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1 Homogeneous Linear Systems with Constant Coefficients

Last Time: We studied linear independence, eigenvalues, and eigenvectors.

1.1 Solutions to Systems of Differential Equations

A two-dimensional equation has the form

x′ = ax + by (1)

y′ = cx + dy (2)

Suppose we have got our system written in matrix form

x′ = Ax (3)

How do we solve this equation? IfA were a1× 1 matrix, i.e. a constant, andx were a vector with
1 component, the differential equation would be the separable equation

x′ = ax (4)

We know this is solved by
x(t) = ceat. (5)

One might guess, then, that in then × n case, instead ofa we have some other constant in the
exponential, and instead of the constant of integrationc we have some constant vectorη. So our
guess for the solution will be

x(t) = ηert. (6)
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Plugging the guess into the differential equation gives

rηert = Aηert (7)

(Aη − rη)ert = 0 (8)

(A − rI)ηert = 0. (9)

Sinceert 6= 0, we end up with the requirement that

(A − rI)η = 0 (10)

This should seem familiar, it is the condition forη to be an eigenvector ofA with eigenvaluer.
Thus, we conclude that for (6) to be a solution of the originaldifferential equation, we must have
η an eigenvalue ofA with eigenvaluer.

That tells us how to get some solutions to systems of differential equations, we find the eigen-
values and vectors of the coefficient matrixA, then form solutions using (6). But how will we form
the general solution?

Thinking back to the second/higher order linear case, we need enough linearly independent
solutions to form a fundamental set. As we noticed last lecture, if we have all simple eigenvalues,
then all the eigenvectors are linearly independent, and so the solutions formed will be as well. We
will handle the case of repeated eigenvalues later.

So we will find the fundamental solutions of the form (6), thentake their linear combinations
to get our general solution.

1.2 The Phase Plane

We are going to rely on qualitatively understanding what solutions to a linear system of differential
equations look like, this will be important when considering nonlinear equations. We know the
trivial solution x = 0 is always a solution to our homogeneous systemx′ = Ax. x = 0 is an
example of anequilibrium solution , i.e. it satisfies

x′ = Ax = 0 (11)

and is a constant solution. We will assume our coefficient matrix A is nonsingular (det(A) 6= 0),
thusx = 0 is the only equilibrium solution.

The question we want to ask is whether other solutions move towards or away from this con-
stant solution ast → ±∞, so that we can understand the long term behavior of the system. This is
no different than what we did when we classified equilibrium solutions for first order autonomous
equations, we will generalize the ideas to systems of equations.

When we drew solution spaces then, we did so on thety-plane. To do something analogous we
would require three dimensions, since we would have to sketch bothx1 andx2 vs. t. Instead, what
we do is ignoret and think of our solutions as trajectories on thex1x2-plane. Then our equilibrium
solution is the origin. Thex1x2-plane is called thephase plane. We will see examples where we
sketch solutions, calledphase portraits.
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1.3 Real, Distinct Eigenvalues

Lets get back to the equationx′ = Ax. We know ifλ1 andλ2 are real and distinct eigenvalues of the
2 × 2 coefficient matrixA associated with eigenvectorsη(1) andη(2), respectively. We know from
aboveη(1) andη(2) are linearly independent, asλ1 andλ2 are simple. Thus the solutions obtained
from them using (6) will also be linearly independent, and infact will form a fundamental set of
solutions. The general solution is

x(t) = c1e
λ1tη(1) + c2e

λ2tη(2) (12)

So if we have real, distinct eigenvalues, all that we have to do is find the eigenvectors, form the
general solution as above, and use any initial conditions that may exist.

Example 1. Solve the following initial value problem

x′ =

(

−2 2
2 1

)

x x(0) =

(

5
0

)

(13)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A − λI) =

∣

∣

∣

∣

−2 − λ 2
2 1 − λ

∣

∣

∣

∣

(14)

= λ2 + λ − 6 (15)

= (λ − 2)(λ + 3) (16)

So the eigenvalues areλ1 = 2 andλ2 = −3. Next we need the eigenvectors.

(1) λ1 = 2

(A − 2I)η = 0 (17)
(

−4 2
2 −1

) (

η1

η2

)

=

(

0
0

)

(18)

So we will want to find solutions to the system

−4η1 + 2η2 = 0 (19)

2η1 − η2 = 0. (20)

Using either equation we findη2 = 2η1, and so any eigenvector has the form

η =

(

η1

η2

)

=

(

η1

2η1

)

(21)

Choosingη1 = 1 we obtain the first eigenvector

η(1) =

(

1
2

)

. (22)
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(2) λ2 = −3

(A + 3I)η = 0 (23)
(

1 2
2 4

) (

η1

η2

)

=

(

0
0

)

(24)

So we will want to find solutions to the system

η1 + 2η2 = 0 (25)

2η1 + 4η2 = 0. (26)

Using either equation we findη1 = −2η2, and so any eigenvector has the form

η =

(

η1

η2

)

=

(

−2η2

η2

)

. (27)

Choosingη2 = 1 we obtain the second eigenvector

η(2) =

(

−2
1

)

