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1 Phase Portrait Review

Last Time: We studied phase portraits and systems of diffedeequations with repeated eigen-
values.

Note in the last 3 sections 7.5, 7.6, 7.8 we have covered themation in Section 9.1, which is
sketching phase portraits, and identifying the threemisttases for 1. Real Distinct Eigenvalues,
2. Complex Eigenvalues, and 3. Repeated Eigenvalues. Bhithks section as a good review.

In Chapter 1 and Section 2.5 we considered the autonomouasieqs!
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Consider the simplest system, a second order linear honeogsrsystem with constant coeffi-

cients. Such a system has the form
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whereA is a2 x 2 matrix. We spent three sections solving these types of systRecall we seek
solutions of the fornmx = ne'™, then if we substitute this into the equation we found

(A—rI)n=0 (3)
Thusr is an eigenvalue anglthe corresponding eigenvector.

Definition 1. Points wheredx = 0 correspond to equilibrium or constant solutions, and allecta
critical points. Note if A is nonsingular, then the only critical pointis= 0.

We must consider the five possible situations we could be in.



Figure 1: Phase Portrait of the Nodal Sink

1.1 Case |: Real Unequal Eigenvalues of the Same Sign

The general solution of’ = Az is

z = et e 4

where)\; and ), are either both positive or both negative. Suppose firstthat A\, < 0. Both
exponentials decay, so as— oo, thenz(t) — 0 regardless of the values of andc,. Note the
eigenvalue with the bigger magnitude, |, will determine where the trajectories are directed to.
So the trajectories will tend towards") .

Definition 2. The type of critical point where all solutions decay to thigioris anode or nodal
sink.

If Ay and )\, are both positive and < \, < )\, then the trajectories have the same pattern as
the previous case but as— oo the solutions blow up so all arrows change direction and move
away from the origin. The critical point is still called@de or nodal source Notice itis a source
because trajectories come from it and leave, whereas tha smdk before sucked all trajectories
towards itself.

1.2 Case ll: Real Eigenvalues of Opposite Signs
The general solution of = Ax is
z = cnWeM oyt (5)

whereA; > 0 and )X, < 0. Notice ast — oo the second term decays to zero and the first
eigenvector becomes dominant. So as time goes to infinityagdictories asymptotically approach
n. The only solutions that approach 0 are the ones which stagt?. This is because, = 0

and all terms would decay as time increases.

Definition 3. The origin where some solutions tend towards it and some a&vay is called a
saddle point



Figure 2: Phase Portrait of the Nodal Source

-05 0 05 1 15 2

Figure 3: Phase Portrait of the saddle point
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Figure 4: Phase Portrait of a star node

1.3 Case lll: Repeated Eigenvalues

Here\; = Xy = A\. We have two subcases.

1.3.1 Case llla: Two Independent Eigenvectors

The general solution of’ = Az is
z = cynMe + cn@eM (6)

where the eigenvectors are linearly independent. Evejgcti@y lies on a straight line through the
origin. If A < 0 all solutions decay to the origin, ¥ > 0 then all solutions move away from the
origin.

Definition 4. In either case, the critical point is callegeoper node or astar point.

1.3.2 Case llIb: One Independent Eigenvector

The general solution in this case is
x = cine™ + cy(nte + pe). (7

wheren is the eigenvector ang is the generalized eigenvector. Folarge, conte™ dominates.
Thus ag — oo every trajectory approaches the origin tangent to the hneugh the eigenvector.
If the A > 0 the trajectories move away from the origin, and\if< 0 the trajectories moved
towards the origin.

Definition 5. When a repeated eigenvalue has only a single independamveictor, the critical
point is called anmproper or degenerate node



Figure 5: Phase Portrait for the asymptotically stable degee node

Figure 6: Phase Portrait of the unstable degenerate node
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Figure 8: Phase Portrait of the center point

1.4 Case IV: Complex Eigenvalues

Suppose the eigenvalues aret i3, wherea andj are real. In this case critical points are called
spiral point. Depending on if the trajectories move toward or away from a@higin it could be
characterized asspiral sink or source

In the phase portrait we either spiral towards or away froendhgin. If the real partv > 0,
then trajectories spiral away from the origin. If the reattpa < 0, then the trajectories spiral
towards the origin.

1.5 Case V: Pure Imaginary Eigenvalues

Herea = 0 and\ = +i. In this case the critical point is calleccanter, because the trajectories
are concentric circles around the origin. We can deternfiaelirection of the circle by finding the
tangent vector at a point likg, 0).



Eigenvalues Type of Critical Point Stability

Al >N >0 Node Source Unstable
A <A <0 Node Sink Asymptotically Stable
A <0< Ny Saddle Point Unstable
A1 =Xy >0 | Proper or Improper Node Unstable
A1 = Xy <0 | Proper or Improper Node Asymptotically Stable
)\1, )\2 =+ Z/G
a>0 Spiral Source Unstable
a<0 Spiral Sink Asymptotically Stable
A= +if3 Center Stable

Table 1: Table 9.1: Stability Properties of Linear Systerhs= Ax with det(A — r1) = 0 and
det(A) # 0.

2 Summary and Observations

1. After a long time, each trajectory exhibits one of onlyenitypes of behavior. As — oo,
each trajectory approaches the critical paint 0, repeatedly traverses a closed curve around the
critical point, or becomes unbounded.

2. For each point there is only one trajectory. The trajeesodo not cross each other. The
only solutions passing through the critical point are- 0, all other solutions only approach the
origin ast — oo or —oo.

3. In each of the five cases we have one of three situations:

(1) All trajectories approach the critical point= 0 ast — oo. This is the case if the eigen-
values are real and negative or complex with negative redl gde origin is nodal or a spiral
sink.

(2) All trajectories remain bounded but do not approach tigirmast — oo. This is the case
if the eigenvalues are pure imaginary. The origin is a center

(3) Some trajectories, and possibly all trajectories ekeep 0, become unbounded as- ~c.
This is the case if at least one of the eigenvalues is pogitiviethe eigenvalues have positive real
part. The origin is a nodal source, a spiral source, or a sguulht.



