
2 JULY 2000  Embedded Systems Programming

f
e

a
t

u
r

e

D A N  S I M O N

riginally designed in the 1960s for aerospace applications,
the Kalman filter (“Kalman Filtering,” June 2001, p. 72) is
an effective tool for estimating the states of a system. The
widespread success of the Kalman filter in aerospace appli-
cations led to attempts to apply it to more common indus-
trial applications. However, these attempts quickly made it

clear that a serious mismatch existed between the underlying assumptions
of Kalman filters and industrial state estimation problems. 

Accurate system models are not as readily available for industrial prob-
lems. In addition, engineers rarely understand the statistical nature of the
noise processes that impinge on such systems. After a decade or so of reap-
praising the nature and role of Kalman filters, engineers realized they
needed a new filter that could handle system modeling errors and noise
uncertainty. State estimators that can tolerate such uncertainty are called
robust. The H• filter was designed for robustness.

What’s wrong with Kalman filters?
Recall that the Kalman filter estimates the states x of a linear dynamic sys-
tem defined by the equations:2

where A, B, and C are known matrices; k is the time index; x is the state of
the system (unavailable for measurement); u is the known input to the sys-

x Ax Bu w

y Cx z
k k k k

k k k

+ = + +
= +
1

From Here 
to Infinity

H• filters can be used to estimate system states that cannot be observed directly. 
In this, they are like Kalman filters. However, only H• filters are robust in the 

face of unpredictable noise sources. 

O



Embedded Systems Programming JULY 2000   3

tem; y is the measured output; and w
and z are noise. The two equations
represent what is called a discrete time
system, because the time variable k is
defined only at discrete values (0, 1, 2,
…). Suppose we want to estimate the
state x of the above system. We cannot
measure the state directly; we can only
measure y directly. In this case we can
use a Kalman filter to estimate the
state. If we refer to our estimate as ,
the Kalman filter equations are given
as follows:

where Sw and Sz are the covariance
matrices of w and z, K is the Kalman
gain, and P is the variance of the esti-
mation error. The Kalman filter works
well, but only under certain condi-
tions. 

First, the noise processes need to
be zero mean. The average value of
the process noise, wk, must be zero,
and the average value of the measure-
ment noise, zk, must also be zero. This
zero mean property must hold not
only across the entire time history of
the process, but at each time instant,
as well. That is, the expected value of
w and z at each time instant must be
equal to zero.

Second, we need to know the stan-
dard deviation of the noise processes.
The Kalman filter uses the Sw and Sz

matrices as design parameters (these
are the covariance matrices of the
noise processes). That means that if
we do not know Sw and Sz, we cannot
design an appropriate Kalman filter.

The attractiveness of the Kalman
filter is that it results in the smallest
possible standard deviation of the esti-
mation error. In other words, the

Kalman filter is the minimum variance
estimator.

So what do we do if the Kalman fil-
ter assumptions are not satisfied?
What should we do if the noise
processes are not zero mean, or we
don’t have any information about the
noise statistics? And what if we want to
minimize the worst case estimation
error rather than the variance of the
estimation error?

Perhaps we could use the Kalman
filter anyway, even though its assump-
tions are not satisfied, and hope for
the best. Maybe if we ignore the prob-
lems we encounter they will go away.
This is a common solution to our
Kalman filter quandary and it works
reasonably well in many cases.
However, another option is available:
the H• filter, also called the minimax
filter. The H• filter does not make any
assumptions about the noise, and it
minimizes the worst case estimation
error. Before we can attack the H• fil-
ter problem, we need to cover a cou-
ple of simple mathematical prelimi-
naries.

Eigenvalues
If we have a square matrix D, then the
eigenvalues of D are defined as all val-
ues of l that satisfy the equation
Dg=lg for some vector g. It turns out
that if D is an n�n matrix, then there
are always n values of l that satisfy this
equation; that is, D has n eigenvalues.
For instance, consider the following D
matrix:

The eigenvalues of this matrix are 1
and 3. In other words, the two solu-
tions to the Dg=lg equation are as fol-
lows:3

Eigenvalues are difficult to com-
pute in general. But if you have a 2�2
matrix of the following form:

then it becomes much easier. The two
eigenvalues of this matrix are:

In the example that we will consider in
this article, we will need to compute
the eigenvalues of a matrix that has
the form of the D matrix above.

That’s all there is to eigenvalues.
It’s a high-tech word that is conceptu-
ally simple. 

