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1 Complex Eigenvalues

Last Time: We studied phase portraits and systems of differential equations with real eigenvalues.
We are looking for solutions to the equationx′ = Ax. What happens when the eigenvalues are

complex?
We still have solutions of the form

x = ηeλt (1)

whereη is an eigenvector ofA with eigenvalueλ. However, we want real-valued solutions, which
we will not have if they remain in this form.

Our strategy will be similar in this case: we’ll use Euler’s formula to rewrite

e(a+ib)t = eat cos(bt) + eati sin(bt) (2)

then we will write out one of our solutions fully into real andimaginary parts. It will turn out
that each of these parts gives us a solution, and in fact they will also form a fundamental set of
solutions.

Example 1. Solve the following initial value problem.

x′ =

(

3 6
−2 −3

)

x x(0) =

(

2
4

)

(3)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A − λI) =

∣

∣

∣

∣

3 − λ 6
−2 −3 − λ

∣

∣

∣

∣

(4)

= λ2 + 3 (5)

(6)
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So the eigenvalues areλ1 =
√

3i andλ2 = −
√

3i. Next we need the eigenvectors. It turns out we
will only need one. Considerλ1 =

√
3i.

(A −
√

3iI)η∗ = 0 (7)
(

3 −
√

3i 6

−2 −3 −
√

3i

) (

η1

η2

)

=

(

0
0

)

(8)

The system of equations to solve is

(3 −
√

3i)η1 + 6η2 = 0 (9)

−2η1 + (−3 −
√

3i)η2 = 0. (10)

We can use either equation to find solutions, but lets solve the second one. This givesη1 =
1
2
(−3 −

√
3i)η2. Thus any eigenvector has the form

η =

(

1
2
(−3 −

√
3i)η2

η2

)

(11)

and choosingη2 = 2 yields the first eigenvector

η(1) =

(

−3 −
√

3i
2

)

. (12)

Thus we have a solution

x1(t) = e
√

3it

(

−3 −
√

3i
2

)

(13)

Unfortunately, this is complex-valued, and we would like a real-valued solution. We he had a
similar problem in the chapter on second order equations. What did we do then? We use Euler’s
formula to expand this imaginary exponential into sine and cosine terms, then split the solution
into real and imaginary parts. This gave two fundamental solutions we needed.

We will do the same thing here. Using Euler’s Formula to expand

e
√

3it = cos(
√

3t) + i sin(
√

3t). (14)

then multiply it through the eigenvector. After separatinginto real and complex parts using the
basic matrix arithmetic operations, it will turn out that each of these parts is a solution. They are
linearly independent and give us a fundamental set of solutions.

x1(t) = (cos(
√

3t) + i sin(
√

3t))

(

−3 −
√

3i
2

)

(15)

=

(

(−3 cos(
√

3t) − 3i sin(
√

3t) −
√

3i cos(
√

3t) +
√

3 sin(
√

3t)

2 cos(
√

3t) + 2i sin(
√

3t)

)

(16)

=

((

−3 cos(
√

3t) +
√

3 sin(
√

3t)

2 cos(
√

3t)

)

+ i

(

−3 sin(
√

3t) −
√

3 cos(
√

3t)

2 sin(
√

3t)

))

(17)

= u(t) + iv(t) (18)
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Both u(t) andv(t) are real-valued solutions to the differential equation. Moreover, they are
linearly independent. Our general solution is then

x(t) = c1u(t) + c2v(t) (19)

= c1

(

−3 cos(
√

3t) +
√

3 sin(
√

3t)

2 cos(
√

3t)

)

+ c2

(

−3 sin(
√

3t) −
√

3 cos(
√

3t)

2 sin(
√

3t)

)

(20)

Finally, we need to use the initial condition to getc1 andc2. It says
(

−2
4

)

= x(0) = c1

(

−3
2

)

+ c2

(

−
√

3
0

)

. (21)

This translates into the system

−3c1 −
√

3c2 = −2 (22)

2c1 = 4 ⇒ c1 = 2 c2 = −
4√
3
. (23)

Hence our particular solution is

x(t) = 2

(

−3 cos(
√

3t) +
√

3 sin(
√

3t)

2 cos(
√

3t)

)

−
4√
3

(

−3 sin(
√

3t) −
√

3 cos(
√

3t)

2 sin(
√

3t)

)

(24)

Example 2. Sketch the phase portrait of the system in Example 1.
The general solution to the system in Example 1 is

x(t) = c1

((

−3 cos(
√

3t) +
√

3 sin(
√

3t)

2 cos(
√

3t)

)

+ c2

(

−3 sin(
√

3t) −
√

3 cos(
√

3t)

2 sin(
√

3t)

))

(25)

Every term in this solution is periodic, we havecos(
√

3t) andsin(
√

3t). Thus bothx1 andx2

are periodic functions for any initial conditions. On the phase plane, this translates to trajectories
which are closed, that is they form circles or ellipses. As a result, the phase portrait looks like
Figure 1.

