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1 Repeated Eigenvalues

Last Time: We studied phase portraits and systems of differential equations with complex eigen-
values.

In the previous cases we had distinct eigenvalues which led to linearly independent solutions.
Thus, all we had to do was calculate those eigenvectors and write down solutions of the form

xi(t) = η(i)eλit. (1)

When we have an eigenvalue of multiplicity 2, however, Theorem 3 from a previous lecture
tells us that we could have either one or two eigenvectors up to linear independence. If we have
two, we are ok, if not then we have more work to do.

1.1 A Complete Eigenvalue

We call a repeated eigenvaluecomplete if it has two distinct (linearly independent) eigenvectors.
Suppose our repeated eigenvalueλ has two linearly independent eigenvectorsη(1) andη(2). Then
we can proceed as before and our general solution is

x(t) = c1e
λtη(1) + c2e

λtη(2) (2)

= eλt(c1η
(1) + c2η

(2)). (3)

It is a basic fact from linear algebra that given two linearlyindependent vectors such asη(1) and
η(2), we can form any other two-dimensional vector out of a linearcombination of these two. So
any vector function of the formx(t) = eλtη is a solution. As discussed earlier, this can only happen
if η is an eigenvector of the coefficient matrix with eigenvalueλ. The conclusion, is that ifλ has
two linearly independent eigenvectors, every vector is an eigenvector.

This only happens if the coefficient matrixA is a scalar multiple of the identity matrix, since
we need

Aη = λη = λIη (4)
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Figure 1: Phase Portrait of a star node

for every vectorη. Thus, this case only arises when

A =

(

λ 0
0 λ

)

(5)

or when the original system is

x1 = λx1 (6)

x2 = λx2 (7)

What does the phase portrait look like in this case? Since every vector is an eigenvector, every
trajectory that is not a constant solution at the origin is aneigensolution and hence a straight line.
We call such the equilibrium solution, in this case astar node and its stability is determined by the
sign ofλ.
(1) If λ > 0 all the eigensolutions grow away from the origin and the origin is unstable.
(2) If λ < 0 every eigensolution decays to the origin and the origin is asymptotically stable. We
get Figure??.

This is a fairly degenerate situation that will not come up inany further discussion, but is
important to keep in mind when it happens.

1.2 A Defective Eigenvalue

The other possibility is thatλ only has a single eigenvectorη up to linear independence. In this
case, to form the general solution we need two linearly independent solutions, but we only have
one.

x1(t) = eλtη (8)
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In this case, we say thatλ is defective or incomplete. What should we do in this case?
We had a similar problem in the second order linear case. Whenwe ran into this situation there,

we were able to work around it by multiplying the solution bet. What if we try that here?

x(t) = teλtη (9)

is a solution

x′ = Ax (10)

ηeλt + ληteλt = Aηteλt (11)

Matching coefficients, in order for this guess to be a solution we require

η = 0 ⇒ η = 0 (12)

ληeλt = Aηeλt ⇒ (A − λI)η = 0 (13)

Thus we needη to be an eigenvector ofA, which we knew it was, but we also needη = 0, which
cannot be since an eigenvector by definition is nonzero. We need another approach.

The problem with the last attempt is we ended up with a term that did not have at, but rather
just an exponential in it, and this term caused us to requireη = 0. A possible fix might be to add in
another term in our guess that only involves an exponential and some other vectorρ. Let’s guess
that the form of the solution is

x(t) = teλtη + eλtρ (14)

and see what conditions onρ we can derive.

x′ = Ax (15)

ληteλt + ηeλt + λρeλt = A(ηteλt + ρeλt) (16)

(η + λρ + ληt)eλt = Aηteλt + Aρeλt (17)

Thus, setting the coefficients equal and we have

Aη = λη ⇒ (A − λI)η = 0 (18)

η + λρ = Aρ ⇒ (A − λI)ρ = η (19)

The first condition only tells us thatη is an eigenvector ofA, which we knew. But the second
condition is more useful. It tells us that(A − λI)ρ = η, then

x(t) = ηteλt + ρeλt (20)

will be a solution to the differential equation.
A vectorρ satisfying

(A − λI)ρ = η (21)

is called ageneralized eigenvector, while (A − λI)ρ 6= 0, it is not hard to verify

(A − λI)2ρ = 0 (22)

So as long as we can reproduce a generalized eigenvectorρ, this formula will give a second solution
and we can form a general solution.
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Example 1. Find the general solution to the following problem.

x′ =

(

−6 −5
5 4

)

x (23)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A − λI) =

∣

∣

∣

∣

−6 − λ −5
5 4 − λ

∣

∣

∣

∣

(24)

= λ2 + 2λ + 1 (25)

= (λ + 1)2 (26)

So we have a repeated eigenvalue ofλ = −1. Due to the form of the matrix, we can also figure
out from our previous discussion thatλ will only have one eigenvector up to linear independence.
Let’s calculate it by solving(A + I)η = 0.

