Lecture Notes for Math 251: ODE and PDE. Lecture 26:
7.6 Complex Eigenvalues

Shawn D. Ryan
Spring 2012

1 Complex Eigenvalues

Last Time: We studied phase portraits and systems of diftedeequations with real eigenvalues.
We are looking for solutions to the equatioh= Axz. What happens when the eigenvalues are
complex?
We still have solutions of the form
z = ne Q)

wheren is an eigenvector ofl with eigenvalue\. However, we want real-valued solutions, which
we will not have if they remain in this form.
Our strategy will be similar in this case: we’ll use Euleisrhula to rewrite

@t — et cog(bt) + eisin(bt) (2)

then we will write out one of our solutions fully into real aimdaginary parts. It will turn out
that each of these parts gives us a solution, and in fact thieépleo form a fundamental set of
solutions.

Example 1. Solve the following initial value problem.

g;':(_?’z _63)93 x(O):(i) 3)

The first thing we need to do is to find the eigenvalues of théficant matrix.

0=det(A—AN) = ‘ 3__2)‘ _36_)\ ‘ (4)
= XN+3 (5)
(6)



So the eigenvalues atg = v/3i and )\, = —/3i. Next we need the eigenvectors. It turns out we
will only need one. Consider; = v/3i.

(A—3il)n* =0 (7)
3 —/3i 6 n (0
) () - ()
The system of equations to solve is
(3= V3i)m + 612 = 0 9
—2m1 4+ (=3 — V3, = 0. (10)

We can use either equation to find solutions, but lets soleesdtond one. This giveg =
1(—3 — V/3i)m. Thus any eigenvector has the form

n= ( %(_3 - \/gi)Prh ) (11)
2
and choosing), = 2 yields the first eigenvector
-3 —V3i
¢n2< 2¢7). (12)
Thus we have a solution .
l’l(t) — e\/git ( _3—2\/§Z ) (13)

Unfortunately, this is complex-valued, and we would likeealfrvalued solution. We he had a
similar problem in the chapter on second order equationsat\fiad we do then? We use Euler’s
formula to expand this imaginary exponential into sine aosire terms, then split the solution
into real and imaginary parts. This gave two fundamentaltgmis we needed.

We will do the same thing here. Using Euler’'s Formula to expan

V3 = cos(v/3t) + i sin(V/3t). (14)

then multiply it through the eigenvector. After separatintp real and complex parts using the
basic matrix arithmetic operations, it will turn out thathaof these parts is a solution. They are
linearly independent and give us a fundamental set of swisti

a(t) = (cos(v3t) + isin(v3t)) ( -3 B V3 ) (15)
B ( (=3 cos(v/3t) — 3isin(v/3t) — v/3i cos(v/3t) + v/3sin(v/3t) ) (16)
N 2 cos(v/3t) + 2isin(v/3t)
B —3 cos(v/3t) + /3 sin(v/3t) ; —3sin(v/3t) — V3 cos(v/3t)
- (( 2 cos(v/31) )i 2sin(v/31) ))en
= u(t) +iv(t) (18)



Both u(t) andv(t) are real-valued solutions to the differential equation. rébwer, they are
linearly independent. Our general solution is then

xz(t) = cu(t) + cou(t) (19)
—3cos(V/3t) + V3 sin(v/3t) —3sin(v/3t) — /3 cos(v/3t)
“ ( 2 cos(v/3t) ) te ( 2 sin(v/3t) ) (20)

Finally, we need to use the initial condition to getandc,. It says

<_42):9:(0)=c1(_23)+c2(_0ﬁ). (21)

This translates into the system

—3c1 —V3e, = —2 (22)

4
200 = 4 = =2 cp=——. (23)
V3

Hence our particular solution is

() =2 ( —3 cos(v/3t) + /3 sin(v/3t) ) K < —3sin(v/3t) — V3 cos(v/3t) ) (24)

2 cos(v/3t) V3 2 sin(v/3t)

Example 2. Sketch the phase portrait of the system in Example 1.
The general solution to the system in Example 1 is

o) = ar (( -3 COS(?(QS? \/\gf)sm(\/ﬁt) ) e ( -3 sm(\/Qﬁ;)nz \/\g?)cos(\/gt) )) (25)

Every term in this solution is periodic, we hawes(v/3t) andsin(y/3t). Thus bothz; andz,
are periodic functions for any initial conditions. On theapk plane, this translates to trajectories
which are closed, that is they form circles or ellipses. Agsult, the phase portrait looks like
Figure 1.