This is always the case when we have purely imaginary eigenvalues, as the exponentials turn
into a combination of sines and cosines. In this case, the equilibrium solution is called acenter
and isneutrally stable or juststable, note that it is not asymptotically stable.

The only work left to do in these cases is to figure out the eccentricity and direction that the
trajectory traveled. The eccentricity is difficult, and we usually do not care that much about it. The
direction traveled is easier to find. We can determine whether the trajectories orbit the origin in a
clockwise or counterclockwise direction by calculating the tangent vectorx′ at a single point. For
example, at the point(1, 0) in the previous example, we have

x′ =

(

3 6
−2 −3

) (

1
0

)

=

(

3
−2

)

(26)

Thus at(1, 0), the tangent vector points down and to the right. This can only happen is the trajec-
tories circle to origin in a clockwise direction.
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Figure 1: Phase Portrait of the center point in Example 1

Example 3. Solve the following initial value problem.

x′ =

(

6 −4
8 −2

)

x x(0) =

(

1
3

)

(27)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A − λI) =

∣

∣

∣

∣

6 − λ −4
8 −2 − λ

∣

∣

∣

∣

(28)

= λ2 − 4λ + 20 (29)

(30)

So the eigenvalues, using the Quadratic Formula areλ1,2 = 2± 4i. Next we need the eigenvectors.
It turns out we will only need one. Considerλ1 = 2 + 4i.

(A − (2 + 4i)I)η∗ = 0 (31)
(

4 − 4i −4
8 −4 − 4i

) (

η1

η2

)

=

(

0
0

)

(32)

The system of equations to solve is

(4 − 4i)η1 − 4η2 = 0 (33)

8η1 + (−4 − 4i)η2 = 0. (34)

We can use either equation to find solutions, but lets solve the first one. This givesη2 = (1 − i)η1.
Thus any eigenvector has the form

η =

(

η1

(1 − i)η1

)

(35)
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and choosingη1 = 1 yields the first eigenvector

η(1) =

(

1
1 − i

)

. (36)

Thus we have a solution

x1(t) = e(2+4i)t

(

1
1 − i

)

(37)

Using Euler’s Formula to expand

= e2ie4it

(

1
1 − i

)

(38)

= e2t(cos(4t) + i sin(4t))

(

1
1 − i

)

(39)

= e2t

(

cos(4t) + i sin(4t)
cos(4t) + i sin(4t) − i cos(4t) + sin(4t)

)

(40)

=

((

cos(4t)
cos(4t) + sin(4t)

)

+ i

(

sin(4t)
sin(4t) − cos(4t)

))

(41)

= u(t) + iv(t) (42)

Our general solution is then

x(t) = c1u(t) + c2v(t) (43)

= c1e
2t

(

cos(4t)
cos(4t) + sin(4t)

)

+ c2e
2t

(

sin(4t)
sin(4t) − cos(4t)

)

(44)

Finally, we need to use the initial condition to getc1 andc2. It says
(

1
3

)

= x(0) = c1

(

1
1

)

+ c2

(

0
−1

)

. (45)

This translates into the system

c1 = 1 (46)

c1 − c2 = 3 ⇒ c1 = 1 c2 = −2. (47)

Hence our particular solution is

x(t) = e2t

(

cos(4t)
cos(4t) + sin(4t)

)

− 2e2t

(

sin(4t)
sin(4t) − cos(4t)

)

(48)

Example 4. Sketch the phase portrait of the system in Example 3.
The only difference between the general solution to this example

x(t) = c1e
2t

(

cos(4t)
cos(4t) + sin(4t)

)

+ c2e
2t

(

sin(4t)
sin(4t) − cos(4t)

)

(49)
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Figure 2: Phase Portrait of the unstable spiral in Example 3

and the one in Example 1 is the exponential sitting out front of the periodic terms. This will
make the solution quasi-periodic, rather than actually periodic. The exponential, having a positive
exponent, will cause the solution to grow ast → ∞ away from the origin. The solution will still
rotate, however, as the trig terms will cause the oscillation. Thus, rather than forming closed circles
or ellipses, the trajectories will spiral out of the origin.

As a result, when we have complex eigenvaluesλ1,2 = a ± bi, we call the solutionspiral. In
this case, as the real parta (which affects the exponent) is positive, and the solution grows, the
equilibrium at the center is unstable. Ifa is negative, then spiral would decay into the origin, and
the equilibrium would have been asymptotically stable.

So what is there to calculate if we recognize we have a stable/unstable spiral? We still need
to know the direction of rotation. This requires, as with thecenter, that we calculate the tangent
vector at a point or two. In this case, the tangent vector at the point(1, 0) is

x′ =

(

6 −4
7 2

) (

1
0

)

=

(

6
7

)

. (50)

Thus the tangent vector at(1, 0) points up and to the right. Combined with the knowledge that
the solution is leaving the origin, this can only happen if the direction of rotation of the spiral is
counterclockwise. We obtain a picture as in Figure 2.
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