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1 Repeated Eigenvalues

Last Time: We studied phase portraits and systems of diffedeequations with complex eigen-
values.

In the previous cases we had distinct eigenvalues whicholéidearly independent solutions.
Thus, all we had to do was calculate those eigenvectors aiteldawn solutions of the form

zi(t) = U(i)em- (1)

When we have an eigenvalue of multiplicity 2, however, Tleeoi3 from a previous lecture
tells us that we could have either one or two eigenvector®uinéar independence. If we have
two, we are ok, if not then we have more work to do.

1.1 A Complete Eigenvalue

We call a repeated eigenvaluemplete if it has two distinct (linearly independent) eigenvectors
Suppose our repeated eigenvalueas two linearly independent eigenvectgtS and,®. Then
we can proceed as before and our general solution is
z(t) = e’y + ety (2)
= Meyn® 4+ en?). 3)

It is a basic fact from linear algebra that given two linedngiependent vectors such g¢ and
n®, we can form any other two-dimensional vector out of a linanbination of these two. So
any vector function of the forma(t) = ' is a solution. As discussed earlier, this can only happen
if 1 is an eigenvector of the coefficient matrix with eigenvaluerhe conclusion, is that ik has
two linearly independent eigenvectors, every vector isigareector.

This only happens if the coefficient matrikis a scalar multiple of the identity matrix, since
we need

An=Xnp=An 4)



Figure 1: Phase Portrait of a star node

for every vectom. Thus, this case only arises when

A0
(3 9)
or when the original system is
T = An (6)
To = )\JZ‘Q (7)

What does the phase portrait look like in this case? Since/exsetor is an eigenvector, every
trajectory that is not a constant solution at the origin imensolution and hence a straight line.
We call such the equilibrium solution, in this casgta node and its stability is determined by the
sign of \.

(1) If A > 0 all the eigensolutions grow away from the origin and theiarig unstable.
(2) If A < 0 every eigensolution decays to the origin and the origin ysrgtotically stable. We
get Figure??.

This is a fairly degenerate situation that will not come upaiy further discussion, but is
important to keep in mind when it happens.

1.2 A Defective Eigenvalue

The other possibility is thak only has a single eigenvectgrup to linear independence. In this
case, to form the general solution we need two linearly iedépnt solutions, but we only have
one.

z1(t) = My (8)
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In this case, we say thatis defective or incomplete. What should we do in this case?
We had a similar problem in the second order linear case. Wieaan into this situation there,
we were able to work around it by multiplying the solutiontb&Vhat if we try that here?

x(t) = ten (9)

is a solution
¥ = Az (10)
neM + ante = AnteM (11

Matching coefficients, in order for this guess to be a sofutie require

— 0 = 5=0 (12)
e = Aped = (A-X)n=0 (13)

Thus we need) to be an eigenvector of, which we knew it was, but we also negd= 0, which
cannot be since an eigenvector by definition is nonzero. \We aaother approach.

The problem with the last attempt is we ended up with a terrhditinot have &, but rather
just an exponential in it, and this term caused us to requit€0. A possible fix might be to add in
another term in our guess that only involves an exponemntidlssme other vectgr. Let's guess
that the form of the solution is

z(t) = te’n + eMp (14)
and see what conditions grwe can derive.

¥ = Ax (15)
e +net + Ape = A(nte + pet) (16)
(n4+ Xp+ dnt)eM = Ante™ + Ape (17)

Thus, setting the coefficients equal and we have
An = xnp = (A=X)n=0 (18)
n+Ap = Ap = (A-AM)p=n (19)

The first condition only tells us thatis an eigenvector ofi, which we knew. But the second
condition is more useful. It tells us that — AI)p = n, then

z(t) = nte* + pet (20)
will be a solution to the differential equation.
A vector p satisfying
(A=A)p=n (21)
is called ageneralized eigenvector, while (A — AI)p # 0, itis not hard to verify
(A= X)2%p=0 (22)

So as long as we can reproduce a generalized eigenyetids formula will give a second solution
and we can form a general solution.



Example 1. Find the general solution to the following problem.

, —6 =5
x:( : 4)x (23)

The first thing we need to do is to find the eigenvalues of théficant matrix.

0= det(A— \I) — ‘ _65_ A 4__‘1 ‘ (24)
= M422+1 (25)
= (A+1) (26)

So we have a repeated eigenvalue\ot —1. Due to the form of the matrix, we can also figure
out from our previous discussion thawill only have one eigenvector up to linear independence.
Let’s calculate it by solvingA + I)n = 0.