Vector norms
Before we can look at the H• filter
problem we need to define the norm
of a vector. A vector norm is defined as
follows:4

In order to avoid the square root
sign in the rest of this article, we will
use the square of the norm:

So, for example, if the vector x is given
as:

then the norm squared of x is derived
as follows:

x =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

x x xT2 =

x x xT=

l = + ± +( ) + -( )Ê
Ë

ˆ
¯d d d d d d d1 3 1 3

2

2
2

1 34 2/

D
d d

d d
= È
ÎÍ

˘
˚̇

1 2

2 3

2 1

1 2

1

1
1

1

1
È
ÎÍ

˘
˚̇
¥

-
È
ÎÍ

˘
˚̇
= ¥

-
È
ÎÍ

˘
˚̇

D = È
ÎÍ

˘
˚̇

2 1

1 2

K AP C CP C S

x Ax Bu K y Cx

P AP A S AP C S CP A

k k
T

k
T

z

k k k k k k

k k
T

w k
T

z k
T

= +( )
= +( ) + -( )
= + -

-

+ +

+
-

1

1 1

1
1

ˆ ˆ ˆ

x̂

I
N

S
E

R
T

 
N

A
M

E
 

O
N

L
Y



A weighted vector norm is slightly
more complicated, and is defined as:

where Q is any matrix with compatible
dimensions. So, for example, suppose
we have the vector x given previously,
and the matrix Q is given as:

This Q matrix is called a diagonal
matrix. That means that only the
entries along the main diagonal are
nonzero. In this case, the Q-weighted
norm of x is derived as:

We see that the elements of Q serve to
weight the elements of x when the
norm is computed; hence the term
weighted norm. In general, Q could be
a nondiagonal matrix, but in this arti-
cle we can assume that Q is diagonal.

H• filtering
Now that we know what a weighted
vector norm is, we can state the H• fil-
ter problem and solution. First of all,
suppose we have a linear dynamic sys-
tem as defined at the beginning of this
article. Then suppose we want to solve
the following problem:

where J is some measure of how good
our estimator is. We can view the noise
terms w and v as adversaries that try to
worsen our estimate. Think of w and v
as manifestations of Murphy’s Law:
they will be the worst possible values.
So, given the worst possible values of w
and v, we want to find a state estimate
that will minimize the worst possible
effect that w and v have on our esti-
mation error. This is the problem that
the H• filter tries to solve. For this rea-
son, the H• filter is sometimes called
the minimax filter; that is, it tries to
minimize the maximum estimation
error. We will define the function J as
follows:

min maxˆ ,x w v J

x 2 1 2 3

2 0 0

0 4 0

0 0 5

1

2

3

2 1 1 4 2 2 5 3 3 63

= [ ] ¥
È

Î

Í
Í
Í

˘

˚

˙
˙
˙
¥
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¥ ¥ + ¥ ¥ + ¥ ¥ =

Q =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 0 0

0 4 0

0 0 5

x x QxQ
T2 =

x 2 1 2 3

1

2

3

1 1 2 2 3 3 14

= [ ] ¥
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¥ + ¥ + ¥ =

4 OCTOBER 2001  Embedded Systems Programming

h-infinity filters

FIGURE 1  Velocity estimation error

FIGURE 2  Position estimation error

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
el

oc
it

y 
Er

ro
r 

M
ag

ni
tu

de
 (

fe
et

/s
ec

)

0 10 20 30

Time (sec)

40 50 60

H∞ Filter
Kalman Filter

-2

-1

0

1

2

3

4

5

Po
si

ti
on

 E
rr

or
 (

fe
et

)

0 10 20 30

Time (sec)

40 50 60

H∞ Filter
Kalman Filter



where the averages are taken over all
time samples k. In other words, we
want to find an that minimizes J, so
we want to find an that is as close to
x as possible. Murphy wants to maxi-
mize J, so Murphy wants to find noise
sequences w and v that cause our esti-
mate to be far from the true state x.
However, Murphy could make far
from x simply by making the noise very
large. We prevent this by putting the
average of the weighted norms of w
and v in the denominator of J. That
way, Murphy has to find noise terms
that will make J large without simply
using brute force. 

The previous equation is the state-
ment of the H• filtering problem. Our
task is to find a state estimate that
makes J small even while Murphy is
finding noise terms that make J large.
The Q, W, and V matrices that are used
in the weighted norms in J are chosen
by us, the designers, to obtain desired
trade-offs. For example, if we know
that the w noise will be smaller than
the v noise, we should make the W
matrix smaller than the V matrix. This
will de-emphasize the importance of
the w noise relative to the v noise.
Similarly, if we are more concerned
about estimation accuracy in specific
elements of the state vector x, or if the
elements of the state vector x are
scaled so that they differ by an order
of magnitude or more, then we should
define the Q matrix accordingly.