This is always the case when we have purely imaginary eid@esaas the exponentials turn
into a combination of sines and cosines. In this case, th#ilegum solution is called aenter
and isneutrally stable or juststable, note that it is not asymptotically stable.

The only work left to do in these cases is to figure out the eciogtly and direction that the
trajectory traveled. The eccentricity is difficult, and wsually do not care that much about it. The
direction traveled is easier to find. We can determine whdtieetrajectories orbit the origin in a
clockwise or counterclockwise direction by calculating tangent vectar’ at a single point. For
example, at the poirtl, 0) in the previous example, we have

(5 ) ()-(2)

Thus at(1, 0), the tangent vector points down and to the right. This cag bappen is the trajec-
tories circle to origin in a clockwise direction.
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Figure 1: Phase Portrait of the center point in Example 1

Example 3. Solve the following initial value problem.

x:(g :;l>x x(0)2<é) 27)

The first thing we need to do is to find the eigenvalues of théficant matrix.

0=det(A—\) = ‘%A —;ix‘ (28)
= AN —4X+20 (29)
(30)

So the eigenvalues, using the Quadratic Formula\ase= 2 £ 4i. Next we need the eigenvectors.
It turns out we will only need one. Considgr = 2 + 4.

(A— (24 4) )y =0 (31)

4—4i  —4 m _ (0
() ) - (6)

The system of equations to solve is

(4 —di)ym —4n, = 0 (33)
8m + (=4 —4i)np, = 0. (34)
We can use either equation to find solutions, but lets sokdittst one. This gives, = (1 —i)n;.

Thus any eigenvector has the form

= < (1 jli)m ) (35)
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and choosing); = 1 yields the first eigenvector

1
1) —
= (ah)

; 1
_ (2+4i)t
ri(t)=¢e ( 1—i )

Using Euler’s Formula to expand

o 21 _4it
- <1—z)

= e*(cos(4t) + isin(4t)) < 1;. )

2 cos(4t) + isin(4t)
© < cos(4t) + isin(4t) — i cos(4t) + sin(4t) )

(o) (i)

= u(t) +iv(t)

Thus we have a solution

Our general solution is then
z(t) = cu(t) + cv(t)
B ot cos(4t) ot sin(4t)
- ac < cos(4t) + sin(4t) ) +ee ( sin(4t) — cos(4t)

Finally, we need to use the initial condition to getandc;. It says

() =eo=a e %).

This translates into the system

&1

cpL—¢Cc = 3 =c=1 co=-2.

Hence our particular solution is

x(t) = e* < COS(4§§SJ(F4:i)n(4t) ) 267 ( Sin(4i§n£4(tz())s(4t) )

Example 4. Sketch the phase portrait of the system in Example 3.
The only difference between the general solution to thisrgta

#(t) = ere” ( cos(ﬁ()ﬁf;)n(u) ) + e ( sin(4i§n£4(tz())s(4t) )
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Figure 2. Phase Portrait of the unstable spiral in Example 3

and the one in Example 1 is the exponential sitting out frdnthe periodic terms. This will
make the solution quasi-periodic, rather than actuallyopkés. The exponential, having a positive
exponent, will cause the solution to growtas> oo away from the origin. The solution will still
rotate, however, as the trig terms will cause the oscilhatithus, rather than forming closed circles
or ellipses, the trajectories will spiral out of the origin.

As a result, when we have complex eigenvaldes = a £ bi, we call the solutiorspiral. In
this case, as the real part(which affects the exponent) is positive, and the solutioowg, the
equilibrium at the center is unstable.dfs negative, then spiral would decay into the origin, and
the equilibrium would have been asymptotically stable.

So what is there to calculate if we recognize we have a staidedble spiral? We still need
to know the direction of rotation. This requires, as with teater, that we calculate the tangent
vector at a point or two. In this case, the tangent vectoreaptint(1, 0) is

, (6 —4 1\ [ 6
(72 (0)-(7) 0
Thus the tangent vector &t, 0) points up and to the right. Combined with the knowledge that

the solution is leaving the origin, this can only happen @ threction of rotation of the spiral is
counterclockwise. We obtain a picture as in Figure 2.
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