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1 Introduction to 2 × 2 Matrices

Last Time: We studied basic concepts in Linear Algebra necessary for solving systems of differ-
ential equations.

1.1 7.3 Systems of Linear Algebraic Equations; Linear Independence, Eigen-
values and Eigenvectors

We return our attention now to the system of equations

a11x1 + a12x2 + ... + a1nxn = b1 (1)

a21x1 + a22x2 + ... + a2nxn = b2 (2)
... (3)

an1x1 + an2x2 + ... + annxn = bn (4)

(5)

To express this system of equations in matrix form, we start by writing both sides as vectors.










a11x1 + a12x2 + ... + a1nxn

a21x1 + a22x2 + ... + a2nxn

...
an1x1 + an2x2 + ... + annxn











(6)

Notice that the left side of the equation can be rewritten as amatrix-vector product.










a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n
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...
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=











b1

b2
...
bn











(7)
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We can simplify this notation by writing

Ax = b (8)

wherex is the vector whose entries are variables in the system,A is the matrix of coefficients of
the system (called thecoefficient matrix), andb is the vector whose entries are the right-hand side
of the equations. We call Equation (8) thematrix form of the system of equations.

We know that the system of equations has zero one or infinitelymany solutions. Suppose
det(A) 6= 0, i.e. A is nonsingular. Then Equation (8) has only one solution

x = A−1b. (9)

So we can rewrite our earlier Theorem from last lecture as

Theorem 1. Given the system of equations(8),
(1) If det(A) 6= 0, there is exactly one solution,
(2) If det(A) = 0, there are either zero or infinitely many solutions.

Recall that if the system were homogeneous, eachbi = 0, we always have the trivial solution
xi = 0. Denoting the vector with entries all 0 by0, the matrix form of a homogeneous system is

Ax = 0 (10)

Thus we can express the earlier Theorem 2 from last lecture as

Theorem 2. Given the homogeneous system of equations,
(1) If det(A) 6= 0, there is exactly one solutionx = 0,
(2) If det(A) = 0, there will be infinitely many nonzero solutions.

1.2 Eigenvalues and Eigenvectors

The following is probably the most important aspect of linear algebra. We have already observed
if we multiply a vector by a matrix, we get another vector, i.e.,

Aη = y (11)

A natural question to ask is wheny is just a scalar multiple ofη. In other words, for what vectors
η is multiplication byA equivalent to scalingη, or

Aη = λη (12)

If (12) is satisfied for some constantλ and some vectorη, we callη aneigenvectorof A with
eigenvalueλ. We first notice ifη = 0, (12) will be satisfied for anyλ. We are not interested in that
case, so in general we will assumeη 6= 0.
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So how can we find solutions to (12)? Start by rewriting it, recalling thatI is the2× 2 identity
matrix.

Aη = λη (13)

Aη − λIη = 0 (14)

(A − λI)η = 0 (15)

We had to multiplyλ by the identityI before we could factor it out. This is because we cannot
subtract a constant from a matrix. The last equation is the matrix form for a homogeneous system
of equations. By Theorem 3 form last lecture, ifA − λI is nonsingular (det(A) 6= 0), the only
solution is the trivial solutionη = 0, which we have already said we are not interested in. On
the other hand, ifA − λI is singular, we will have infinitely many nonzero solutions.Thus the
condition that we will need to find any eigenvalues and eigenvectors that may exist forA is for

det(A − λI) = 0 (16)

It is a basic fact that this equation is annth degree polynomial ifA is ann × n matrix. This is
called thecharacteristic equationof the matrixA.

As a result, the Fundamental Theorem of Algebra tells us thatann × n matrixA hasn eigen-
values, counting multiplicities. To find them, all we have todo is to find the roots of annth degree
polynomial, which is no problem for smalln. Suppose we have found these eigenvalues. What
can we conclude about their associated eigenvectors?

Definition 3. We callk vectorsx1,x2, ...,xk linearly independent if the only constantsc1, c2, ..., ck

satisfying
c1x1 + c2x2 + ... + ckxk = 0 (17)

arec1 = c2 = ... = ck = 0. This definition should look familiar. This is an identical definition to
our earlier definition of linear independence for functions.

Theorem 4. If λ1, λ2, ..., λn is the complete list of eigenvalues ofA, including multiplicities, then
(1) If λ occurs only once in the list it is calledsimple
(2) If λ occursk > 1 times it has multiplicityk
(3) If λ1, λ2, ..., λk(k ≤ n) are the simple eigenvalues ofA with corresponding eigenvectors
η(1), η(2), ..., η(k), then these eigenvectorsη(i) are linearly independent.
(4) If λ is an eigenvalue with multiplicityk, thenλ will have anywhere from 1 tok linearly inde-
pendent eigenvectors.

This fact should look familiar from our discussion of secondand higher order equations. This
theorem tells us when we have linearly independent eigenvectors, which is useful when trying to
solve systems of differential equations. Now once we have the eigenvalues, how do we find the
associated eigenvectors?

Example 5. Find the eigenvalues and eigenvectors of

A =

(

3 4
2 1

)

. (18)
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The first thing we need to do is to find the roots of the characteristic equation of the matrix

A − λI =

(

3 4
2 1

)

− λ

(

1 0
0 1

)

=

(

3 − λ 4
2 1 − λ

)

(19)

This is

0 = det(A − λI) = (3 − λ)(1 − λ) − 8 = λ2 − 4λ − 5 = (λ − 5)(λ + 1). (20)

This the two eigenvalues ofA areλ1 = 5 andλ2 = −1. Now to find the eigenvectors we need to
plug each eigenvalue into(A − λI)η = 0 and solve forη.

