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1 Systems of Differential Equations

Last Time: We finished the chapter on Laplace Transforms by studying impulse functions and the
Dirac delta. Now we start Chapter 7: Systems of Two Linear Differential Equations.

1.1 7.1 Systems of Differential Equations

To this point we have focused on solving a single equation, but may real world systems are given
as a system of differential equations. An example is Population Dynamics, Normally the death rate
of a species is not a constant but depends on the population ofpredators. An example of a system
of first order linear equations is

x′

1 = 3x1 + x2 (1)

x′

2 = 2x1 − 4x2 (2)

We call a system like thiscoupled because we need to know whatx1 is to know whatx2 is and
vice versa. It is important to note that there will be a lot of similarities between our discussion
and the previous sections on second and higher order linear equations. This is because any higher
order linear equation can be written as a system of first orderlinear differential equations.

Example 1. Write the following second order differential equation as asystem of first order linear
differential equations

y′′ + 4y′ − y = 0, y(0) = 2, y′(0) = −2 (3)

All that is required to rewrite this equation as a first order system is a very simple change of
variables. In fact, this isALWAYS the change of variables to use for a problem like this. We set

x1(t) = y(t) (4)

x2(t) = y′(t) (5)
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Then we have

x′

1 = y′ = x2 (6)

x′

2 = y′′ = y − 4y′ = x1 − 4x2 (7)

Notice how we used the original differential equation to obtain the second equation. The first
equation,x′

1 = x2, is always something you should expect to see when doing this. All we have left
to do is to convert the initial conditions.

x1(0) = y(0) = 2 (8)

x2(0) = y′(0) = −2 (9)

Thus our original initial value problem has been transformed into the system

x′

1 = x2, x1(0) = 2 (10)

x′

2 = x1 − 4x2, x2(0) = −2 (11)

Let’s do an example for higher order linear equations.

Example 2.
y(4) + ty′′′ − 2y′′ − 3y′ − y = 0 (12)

as a system of first order differential equations.
We want to use a similar change of variables as the previous example. The only difference is

that since our equation in this example is fourth order we will need four new variables instead of
two.

x1 = y (13)

x2 = y′ (14)

x3 = y′′ (15)

x4 = y′′′ (16)

Then we have

x′

1 = y′ = x2 (17)

x′

2 = y′′ = x3 (18)

x′

3 = y′′′ = x4 (19)

x′

4 = y(4) = y + 3y′ + 2y′′ − ty′′′ = x1 + 3x2 + 2x3 − tx4 (20)

as our system of equations. To be able to solve these, we need to review some facts about systems
of equations and linear algebra.
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2 7.2 Review of Matrices

2.1 Systems of Equations

In this section we will restrict our attention only to the linear algebra that might come up when
studying systems of differential equations. This is far from a complete treatment, so if you’re
curious, taking a linear algebra course is either mandatoryfor your major or a good idea to be
more well-rounded.

Suppose we start with a system ofn equations withn unknownsx1, x2, ..., xn.

a11x1 + a12x2 + ... + a1nxn = b1 (21)

a21x1 + a22x2 + ... + a2nxn = b2 (22)

. . . (23)

an1x1 + an2x2 + ... + annxn = bn (24)

(25)

Here’s the basic fact about linear systems of equations withthe same number of unknowns as
equations.

Theorem 3. Given a system ofn equations withn unknowns, there are three possibilities for the
number of solutions:
(1) No Solutions
(2) Exactly One Solution
(3) Infinitely Many Solutions

Definition 4. A system of equations is callednonhomogeneousif at least onebi 6= 0. If every
bi = 0, the system is calledhomogeneous. A homogeneous system has the following form:

a11x1 + a12x2 + ... + a1nxn = 0 (26)

a21x1 + a22x2 + ... + a2nxn = 0 (27)

. . . (28)

an1x1 + an2x2 + ... + annxn = 0 (29)

(30)

Notice that there is always at least one solution given by

x1 = x2 = ... = xn = 0 (31)

This solution is called thetrivial solution . This means that it is impossible for a homogeneous
system to have zero solutions, and Theorem 1 can be modified asfollows

Theorem 5. Given a homogeneous system ofn equations withn unknowns, there are two possi-
bilities for the number of solutions:
(1) Exactly one solution, the trivial solution
(2) Infinitely many non-zero Solutions in addition to the trivial solution.
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2.2 Linear Algebra

While we could solve the homogeneous and nonhomogeneous systems directly, we have very
powerful tools available to us. The main objects of study in linear algebra areMatrices and
Vectors.

