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Last Time: We did an in depth review of phase portraits and constructing them give a system
of equations.

1 9.2 Autonomous Systems and Stability

What is an Autonomous System?

Definition 1. A system of two simultaneous differential equations of the form

dx

dt
= F (x, y),

dy

dt
= G(x, y) (1)

whereF andG are continuous and have continuous partial derivatives in some domainD. From
Theorem 7.1 we know there exists a unique solutionx = φ(t), y = ψ(t) of the system satisfying
the initial conditions

x(t0) = x0, y(t0) = y0 (2)

The property that makes the systemautonomousis thatF andG only depend onx andy and not
t.

1.1 Stability and Instability

Consider the autonomous system of the form

x
′ = f(x) (3)

Definition 2. The points wheref(x) = 0 are the critical points, which correspond to constant or
equilibrium solutions of the autonomous system.
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Definition 3. A critical pointx0 is said to bestable if, given anyε > 0, there is aδ > 0 such that
every solutionx = φ(t), which att = 0 satisfies

||φ(0) − x0|| < δ (4)

exists for all positivet and satisfies
||φ(t) − x0|| < ε (5)

for all t ≥ 0. It’s asymptotically stableif

||φ(0) − x0|| < δ (6)

then
lim
t→∞

φ(t) = x0 (7)

Finally, it is unstable if a solution does not approach a critical point ast→ ∞.

Example 4. Find the critical points of

dx

dt
= −(x− y)(1 − x− y),

dy

dt
= x(2 + y). (8)

We find the critical points by solving the algebraic equations

(x− y)(1 − x− y) = 0 (9)

x(2 + y) = 0 (10)

One way to satisfy the second equation is to choosex = 0. Then the first equation becomes
y(1 − y) = 0, soy = 0 or y = 1. Now let’s choosey = −2, then the first equation becomes
(x+ 2)(3− x) = 0 sox = −2 or x = 3. So the four critical points are(0, 0), (0, 1), (−2,−2), and
(3,−2).

2 9.3 Locally Linear Systems

We start with a few key theorem in this section. Consider the linear system

x′ = Ax (11)

Theorem 5. The critical point x = 0 of the linear system above is asymptotically stable if the
eigenvalues r1, r2 are real and negative or have negative real part; stable, but not asymptotically
stable if r1 and r2 are pure imaginary; unstable if r1 and r2 are real and either positive or if they
have positive real part.
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2.1 Introduction to Nonlinear Systems

The general form of the two dimensional system of differential equations is

x′
1

= f1(x1, x2) (12)

x′
2

= f2(x1, x2) (13)

For systems like this it is hard to find trajectories analytically, as we did for linear systems. Thus
we need to discuss the behavior of these solutions.

There are some features of nonlinear phase portraits that weshould be aware of:

(1) Thefixed or critical points which are the equilibrium or steady-state solutions. Thesecor-
respond to pointsx satisfyingf(x) = 0. Sox1 andx2 are zeroes for bothf1 andf2.
(2) Theclosed orbits, which correspond to solutions that are periodic for bothx1 andx2.
(3) How trajectories are arranged, new fixed points and closed orbits.
(4) The stability or instability of fixed points and closed orbits, which of these attract nearby tra-
jectories and which repel them?

Theorem 6. (Existence and Uniqueness)Consider the initial value problem

x
′ = f(x) x(0) = x0 (14)

If f is continuous and its partial derivatives on some region containing x0, then the initial value
problem has a unique solution x(t) on some interval near t = 0.

Note: The theorem asserts that no two trajectories can intersect.

2.2 Linearization around Critical Points

To begin we always start by finding the critical points, whichcorrespond to the equilibrium solu-
tions of the system. If the system is linear the only criticalpoint is the origin,(0, 0). Nonlinear
systems can have many fixed points and we want to determine thebehavior of the trajectories near
these points. Consider,

x′ = f(x, y) (15)

y′ = g(x, y) (16)

The goal of linearization is to use our knowledge of linear systems to conclude what we can
about the phase portrait near(x0, y0). We will try to approximate our nonlinear system by a linear
system, which we can then classify. Since(x0, y0) is a fixed point, and the only fixed point of a
linear system is the origin, we will want to change variablesso that(x0, y0) becomes the origin of
the new coordinate system. Thus, let

u = x− x0 (17)

v = y − y0. (18)
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We need to rewrite our differential equation in terms ofu andv.

u′ = x′ (19)

= f(x, y) (20)

= f(x0 + u, y0 + v) (21)

The natural thing to do is a Taylor Expansion off near(x0, y0).

= f(x0, y0) + u
∂f

∂x
(x0, y0) + v

∂f

∂y
(x0, y0) + higher order terms (22)

= u
∂f

∂x
(x0, y0) + v

∂f

∂y
(x0, y0) +H.O.T. (23)

recall thatf(x0, y0) = 0 (since it is a fixed point). To simplify notation we will sometimes write
∂f

∂x
and ∂f

∂y
which are evaluated at(x0, y0), but it is important to keep this in mind. The partial

derivatives are numbers not functions. Also, recall we are considering what happens very close to
our fixed point,u andv are both small, and hence the higher order terms are smaller still and will
be disregarded in computations. By a similar computation wehave

v′ = u
∂g

∂x
+ v

∂g

∂y
+H.O.T. (24)

Ignoring the small higher order terms, we can write this system of rewritten differential equations
in matrix form. Thelinearized systemnear(x0, y0) is

(

u′

v′

)

=

(

∂f

∂x
(x0, y0)

∂f

∂y
(x0, y0)

∂g

∂x
(x0, y0)

∂g

∂y
(x0, y0)

)

(

u

v

)

. (25)

We will use, from this point on, the notationfx = ∂f

∂x
. The matrix

A =

(

fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

)

(26)

is called theJacobian Matrix at (x0, y0) of the vector-valued functionf(x) =

(

f(x1, x2)
g(x1, x2)

)

. In

multivariable calculus, the Jacobian matrix is appropriate analogue of the single variable calculus
derivative. We then study this linear system with standard techniques.

HW 9.2 # 5a-10a
HW 9.3 # 5abc,7abc,8abc,9abc
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