(

−5 −5
5 5

)(

η1

η2

)

=

(

0
0

)

(27)

So the system of equations we want to solve is

−5η1 − 5η2 = 0 (28)

5η1 + 5η2 = 0. (29)

This is solved by anything of the formη1 = −η2. So if we chooseη2 = 1, we get the eigenvector
of

η =

(

−1
1

)

. (30)

This isn’t enough. We also need to find a generalized eigenvectorρ. So we need to solve(A+I)ρ =
η, or

(

−5 −5
5 5

) (

ρ1

ρ2

)

=

(

−1
1

)

⇒ ρ1 =
1

5
− ρ2 (31)

So our generalized eigenvector has the form

ρ =

(

1
5
− ρ2

ρ2

)

. (32)

Chooseρ2 = 0 gives

ρ =

(

1
5

0

)

. (33)

Thus our general solution is

x(t) = c1e
λtη + c2(te

λtη + eλtρ) (34)

= c1e
−tη

(

−1
1

)

+ c2

[

te−t

(

−1
1

)

+ e−t

(

1
5

0

)]

. (35)
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Example 2. Sketch the Phase Portrait for the system in Example 1.
We begin by drawing our eigensolution. Note that in this case, we only have one, unlike the

case where we had a (nondegenerate) node. The eigensolutionis the straight line in the direction
(

−1
1

)

, as indicated in Figure??. As the eigenvalue is negative, the solution will decay towards

the origin.
But what happens to the other trajectories? First, let’s just consider the general solution

x(t) = c1e
−tη

(

−1
1

)

+ c2

[

te−t

(

−1
1

)

+ e−t

(

1
5

0

)]

(36)

with c2 6= 0. All three terms have the same exponential, but ast → ±∞ thete−t term will have a
larger magnitude than the other two. Thus in both the forwardand backward time, we would get
that the trajectories will become parallel to the single eigensolution.

Now, sinceλ < 0 and exponentials decay faster than polynomials grow, we cansee that as
t → ∞, every solution will decay to the origin. So the origin will be asymptotically stable. We
also call the origin adegenerate node in this case, since it behaves like the a node, but has a single
eigensolution.

Consider a node with two close eigenvalues. Then try to imagine what happens to the general
solution as we bring the eigenvalues together. The eigensolutions will collapse together, but the
non-eigensolution trajectories would keep their asymptotic behavior with regard to this collapsed
eigensolution.

Notice that, as illustrated in Figure?? we end up with a large degree of rotation of the solu-
tion. The solution has to turn around to be able to be asymptotic to the solution in both forward
and backward time. This is because degenerate nodes are the borderline case between nodes and
spirals. Suppose our characteristic equation is

0 = λ2 + bλ + c. (37)

The eigenvalues are then, by the quadratic formula

λ =
−b ±

√
b2 − 4c

2a
(38)

The discriminant of this equation is positive in the node case and negative in the spiral/center
cases. We get degenerate nodes when the solutions transition between these two cases and the
discriminant becomes zero. So for degenerate nodes the solutions are trying to wind around in a
spiral, but they do not quite make it due to the lack of complexity of the eigenvalue.

But how do we know the direction of rotation? We do the same thing we did in the spiral case,
compute the tangent vector at a point. Combined with our knowledge of the stability of the origin,
will tell us how the non-eigensolutions must turn.

Let’s start by considering the point(1, 0). At this point,
(

−6 −5
5 4

) (

1
0

)

=

(

−6
5

)

. (39)
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Figure 2: Phase Portrait for the asymptotically stable degenerate node in Example 1

Since we know our solution is asymptotically stable, the tangent vector can only point up and to
the left if the solution rotates counterclockwise as they start to approach the origin.

Example 3. Find the general solution to the following system.

x′ =

(

12 4
−16 −4

)

x (40)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A − λI) =

∣

∣

∣

∣

12 − λ 4
−16 −4 − λ

∣

∣

∣

∣

(41)

= λ2 − 8λ + 16 (42)

= (λ − 4)2 (43)

So we have a repeated eigenvalue ofλ = 4. Let’s calculate it by solving(A − 4I)η = 0.
(

8 4
−16 −8

) (

η1

η2

)

=

(

0
0

)

(44)

So the system of equations we want to solve is

8η1 + 4η2 = 0 (45)

−16η1 − 8η2 = 0. (46)

This is solved by anything of the formη2 = −2η1. So if we chooseη1 = 1, we get the eigenvector
of

η =

(

1
−2

)

. (47)

We also need to find a generalized eigenvectorρ. So we need to solve(A − 4I)ρ = η, or
(

8 4
−16 −8

) (

ρ1

ρ2

)

=

(

1
−2

)

⇒ ρ2 =
1

4
− 2ρ1 (48)
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Figure 3: Phase Portrait of the unstable degenerate node in Example 3.

So our generalize eigenvector has the form

ρ =

(

ρ1
1
4
− 2ρ1

)

. (49)

Chooseρ1 = 0 gives

ρ =

(

0
1
4

)

. (50)

Thus our general solution is

x(t) = c1e
λtη + c2(te

λtη + eλtρ) (51)

= c1e
−tρ =

(

1
−2

)

+ c2(te
−t

(

1
−2

)

+ e−t

(

0
1
4

)

. (52)

Example 4. Sketch the Phase Portrait of the system in Example 3.
Everything is completely analogous to the previous example’s phase portrait. We sketch the

eigensolution, and note that it will grow away from the origin ast → ∞, so the origin will in this
case be an unstable degenerate node.

Typical trajectories will once again come out of the origin parallel to the eigensolution and
rotate around to be parallel to them again, and all we would need to do is to calculate the direction
of rotation by computing the tangent vector at a point or two.At (1, 0), we would get

x′ =

(

16
12

)

. (53)

which can only happen given that the solutions are growing ifthe direction of rotation is clockwise.
Thus we get Figure 3.

Note in the last 3 sections 7.5,7.6, 7.8 we have covered the information in Section 9.1, which is
sketching phase portraits, and identifying the three distinct cases for 1. Real Distinct Eigenvalues,

7



2. Complex Eigenvalues, and 3. Repeated Eigenvalues.

HW 7.8 # 2,3c,4,8a
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