (5) = sy(0) — 4/(0) ~ 6(sY (5) ~ y(0)) + 5V (s) = & (41)
PV (5) 45 -2 6(sY(s) + 1) +5V(s) = & (42)
Now solve forY (s).
(s> =6s+5)Y(s) +s—8 = 5_72 (43)
Y(s) = ! SR (44)

s2(s2—6s+5) s2—06s+5

Now we want to solve fog/(t), but we have an expression foi(s) = L{y(t)}. Thus to finish
solving this problem, we need the inverse Laplace Transform

1.4 Inverse Laplace Transform

In this section we havé’'(s) and want to findf(¢). f(¢) is an inverse Laplace Transform b1 s)
with notation

f(t) = L7HF(s)}. (45)

Our starting point is that the inverse Laplace Transfornmisdr.

Theorem 11. Given two Laplace Transforms F'(s) and G(s),
L HaF(s) +bG(s)} = aL ™ H{F(s)} +bL{G(s)} (46)
for any constants a, b.

So we decompose our original transformed function intogsemverse transform, and then
put everything back together. Using the table we want to ltatke denominator, which will tell
us what the original function will have to be, but sometimesivave to look at the numerator to
distinguish between two potential inverses (i@.(at) andcos(at)).



Example 12. Find the inverse transforms of the following
() F(s) =2 = 5+ 55

The denominator of the first term isindicating that this will be the Laplace Transform of 1.
Since£{1} = 1, we will factor out the 6 before taking the inverse transfoFar the second term,
this is just the Laplace Transform ef, and there’s nothing else to do with it. The third term is
also an exponentiat*, and we’ll need to factor out the 4 in the numerator before ake the

inverse transform.

So we have
LY F(s)} = 65*{%} _ c—l{ﬁ} + 45—15 (47)
f(t) = 6(1)— e 4 4(e*) (48)
= 6 — ¥ 4 4e¥ (49)

(W) Gs) = 35— 55+ 3

The first term is just the transform ef 3 multiplied by 12, which we will factor out before
applying the inverse transform. The second term looks tikaduld be exponential, but it ha2a
instead of ars in the denominator, and transforms of exponentials shaugttjaves. Fix this by
factoring out the 2 in the denominator and then taking theris® transform. The third term hats
as its denominator. This indicates that it will be relatedh® transform of3. The numerator is
not correct sincet{t*} = -2 = &. So we would need the numerator to be 6, and right now is
2. How do we fix this? We’ll multiply by2, absorb the top 3 into the transform, with these fixes
incorporated we have

1 1 3 2

Gls) = 2o "o -g Tae (50)
1 1 1 16

ey gy Rk ¥ pag g o GL)

Now we can take the inverse transform.

1 1
g(t) =127 — 56% + gtg (52)

(V) H(s) = 5 + =2

The denominator of the first term is? + 25, indicates that this should be the transform of
eithersin(5t) or cos(5t). The numerator ids, which tells us that once we factor out the 4, it will
be the transform ofos(5t). The second term’s denominatorsis+ 16, so it will be the transform
of eithersin(4t) or cos(4t). The numerator is a constant, 3, so it will be the transformigfit).
The only problem is that the numerator 6{sin(4¢) } should be 4, while here it is 3. We fix this
by multiplying by%. Rewrite the transform

1 4 3
H(s) = 4 -
() 52 + 52 * 452+ 42 (53)
1 4
= 4 + 5 (54)

2 £ 52 4524 42
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Then take the inverse 5
h(t) = 4 cos(5t) + 2 sin(4t) (55)

Let's do some examples which require more work.

Example 13. Find the inverse Laplace Transforms for each of the follgwin
() F(s) = 27

Looking at the denominator, we recognize it will be a sine asice, since it has the form
s? + a?. It is not either because it has bottand a constant in the numerator, while a cosine just
hass and the sine just has the constant. This is easy to compdosatee split the fraction into
the difference of two fractions, then fix them up as we did ephevious example, we will be able

to then take the Inverse Laplace Transform

) = S (56)
B 52?f16 N szi 16 (7)
B 3s2j16_§s2£16 (58)
- 382—i16—152+16 (59)
Now each term is the correct form, and we can take the invemssform.
F(£) = 3 cos(4t) — Zsin(zlt) (60)
(i) G(s) = 15,07

If we look at the table of Laplace Transforms, we might seétthere are no denominators that
look like a quadratic polynomial. Also, this polynomial doeot factor nicely into linear terms.
There are, however, some terms in the table with denomioétbe form(s — a)? + b%. Those for
e cos(bt) ande™ sin(bt). Put the denominator in this form by completing the square.

2 4+25+10 = s°4+2s+1—-1+10 (61)
= s24+25+149 (62)
= (s+1)*+9 (63)

Thus, our transformed function can be written as

1—3s

(s+1)2+9 (64)

G(s) =

We will not split this into two pieces yet. First, we need thim the numerator to be + 1 so we
can have the numerator ef? cos(3t). We do this by adding and subtracting 1 from theThis



will produce some other constant term, which we will combavith the already present constant
and try to have the remaining terms look like the numeratoe fésin(3t).