An n × n matrix (referred to as ann-dimensional matrix) is an array of numbers withn rows
andn columns. It is possible to consider matrices with differentnumbers of rows and columns,
but this is more general than we need for this course. Ann × n matrix has the form

A =











a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n











(32)

There is one special matrix we will need to be familiar with. This is then-dimensionalIdentity
Matrix .

In =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











(33)

We will focus on2×2 matrices in this class. The principles we discuss extend to higher dimensions,
but computationally2 × 2 matrices are much easier.

Matrix addition and subtraction are fairly straightforward. Do everything componentwise. If
we multiply by a constant,Scalar Multiplication , we multiply each component by a constant.

Example 6. Given the matrices

A =

(

3 1
−2 5

)

B =

(

−2 0
1 4

)

(34)

computeA − 2B.
The first thing to do is compute2B

2B = 2

(

−2 0
1 4

)

=

(

−4 0
2 8

)

(35)

Then we have

A − 2B =

(

3 1
−2 5

)

−

(

−4 0
2 8

)

(36)

=

(

7 1
−4 −3

)

. (37)
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Notice that these operations require the dimensions of the matrices to be equal. Avector is a
one-dimensional array of numbers. For example

x =











x1

x2
...

xn











(38)

is a vector ofn unknowns. We can think of a vector as a1×n or ann×1 dimensional matrix with
regards to matrix operations.

We can multiply two matricesA and B together by ”multiplying” each row inA by each
column ofB. That is, to find the element in theith row and thejth column, we multiply the
corresponding elements in theith row of the first matrix andjth column of the second matrix and
add these products together.

Example 7. Compute AB, where

A =

(

1 2
−1 3

)

and B =

(

0 1
2 −3

)

. (39)

So

AB =

(

1 2
−1 3

) (

0 1
2 −3

)

(40)

=

(

1(0) + 2(2) 1(1) + 2(−3)
−1(0) + 3(2) −1(1) + 3(−3)

)

(41)

=

(

4 −5
6 −10

)

(42)

Notice thatAB 6= BA in general. Matrix Multiplication isNOT commutative. We must pay
special attention to the dimensions of the matrices being multiplied. If the number of columns of
A do not match the number of rows ofB, we cannot computeAB. Also, the identity matrixIn is
the identity for matrix multiplication, i.e.InA = AIn = A for any matrixA.

In particular, we can multiply ann-dimensional matrix over a vector withn-components to-
gether as in the following example

Example 8. Compute
(

2 −1
3 2

) (

−1
4

)

(43)

We proceed by ”multiplying” each row in the matrix by the vector.
(

2 −1
3 2

) (

−1
4

)

=

(

2(−1) + −1(4)
3(−1) + 2(4)

)

(44)

=

(

−6
5

)

(45)
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REMARK: Multiplication of a matrix with a vector yields another vector. We then have an
interpretation of a matrixA as a linear function on vectors.

Definition 9. (Determinants)Every square(n×n) matrix has a number associated to it, called the
determinant. We will not learn how to compute determinants forn > 2, as the process gets more
and more complicated asn increases. The standard notation for the determinant of a matrix is

det(A) = |A| (46)

For a2 × 2 matrix, the determinant is computed using the following formula
∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc. (47)

that is, the determinant is the product of the main diagonal minus the product of the off diagonal.

Example 10. Compute the determinants of

A =

(

2 3
1 2

)

and B =

(

1 2
2 4

)

(48)

There is not much to do here but us the definition.

det(A) = 2(2) − 3(1) = 4 − 3 = 1 (49)

det(B) = 1(4) − 2(2) = 4 − 4 = 0 (50)

We call a matrixA singular if det(A) = 0 andnonsingular otherwise. In the previous exam-
ple, the first matrix was nonsingular while the second was singular.

Determinants give us important information about the existence of an inverse for a given matrix.
The inverse of a matrixA, denotedA−1, satisfies

AA−1 = A−1A = In (51)

Inverses do not necessarily exist for a given matrix.

Theorem 11. Given a matrixA,
(1) If A is nonsingular an inverse,A−1, will exist.
(2) If A is singular, no inverse,A−1, will exist.

A−1 =
1

ad − bc

(

d −b

−c a

)

(52)

Definition 12. TheTransposeof a matrix is switching the rows and columns so thataij = aT
ji.

A =

(

1 2
3 4

)

, AT =

(

1 3
2 4

)

(53)

HW 7.2 # 2ac,3ac,4,8,10,11,22,25
Hint: For conjugationĀ, just conjugate each term. AlsoA∗ = ĀT . Finally, (x, y) = xT ȳ.
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