. (28)

Thus our general solution is

x(t) = c1e
2t

(

1
2

)

+ c2e
−3t

(

−2
1

)

. (29)

Now let’s use the initial condition to solve forc1 andc2. The condition says
(

5
0

)

= x(0) = c1

(

1
2

)

+ c2

(

−2
1

)

. (30)

All that’s left is to write out is the matrix equation as a system of equations and then solve.

c1 − 2c2 = 5 (31)

2c1 + c2 = 0 ⇒ c1 = 1, c2 = −2 (32)

Thus the particular solution is

x(t) = e2t

(

1
2

)

− 2e−3t

(

−2
1

)

. (33)

Example 2. Sketch the phase portrait of the system from Example 1.
In the last example we saw that the eigenvalue/eigenvector pairs for the coefficient matrix were

λ1 = 2 η(1) =

(

1
2

)

(34)

λ2 = −3 η(2) =

(

−2
1

)

. (35)
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Figure 1: Phase Portrait of the saddle point in Example 1

The starting point for the phase portrait involves sketching solutions corresponding to the eigen-
vectors (i.e. withc1 or c2 = 0). We know that ifx(t) is one of these solutions

x′(t) = Acie
λitη(i) = ciλie

λitη(i). (36)

This is just, for anyt, a constant times the eigenvector, which indicates that lines in the direction
of the eigenvector are these solutions to the system. There are calledeigensolutionsof the system.

Next, we need to consider the direction that these solutionsmove in. Let’s start with the first
eigensolution, which corresponds to the solution withc2 = 0. The first eigenvalue isλ1 = 2 > 0.
This indicates that this eigensolution will grow exponentially, as the exponential in the solution has
a positive exponent. The second eigensolution correspondsto λ2 = −3 < 0, so the exponential in
the appropriate solution is negative. Hence this solution will decay and move towards the origin.

What does the typical trajectory do (i.e. a trajectory whereboth c1, c2 6= 0)? The general
solution is

x(t) = c1e
2tη(1) + c2e

−3tη(2). (37)

Thus ast → ∞, this solution will approach the positive eigensolution, as the component cor-
responding to the negative eigensolution will decay away. On the other hand, ast → −∞, the
trajectory will asymptotically reach the negative eigensolution, as the positive eigensolution com-
ponent will be tiny. The end result is the phase portrait as inFigure 1. When the phase portrait looks
like this (which happens in all cases with eigenvalues of mixed signs), the equilibrium solution at
the origin is classified as asaddle pointand isunstable.

Example 3. Solve the following initial value problem.

x′

1 = 4x1 + x2 x1(0) = 6 (38)

x′

2 = 3x1 + 2x2 x2(0) = 2 (39)
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Before we can solve anything, we need to convert this system into matrix form. Doing so converts
the initial value problem to

x′ =

(

4 1
3 2

)

x x(0) =

(

6
2

)

. (40)

To solve, the first thing we need to do is to find the eigenvaluesof the coefficient matrix.

0 = det(A − λI) =

∣

∣

∣

∣

4 − λ 1
3 2 − λ

∣

∣

∣

∣

(41)

= λ2 − 6λ + 5 (42)

= (λ − 1)(λ − 5) (43)

So the eigenvalues areλ1 = 1 andλ2 = 5. Next, we find the eigenvectors.
(1) λ1 = 1

(A − I)η = 0 (44)
(

3 1
3 1

) (

η1

η2

)

=

(

0
0

)

(45)

So we will want to find solutions to the system

3η1 + η2 = 0 (46)

3η1 + η2 = 0. (47)

Using either equation we findη2 = −3η1, and so any eigenvector has the form

η =

(

η1

η2

)

=

(

η1

−3η1

)

(48)

Choosingη1 = 1 we obtain the first eigenvector

η(1) =

(

1
−3

)

. (49)

(2) λ2 = 5

(A − 5I)η = 0 (50)
(

−1 1
3 −3

) (

η1

η2

)

=

(

0
0

)

(51)

So we will want to find solutions to the system

−η1 + η2 = 0 (52)

3η1 − 3η2 = 0. (53)
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Using either equation we findη1 = η2, and so any eigenvector has the form

η =

(

η1

η2

)

=

(

η2

η2

)

. (54)

Choosingη2 = 1 we obtain the second eigenvector

η(2) =

(

1
1

)

. (55)

Thus our general solution is

x(t) = c1e
t

(

1
−3

)

+ c2e
5t

(

1
1

)

. (56)

Now using our initial conditions we solve forc1 andc2. The condition gives
(

6
2

)

= x(0) = c1

(

1
−3

)

+ c2

(

1
1

)

. (57)

All that is left is to write out this matrix equation as a system of equations and then solve

c1 + c2 = 6 (58)

−3c1 + c2 = 2 ⇒ c1 = 1, c2 = 5 (59)

Thus the particular solution is

x(t) = et

(

1
−3

)

+ 5e5t

(

1
1

)

. (60)

Example 4. Sketch the phase portrait of the system from Example 3.
In the last example, we saw that the eigenvalue/eigenvectorpairs for the coefficient matrix were

λ1 = 1 η(1) =

(

1
−3

)

. (61)

λ2 = 5 η(2) =

(

1
1

)

. (62)

We begin by sketching the eigensolutions (these are straight lines in the directions of the eigenvec-
tors). Both of these trajectories move away from the origin,though, as the eigenvalues are both
positive.