1-3(s+1-1)
Gls) (s+1)°+9 (65)
1-3(s+1)+3
(s+1)2+9 (66)
—3(s+1)+4
(s+1)2+9 67)

Now we can break our transform up into two pieces, one of wimdlicorrespond to the cosine and
the other to the sine. At that point, fixing the numeratorfiestame as in the last few examples.

s+1 4 3
Gls) = BT 1219 3G IP0 (68)
g(s) = —3e "'cos(3t) + %e‘t sin(3t) (69)

(i) H(s) = z*3

This seems identical to the last example, but there is ardiffee. We can immediately factor
the denominator. This requires us to deal with the inveesgstorm differently. Factoring we see

s+2

He) = me =0 (70)
We know that if we have a linear denominator, that will copesd to an exponential. In this case
we have two linear factors. This by itself is not the denontanaf an particular Laplace Transform,
but we know a method for turning certain rational functionhvactored denominators into a sum
of more simple radical functions with those factors in eaehaiminator. This method Rartial
Fractions Decomposition

We start by writing

5+ 2 A B
(S):(s+3)(s—4)—s+3+s—4 (1)
Multiply through by (s + 3)(s — 4):
s+2=A(s—4)=B(s+3). (72)

This must be true for any value ef As a result, we have two methods for determinihgnd B.
Method 1: Match coefficients on functions afjust like in the method of undetermined coef-
ficients

s: 1 = A+B (73)
9 = —4A+3B (74)



Factor in Denominator Partial Fractions Term
A
ar+ b —
ar—+b
(az 4 Bik Aj n Aa n n Ag
i ! ar+b  jaxr+b8)2 77 jar+b)F
; Ar+ R
az? +bzr+e —5+—
ax? E br + ¢
" i o Alr + By Asr + Ba Apr + By
(ax® + bxr + ¢ 5 — gttt
ars+br+e  lard4br+c)* {ax* +br+ c)

TapLE 25.1. Translation from factored denominator to partial fractions.

Solving the system of two equations in two unknowns weA4jet % andB = %
Method 2: Choose values of (since it must hold for alk) and solve ford and B.

1
s=—-3: -1 = —7TA = A:? (75)
s=4: 6 = 7B = B:g (76)
Thus, our transform can be written as
1 6

H(s)=—" T 77
(s) 5+3 * s—4 (77

and taking the inverse transforms, we get

1

h(t) = ?e—?’t + ge‘“ (78)

REMARK: We could have done the the last example by compldhegquare. However, this
would have left us with expressions involving the hyperbslne,sinh, and the hyperbolic cosine,
cosh. These are interesting functions which can be written imgeof exponentials, but it will be
much easier for us to work directly with the exponentials.w&oare better off just doing partial
fractions even though it’s slightly more work.

Partial Fractions and completing the square are a parteoilifen it comes to Laplace Trans-
forms. Being good at this technique helps when solving I\8ds¢ce most answers have sines,
cosines, and exponentials.

Here is a quick review of partial fractions. The first stepoigactor the denominator as much
as possible. Then using the table above, we can find each oétims for our partial fractions
decomposition. This table is not exhaustive, but we willyamhve these factors in most if not all
cases.

Example 14. Find the inverse transform of each of the following.
i _ 2s+1
M) F(s) = oayeiaen o

The form of the decomposition will be

A+B+C
s—2 s+3 s-—1

G(s) = (79)



since all the factors in our denominator are linear. Putthmgright hand side over a common
denominator and setting numerators equal, we have

2s+1=A(s+3)(s— 1)+ B(s—2)(s— 1)+ C(s — 2)(s + 3) (80)

We can again use one of the two methods in Partial Fractionsrawve choose key values of
that will isolate the coefficients.

s=2: 5 = A1) = A=1 (81)
s—-3: -5 — B(-5)(—4) = B- —% 82)
s=1: 3 = C-)(4) = C:‘Z (83)

1 1 3
F(s) = -4 4 84
(8) s—2 s+3 s—1 (84)
The inverse transform is ) 3
f(t) = ezt — 16_& — iet (85)

(i) G(s) = =53

5—2)(s2+3) o . . .
Now we have a quadratic in the denominator. Looking at thietale see the form of the partial

fractions decomposition will be
A Bs+C

G(s) = =5+ 373 (86)

If we multiply through by(s — 2)(s* + 3), we get
2—3s=A(s>+3)+ (Bs+C)(s —2) (87)

Notice that we cannot use the second method from the preexasple, since there are 2 key
values ofs, but we have 3 constants. Thus we must compare coefficients

2-3s = A(s*+3)+ (Bs+C)(s—2) (88)
= As’+3A+ Bs* —2Bs+Cs—2C (89)
= (A+B)s* +(=2B+C)s+ (34 —2C) (90)

We have the following system of equations to solve.

s2: A+B = 0 (92)
. —2B+C = -3 A= 83—80— > (92)
S : + = = == =z ==

s"=1: 34-20 = 2 (93)
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Thus the partial fraction decomposition is

~J|co
ot

S

8
- T _
Gls) = s—2+s2+3 s2+3

8 1 8 2 5 V3

78—2+?S2+3_7\/§S2—|—3

and the inverse transform is

bt

Y sin(v/3t).

g(t) = —%ezt + % cos(V/3t)

The partial fraction decomposition in this case is
A B (C D

H<S):§+?+§+s—1'

Multiplying through by the denominator d¢f gives

2 = As*(s—1)+Bs(s—1)+C(s— 1)+ Ds*
= As®— As’+ Bs*— Bs+Cs—C + Ds*

and we have to solve the system of equations

s A+D =

s2: —A+B =0

s: —-B4+C =0 = A=-2B=-20=-2D=2
1: -C=2

Thus our partial fractions decomposition becomes

H(s) = ———=— — +

and the inverse transform is
h(t) = —2 — 2t — t* + 2¢!

HW 6.1 #2, 4, 12, 15, ( 18 optional), 22, 24
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