(1) λ1 = 5

In this case, we have the following system
(

−2 4
2 −4

)

η = 0 (21)

Next, we will write out components of the two vectors and multiply through
(

−2 4
2 −4

) (

η1

η2

)

=

(

0
0

)

(22)
(

−2η1 + 4η2

2η1 − 4η2

)

=

(

0
0

)

(23)

For this vector equation to hold, the components must match up. So we have got to find a solution
to the system

−2η1 + 4η2 = 0 (24)

2η1 − 4η2 = 0. (25)

Notice that these are the same equation, but differ by a constant, in this case−1. This will always
be the case if we have found our eigenvalues correctly, sincewe know thatA − λI is singular and
so our system should have infinitely many solutions.

Since the equations are basically the same we need to choose one and obtain a relation between
eigenvector componentsη1 andη2. Let’s choose the first. This gives

2η1 = 4η2. (26)

and so we haveη1 = 2η2. As a result, any eigenvector corresponding toλ1 = 5 has the form

η =

(

η1

η2

)

=

(

2η2

η2

)

. (27)

There are infinitely many vectors of this form, we need only one. We can select one by choosing
a value forη2. The only restriction is we do not want to pickη2 = 0, since thenη = 0, which we
want to avoid. We may choose, for example,η2 = 1, and then we have

η(1) =

(

2
1

)

. (28)
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(2) λ2 = −1
In the previous case we went into more detail than we will in future examples. The process is

the same. Pluggingλ2 into (A − λI)η = 0 gives the system
(

4 4
2 2

) (

η1

η2

)

=

(

0
0

)

(29)
(

4η1 + 4η2

2η1 + 2η2

)

=

(

0
0

)

(30)

The two equations corresponding to this vector equation are

4η1 + 4η2 = 0 (31)

2η1 + 2η2 = 0. (32)

Once again, these differ by a constant factor. Solving the first equation we find

η1 = −η2 (33)

and so any eigenvector has the form

η =

(

η1

η2

)

=

(

−η2

η2

)

. (34)

We can chooseη2 = 1, giving us a second eigenvector of

η(2) =

(

−1
1

)

. (35)

Summarizing the eigenvalue/eigenvector pairs ofA are

λ1 = 5 η(1) =

(

2
1

)

(36)

λ2 = −1 η(2) =

(

−1
1

)

. (37)

REMARK: We could have ended up with any number of different values for our eigenvectors
η(1) and η(2), depending on the choices we made at the end. However, they would have only
differed by a multiplicative constant.

Example 6. Find the eigenvalues and eigenvectors of

A =

(

2 −1
5 4

)

. (38)

The characteristic equation for this matrix is

0 = det(A − λI) =

∣

∣

∣

∣

2 − λ −1
5 4 − λ

∣

∣

∣

∣

(39)

= (2 − λ)(4 − λ) + 5 (40)

= λ2 − 6λ + 13 (41)
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By completing the square (or quadratic formula), we see thatthe roots arer1,2 = 3 ± 2i. If we get
complex eigenvalues, to find the eigenvectors we proceed as we did in the previous example.

(1) λ1 = 3 + 2i
Here the matrix equation

(A − λI)η = 0 (42)

becomes
(

−1 − 2i −1
5 1 − 2i

) (

η1

η2

)

=

(

0
0

)

(43)
(

(−1 − 2i)η1 − η2

5η1 + (1 − 2i)η2

)

=

(

0
0

)

(44)

So the pair of equations we get are

(−1 − 2i)η1 − η2 = 0 (45)

5η1 + (1 − 2i)η2 = 0. (46)

It is not as obvious as the last example, but these two equations are scalar multiples. If we multiply
the first equation by−1 + 2i, we recover the second. Now we choose one of these equations to
work with. Let’s use the first. This gives us thatη2 = (−1 − 2i)η1, so any vector has the form

η =

(

η1

η2

)

=

(

η1

(−1 − 2i)η1

)

. (47)

Choosingη1 = 1 gives a first eigenvector of

η(1) =

(

1
−1 − 2i

)

(48)

(2) λ1 = 3 − 2i
Here the matrix equation

(A − λI)η = 0 (49)

becomes
(

−1 + 2i −1
5 1 + 2i

) (

η1

η2

)

=

(

0
0

)

(50)
(

(−1 + 2i)η1 − η2

5η1 + (1 + 2i)η2

)

=

(

0
0

)

(51)

So the pair of equations we get are

(−1 + 2i)η1 − η2 = 0 (52)

5η1 + (1 + 2i)η2 = 0 (53)
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Let’s use the first equation again. This gives us thatη2 = (−1 + 2i)η1, so any eigenvector has the
form

η =

(

η1

η2

)

=

(

η1

(−1 + 2i)η1

)

. (54)

Choosingη1 = 1 gives a second eigenvector of

η(2) =

(

1
−1 + 2i

)

. (55)

To summarize,A has the following eigenvalue/eigenvector pairs

λ1 = 3 − 2i

(

1
−1 − 2i

)

(56)

λ2 = 3 + 2i

(

1
−1 + 2i

)

(57)

REMARK: Notice that the eigenvalues came incomplex conjugatepairs, i.e. in the form
a± bi. This is always the case for complex roots, as we can easily see from the quadratic formula.
Moreover, the complex entries in the eigenvectors were alsocomplex conjugates, and the real en-
tries were the same up to multiplication by a constant. This is always the case as long asA does
not have any complex entries.
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