Since|λ2| > |λ1|, we call the second eigensolution thefast eigensolutionand the first one
the slow eigensolution. The term comes from the fact that the eigensolution corresponds to the
eigenvalue with larger magnitude will either grow or decay more quickly than the other one.

As both grow in forward time, asymptotically, ast → ∞, the fast eigensolution will dominate
the typical trajectory, as it gets larger much more quickly than the slow eigensolution does. So
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Figure 2: Phase Portrait of the unstable node in Example 2

in forward time, other trajectories will get closer and closer to the eigensolution corresponding to
η(2). On the other hand, ast → −∞, the fast eigensolution will decay more quickly than the slow
one, and so the eigensolution corresponding toη(1) will dominate in backwards time.

Thus the phase portrait will look like Figure 2. Whenever we have two positive eigenvalues,
every solution moves away from the origin. We call the equilibrium solution at the origin, in this
case, anodeand classify it as beingunstable.

Example 5. Solve the following initial value problem.

x′

1 = −5x1 + x2 x1(0) = 2 (63)

x′

2 = 2x1 − 4x2 x2(0) = −1 (64)

We convert this system into matrix form.

x′ =

(

−5 1
2 −4

)

x x(0) =

(

2
−1

)

. (65)

To solve, the first thing we need to do is to find the eigenvaluesof the coefficient matrix.

0 = det(A − λI) =

∣

∣

∣

∣

−5 − λ 1
2 −4 − λ

∣

∣

∣

∣

(66)

= λ2 + 9λ + 18 (67)

= (λ + 3)(λ + 6) (68)

So the eigenvalues areλ1 = −3 andλ2 = −6. Next, we find the eigenvectors.
(1) λ1 = −3
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(A + 3I)η = 0 (69)
(

−2 1
2 −1

) (

η1

η2

)

=

(

0
0

)

(70)

So we will want to find solutions to the system

−2η1 + η2 = 0 (71)

2η1 − η2 = 0. (72)

Using either equation we findη2 = 2η1, and so any eigenvector has the form

η =

(

η1

η2

)

=

(

η1

2η1

)

(73)

Choosingη1 = 1 we obtain the first eigenvector

η(1) =

(

1
2

)

. (74)

(2) λ2 = −6

(A + 6I)η = 0 (75)
(

1 1
2 2

) (

η1

η2

)

=

(

0
0

)

(76)

So we will want to find solutions to the system

η1 + η2 = 0 (77)

2η1 + 2η2 = 0. (78)

Using either equation we findη1 = −η2, and so any eigenvector has the form

η =

(

η1

η2

)

=

(

−η2

η2

)

. (79)

Choosingη2 = 1 we obtain the second eigenvector

η(2) =

(

−1
1

)

. (80)

Thus our general solution is

x(t) = c1e
−3t

(

1
2

)

+ c2e
−6t

(

−1
1

)

. (81)
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Now using our initial conditions we solve forc1 andc2. The condition gives
(

2
−1

)

= x(0) = c1

(

1
2

)

+ c2

(

−1
1

)

. (82)

All that is left is to write out this matrix equation as a system of equations and then solve

c1 − c2 = 2 (83)

2c1 + c2 = −1 ⇒ c1 =
1

3
, c2 = −

5

3
(84)

Thus the particular solution is

x(t) =
1

3
e−3t

(

1
2

)

−
5

3
e−6t

(

−1
1

)

. (85)

Example 6. Sketch the phase portrait of the system from Example 5.
In the last example, we saw that the eigenvalue/eigenvectorpairs for the coefficient matrix were

λ1 = −3 η(1) =

(

1
2

)

(86)

λ2 = −6 η(2) =

(

−1
1

)

. (87)

We begin by sketching the eigensolutions. Both of these trajectories decay towards the ori-
gin, since both eigenvalues are negative. Since|λ2| > |λ1|, the second eigensolution is the fast
eigensolution and the first one the slow eigensolution. In the general solution, both exponentials
are negative and so every solution will decay and move towards the origin. Asymptotically, as
t → ∞ the trajectory gets closer and closer to the origin, the sloweigensolution will dominate the
typical trajectory, as it dies out less quickly than the fasteigensolution. So in forward time, other
trajectories will get closer and closer to the eigensolution corresponding toη(1). On the other hand,
ast → −∞, the fast solution will grow more quickly than the slow one, and so the eigensolution
corresponding toη(2) will dominate in backwards time.

Thus the phase portrait will look like Figure 3. Whenever we have two negative eigenvalues,
every solution moves toward the origin. We call the equilibrium solution at the origin, in this case,
anodeand classify it as beingasymptotically stable.

HW 7.5 # 2,3,4,15,16
If you cannot plot them, describe the behavior ast → ∞.
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Figure 3: Phase Portrait of the Stable Node in Example 3
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