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1 Phase Portrait Review

Last Time: We studied phase portraits and systems of differential equations with repeated eigen-
values.

Note in the last 3 sections 7.5, 7.6, 7.8 we have covered the information in Section 9.1, which is
sketching phase portraits, and identifying the three distinct cases for 1. Real Distinct Eigenvalues,
2. Complex Eigenvalues, and 3. Repeated Eigenvalues. Thinkof this section as a good review.

In Chapter 1 and Section 2.5 we considered the autonomous equations

dy

dt
= f(y) (1)

Consider the simplest system, a second order linear homogeneous system with constant coeffi-
cients. Such a system has the form

dx

dt
= Ax (2)

whereA is a2× 2 matrix. We spent three sections solving these types of systems. Recall we seek
solutions of the formx = ηert, then if we substitute this into the equation we found

(A − rI)η = 0 (3)

Thusr is an eigenvalue andη the corresponding eigenvector.

Definition 1. Points whereAx = 0 correspond to equilibrium or constant solutions, and are called
critical points . Note if A is nonsingular, then the only critical point isx = 0.

We must consider the five possible situations we could be in.
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Figure 1: Phase Portrait of the Nodal Sink

1.1 Case I: Real Unequal Eigenvalues of the Same Sign

The general solution ofx′ = Ax is

x = c1η
(1)eλ1t + c2η

(2)eλ2t (4)

whereλ1 andλ2 are either both positive or both negative. Suppose first thatλ1 < λ2 < 0. Both
exponentials decay, so ast → ∞, thenx(t) → 0 regardless of the values ofc1 andc2. Note the
eigenvalue with the bigger magnitude,|λi|, will determine where the trajectories are directed to.
So the trajectories will tend towardsη(1).

Definition 2. The type of critical point where all solutions decay to the origin is anodeor nodal
sink.

If λ1 andλ2 are both positive and0 < λ2 < λ1, then the trajectories have the same pattern as
the previous case but ast → ∞ the solutions blow up so all arrows change direction and move
away from the origin. The critical point is still called anodeor nodal source. Notice it is a source
because trajectories come from it and leave, whereas the nodal sink before sucked all trajectories
towards itself.

1.2 Case II: Real Eigenvalues of Opposite Signs

The general solution ofx′ = Ax is

x = c1η
(1)eλ1t + c2η

(2)eλ2t (5)

whereλ1 > 0 and λ2 < 0. Notice ast → ∞ the second term decays to zero and the first
eigenvector becomes dominant. So as time goes to infinity alltrajectories asymptotically approach
η(1). The only solutions that approach 0 are the ones which start on η(2). This is becausec1 = 0
and all terms would decay as time increases.

Definition 3. The origin where some solutions tend towards it and some tendaway is called a
saddle point.
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Figure 2: Phase Portrait of the Nodal Source

Figure 3: Phase Portrait of the saddle point
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Figure 4: Phase Portrait of a star node

1.3 Case III: Repeated Eigenvalues

Hereλ1 = λ2 = λ. We have two subcases.

1.3.1 Case IIIa: Two Independent Eigenvectors

The general solution ofx′ = Ax is

x = c1η
(1)eλt + c2η

(2)eλt (6)

where the eigenvectors are linearly independent. Every trajectory lies on a straight line through the
origin. If λ < 0 all solutions decay to the origin, ifλ > 0 then all solutions move away from the
origin.

Definition 4. In either case, the critical point is called aproper node or astar point.

1.3.2 Case IIIb: One Independent Eigenvector

The general solution in this case is

x = c1ηeλt + c2(ηteλt + ρeλt). (7)

whereη is the eigenvector andρ is the generalized eigenvector. Fort large,c2ηteλt dominates.
Thus ast → ∞ every trajectory approaches the origin tangent to the line through the eigenvector.
If the λ > 0 the trajectories move away from the origin, and ifλ < 0 the trajectories moved
towards the origin.

Definition 5. When a repeated eigenvalue has only a single independent eigenvector, the critical
point is called animproper or degenerate node.
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Figure 5: Phase Portrait for the asymptotically stable degenerate node

Figure 6: Phase Portrait of the unstable degenerate node
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Figure 7: Phase Portrait of the unstable spiral

Figure 8: Phase Portrait of the center point

1.4 Case IV: Complex Eigenvalues

Suppose the eigenvalues areα ± iβ, whereα andβ are real. In this case critical points are called
spiral point . Depending on if the trajectories move toward or away from the origin it could be
characterized as aspiral sink or source.

In the phase portrait we either spiral towards or away from the origin. If the real partα > 0,
then trajectories spiral away from the origin. If the real part α < 0, then the trajectories spiral
towards the origin.

1.5 Case V: Pure Imaginary Eigenvalues

Hereα = 0 andλ = ±βi. In this case the critical point is called acenter, because the trajectories
are concentric circles around the origin. We can determine the direction of the circle by finding the
tangent vector at a point like(1, 0).
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Eigenvalues Type of Critical Point Stability
λ1 > λ2 > 0 Node Source Unstable
λ1 < λ2 < 0 Node Sink Asymptotically Stable
λ2 < 0 < λ1 Saddle Point Unstable
λ1 = λ2 > 0 Proper or Improper Node Unstable
λ1 = λ2 < 0 Proper or Improper NodeAsymptotically Stable

λ1, λ2 = α + iβ

α > 0 Spiral Source Unstable
α < 0 Spiral Sink Asymptotically Stable

λ = ±iβ Center Stable

Table 1: Table 9.1: Stability Properties of Linear Systemsx′ = Ax with det(A − rI) = 0 and
det(A) 6= 0.

2 Summary and Observations

1. After a long time, each trajectory exhibits one of only three types of behavior. Ast → ∞,
each trajectory approaches the critical pointx = 0, repeatedly traverses a closed curve around the
critical point, or becomes unbounded.

2. For each point there is only one trajectory. The trajectories do not cross each other. The
only solutions passing through the critical point arex = 0, all other solutions only approach the
origin ast → ∞ or−∞.

3. In each of the five cases we have one of three situations:
(1) All trajectories approach the critical pointx = 0 ast → ∞. This is the case if the eigen-

values are real and negative or complex with negative real part. The origin is nodal or a spiral
sink.

(2) All trajectories remain bounded but do not approach the origin ast → ∞. This is the case
if the eigenvalues are pure imaginary. The origin is a center.

(3) Some trajectories, and possibly all trajectories except x = 0, become unbounded ast → ∞.
This is the case if at least one of the eigenvalues is positiveor if the eigenvalues have positive real
part. The origin is a nodal source, a spiral source, or a saddle point.
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