~5 =5 mY (0
(5 5) ()= (%) @)
So the system of equations we want to solve is

—om —on = 0 (28)
o5n1 +5m2 = 0. (29)

This is solved by anything of the form = —,. So if we choose), = 1, we get the eigenvector

of
n:(]?). (30)

Thisisn’tenough. We also need to find a generalized eigéorecSo we need to solved+1)p =

n, or
(2)()-(3) = i

So our generalized eigenvector has the form

1
— (577 ). 32
p ( . ) (32)
Choosep, = 0 gives
1
(5
p= ( 0 ) . (33)
Thus our general solution is
z(t) = cieMn+ cy(te’n + eMp) (34)

< e ) wale (7 ) e ()] e
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Example 2. Sketch the Phase Portrait for the system in Example 1.

We begin by drawing our eigensolution. Note that in this caseonly have one, unlike the
case where we had a (hondegenerate) node. The eigensadutienstraight line in the direction
( _11 ) , as indicated in Figur@?. As the eigenvalue is negative, the solution will decay talsa
the origin.

But what happens to the other trajectories? First, letsgaasider the general solution

z(t) = cre'y < _11 ) + ¢y [te‘t ( _11 ) + et < é )] (36)

with ¢, # 0. All three terms have the same exponential, but as +occ thete™ term will have a
larger magnitude than the other two. Thus in both the forveardi backward time, we would get
that the trajectories will become parallel to the singlesagplution.

Now, since\ < 0 and exponentials decay faster than polynomials grow, wesearthat as
t — oo, every solution will decay to the origin. So the origin wik lasymptotically stable. We
also call the origin @egenerate nodein this case, since it behaves like the a node, but has a single
eigensolution.

Consider a node with two close eigenvalues. Then try to imeagihat happens to the general
solution as we bring the eigenvalues together. The eigaetisns will collapse together, but the
non-eigensolution trajectories would keep their asymptmthavior with regard to this collapsed
eigensolution.

Notice that, as illustrated in Figur® we end up with a large degree of rotation of the solu-
tion. The solution has to turn around to be able to be asymegimthe solution in both forward
and backward time. This is because degenerate nodes arertlexllme case between nodes and
spirals. Suppose our characteristic equation is

0=\ +0b\+c (37)
The eigenvalues are then, by the quadratic formula

b= Vb? — 4c
N 2a

A (38)
The discriminant of this equation is positive in the nodeecasd negative in the spiral/center
cases. We get degenerate nodes when the solutions transgioveen these two cases and the
discriminant becomes zero. So for degenerate nodes theos@are trying to wind around in a
spiral, but they do not quite make it due to the lack of comipyent the eigenvalue.

But how do we know the direction of rotation? We do the sammagtiwe did in the spiral case,
compute the tangent vector at a point. Combined with our kedge of the stability of the origin,
will tell us how the non-eigensolutions must turn.

Let’s start by considering the poifit, 0). At this point,

(7 0)6)=(5) e
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Figure 2: Phase Portrait for the asymptotically stable degge node in Example 1

Since we know our solution is asymptotically stable, theytant vector can only point up and to
the left if the solution rotates counterclockwise as theyt$b approach the origin.

Example 3. Find the general solution to the following system.

, (12 4
x—<_16 _4)x (40)
The first thing we need to do is to find the eigenvalues of théficant matrix.
12— A\ 4
0=det(A—-\) = ‘ 16 4\ ‘ (41)
= A —8\+16 (42)
(A —4)? (43)

So we have a repeated eigenvalue\ef 4. Let’s calculate it by solvingA — 41)n = 0.
8 4 m . 0
(e ) ()= () @0
So the system of equations we want to solve is

8+ = 0 (45)
—167]1 —87]2 = 0. (46)

This is solved by anything of the form = —27,. So if we choose); = 1, we get the eigenvector

of
n= ( P ) (47)

We also need to find a generalized eigenveptdo we need to solved — 41)p =, or

L R I
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Figure 3: Phase Portrait of the unstable degenerate nodeaimide 3.

So our generalize eigenvector has the form

_ P1
p_(i—%)' (49)

Choosep; = 0 gives

0
4
Thus our general solution is
z(t) = cieMn+ cy(te’n + eMp) (51)

—_

= ceip= < 5 ) + eafte™ ( 5 ) +et ( 0 ) | (52)

Example 4. Sketch the Phase Portrait of the system in Example 3.

Everything is completely analogous to the previous exaimplease portrait. We sketch the
eigensolution, and note that it will grow away from the anigist — oo, so the origin will in this
case be an unstable degenerate node.

Typical trajectories will once again come out of the origerglel to the eigensolution and
rotate around to be parallel to them again, and all we wouddie do is to calculate the direction
of rotation by computing the tangent vector at a point or tAb(1, 0), we would get

, 16
x:<12). (53)

which can only happen given that the solutions are growitigeidirection of rotation is clockwise.
Thus we get Figure 3.

W~

Note in the last 3 sections 7.5,7.6, 7.8 we have covered themation in Section 9.1, which is
sketching phase portraits, and identifying the threemisttases for 1. Real Distinct Eigenvalues,
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2. Complex Eigenvalues, and 3. Repeated Eigenvalues.

HW 7.8#2,3c,4,8a



