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Last Time: We did an in depth review of phase portraits andtanting them give a system
of equations.

1 9.2 Autonomous Systems and Stability

What is an Autonomous System?
Definition 1. A system of two simultaneous differential equations of tbwerf

dx dy

R -7 _ 1
o = Flay), —=Gy) @)
where " andG are continuous and have continuous partial derivativesmmesdomainD. From
Theorem 7.1 we know there exists a unique solutioa ¢(t),y = 1 (t) of the system satisfying
the initial conditions

x(to) = 20,  y(to) = Yo (2

The property that makes the systamtonomousis that /' andG only depend o andy and not
t.

1.1 Stability and Instability

Consider the autonomous system of the form
x' = f(x) 3)

Definition 2. The points wherd(x) = 0 are the critical points, which correspond to constant or
equilibrium solutions of the autonomous system.



Definition 3. A critical pointx’ is said to bestableif, given anye > 0, there is @ > 0 such that
every solutionz = ¢(t), which att = 0 satisfies

16(0) =2l < (4)
exists for all positive and satisfies

lo(t) — 2| < e (5)
for all t > 0. It's asymptotically stableif

16(0) — 2| < 8 (6)
then

tlim o(t) = 2° (7)

Finally, it is unstableif a solution does not approach a critical pointas oc.
Example 4. Find the critical points of

dr dy
o= ——yl-z-y), —=12+y). (8)
We find the critical points by solving the algebraic equation

(@-y)l-z-y) =0 (9)

z(24y) = 0 (10)
One way to satisfy the second equation is to chaose 0. Then the first equation becomes
y(1 —y) =0,so0y = 0ory = 1. Now let's choose; = —2, then the first equation becomes

(x+2)(3—=x) =0sox = —2 orz = 3. So the four critical points ar@), 0), (0,1), (-2, —2), and
(3,—2).

2 9.3 Locally Linear Systems
We start with a few key theorem in this section. Consider iteglr system

7 = Az (11)

Theorem 5. The critical point z = 0 of the linear system above is asymptotically stable if the
eigenvalues 1, 1, are real and negative or have negative real part; stable, but not asymptotically
stableif r; and r, are pure imaginary; unstableif ; and r, are real and either positive or if they
have positive real part.



2.1 Introduction to Nonlinear Systems

The general form of the two dimensional system of differrgguations is

ry = [z, 22) (12)
thy = fo(zy,x2) (13)

For systems like this it is hard to find trajectories anabftic as we did for linear systems. Thus
we need to discuss the behavior of these solutions.
There are some features of nonlinear phase portraits thahwdd be aware of:

(1) Thefixed or critical points which are the equilibrium or steady-state solutions. Thmse
respond to points satisfyingf(x) = 0. Sox; andx, are zeroes for botlfi; and f5.

(2) Theclosed orbits which correspond to solutions that are periodic for batlandzx.

(3) How trajectories are arranged, new fixed points and dloskits.

(4) The stability or instability of fixed points and closedits, which of these attract nearby tra-
jectories and which repel them?

Theorem 6. (Existence and UniquenesSpnsider theinitial value problem
x' =f(z) z(0) =xg (14)

If f iscontinuous and its partial derivatives on some region containing x,, then the initial value
problem has a unique solution x(t) on someinterval near ¢ = 0.

Note: The theorem asserts that no two trajectories carseder

2.2 Linearization around Critical Points

To begin we always start by finding the critical points, whadtrespond to the equilibrium solu-
tions of the system. If the system is linear the only critigaint is the origin,(0,0). Nonlinear
systems can have many fixed points and we want to determiretiavior of the trajectories near
these points. Consider,

¥ = f(z,y) (15)
y = g(x,y) (16)

The goal of linearization is to use our knowledge of lineasteyns to conclude what we can
about the phase portrait ne@ar, y,). We will try to approximate our nonlinear system by a linear
system, which we can then classify. Sinesg, y,) is a fixed point, and the only fixed point of a
linear system is the origin, we will want to change variatdeshat(z,, yo) becomes the origin of
the new coordinate system. Thus, let

u = x— X @an
= Y—Yo. (18)



We need to rewrite our differential equation in termsi@ndv.

o= 2 (19)
= flz,y) (20)
= f(zo+u,yo+v) (21)

The natural thing to do is a Taylor Expansionjfofhear(zg, yo).

= f(zo,y0) + u%(xo, Yo) + vg—‘g(xo, yo) + higher order terms (22)
0 0
= Ua—i(%; Yo) + 08—5(%7 Yo) + HO.T. (23)

recall thatf (xo, yo) = 0 (since it is a fixed point). To simplify notation we will sonees write
o and 5L which are evaluated dtro, o), but it is important to keep this in mind. The partial
derivatives are numbers not functions. Also, recall we aresitlering what happens very close to
our fixed point,u andv are both small, and hence the higher order terms are smalllensl will
be disregarded in computations. By a similar computatiomaxe

0 0

v =ud + v + H.O.T. (24)

ox oy
Ignoring the small higher order terms, we can write thiseysof rewritten differential equations
in matrix form. Thelinearized systemnear(zy, yo) iS

( u' ) _ L (w0, %0) g—g(%,yo) ( u ) (25)
v’ %(%;yo) g—Z(:co,yo) v )
We will use, from this point on, the notatigfh = %. The matrix
f(®o,y0)  fy(20, yo) )
A= Y 26
( 9z (ZU(), yO) gy(an yO) ( )

is called theJacobian Matrix at (zy, yo) of the vector-valued functiofiz) = ( gg;l’?; ) In
1,42
multivariable calculus, the Jacobian matrix is appropretalogue of the single variable calculus

derivative. We then study this linear system with standactiniques.
HW 9.2 # 5a-10a
HW 9.3 # 5abc,7abc,8abc,9abc