Well, it turns out that the estima-
tion problem is too difficult to solve
mathematically. However, we can solve
a related problem. We can solve the
problem:

where g is some constant number cho-
sen by us, the designers. That is, we
can find a state estimate so that the
maximum value of J is always less than

, regardless of the values of the noise

terms w and v. The state estimate that
forces J < 1/g is given as follows:

These are the H• filter equations.
They have the same form as the
Kalman filter equations, but the
details are different. I is the identity
matrix. This means it is a matrix con-
sisting entirely of zeros, except for the
main diagonal, which is made up of
ones. For instance, a 3�3 identity
matrix would look like this:

Kk is the H• gain matrix. The initial
state estimate should be initialized
to our best guess of x0, and the initial
value P0 should be set to give accept-
able filter performance. In general, P0

should be small if we are highly confi-
dent of our initial state estimate . If

we use these H• filter equations, we
guarantee that J < 1/g. That means
that no matter what Murphy does with
the noise terms w and v, the ratio of
the estimation error to the noise will
always be less than 1/g.

Well then, let’s just set g to a very
large number, say a zillion or so! That
way we can guarantee that our estima-
tion error is almost zero, since 1/g will
be almost zero. Well, we can’t quite do
that. The mathematical derivation of
the H• equations is valid only if g is
chosen such that all of the eigenvalues
of the P matrix have magnitudes less
than one. If we choose too large of a g,
a solution to the H• filtering problem
does not exist. That is, we cannot find
an estimator that will make the estima-
tion error arbitrarily small.

Matrix inversion!?
The observant reader will notice that a
matrix inversion is required at every
time step, in order to compute the Lk

terms. As discussed in the Kalman fil-
ter article, the inversion of small matri-
ces is fairly easy, but the inversion of a
matrix larger than 3�3 could require
too much computational time for a
practical implementation. Fortunately,x̂0

x̂0

I =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 1 0

0 0 1

L I QP C V CP

K AP L C V

x Ax Bu K y Cx

P AP L A W

k k
T

k

k k k
T

k k k k k k

k k k
T

= - +( )
=

= + + -( )
= +

- -

-

+

+

g 1 1

1

1

1

ˆ ˆ ˆ

x̂

J < 1 g

x̂
x̂

x̂
x̂

J
ave x x

ave w ave v
k k Q

k W k V

=
-
+

ˆ

Embedded Systems Programming OCTOBER 2001   5

h-
in

fi
ni

ty
 f

ilt
er

s

FIGURE 3  Technical art specs.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

K(2)

H Infinity Gains

K(1)



this problem is not insurmountable.
Notice from the H• filter equations
that the calculation of Lk, Pk, and Kk

can be performed off line. That is, we
do not need the measurements to
compute the H• gain matrix Kk. We
can compute Kk off line (on our devel-
opment system, for example) and
then hard-code Kk into our embedded
system.

This solution, however, just shifts
the problem to another arena. Now,
instead of being strapped for through-
put, we are out of memory. If we try to
store a Kk matrix in our embedded sys-
tem for each time step of our program
execution, we will quickly run out of
memory. But again, a solution exists.
When we compute the Kk matrices off
line, we notice that they very quickly
approach what is called a steady state
solution. Although Kk is written as a
function of the time step k, the matri-
ces Kk will be constant after just a few
time steps. So we can run the H• gain
equations off line until we see Kk con-
verge to a constant matrix, and then
simply hard-code that constant matrix
into our embedded system. The result
is called the steady-state H• filter.

As an aside, notice that we can do
the same thing with the Kalman filter
equations shown at the beginning of
this article. We can compute the
Kalman gain matrix Kk off line until
we see it converge to a constant
matrix. Then we can hard-code that
constant matrix into our embedded
Kalman filter. The result is called the
steady-state Kalman filter.

But does the steady-state H• filter
perform as well as the time-varying H•
filter? And does the steady-state
Kalman filter perform as well as the
time-varying Kalman filter? We can
save computational resources by using
the steady-state versions of the filter,
but how much performance will we
sacrifice? The answer depends on the
application, but often we lose very lit-
tle performance. In many cases, the
drop in performance will be negligi-
ble. We will see this in the simulation
results that follow. 

6 OCTOBER 2001  Embedded Systems Programming

h-infinity filters

LISTING 1  H• filter equations

float CT[n][r]; // This is the matrix CT

float CTVinv[n][r]; // This is the matrix CT*V 1

float CTVinvC[n][n]; // This is the matrix CT*V 1*C

float CTVinvCP[n][n]; // This is the matrix CT*V 1*C*P

float QP[n][n]; // This is the matrix Q*P;

float QPgamma[n][n]; // This is the matrix Q*P*gamma

float EYEQPgamma[n][n]; // This is the matrix EYE Q*P*gamma

float Linv[n][n]; // This is the inverse of the L matrix

float L[n][n]; // This is the L matrix

float AP[n][n]; // This is the matrix A*P

float APL[n][n]; // This is the matrix A*P*L

float APLCT[n][r]; // This is the matrix A*P*L*CT

float K[n][r]; // This is the H• gain matrix

float Cxhat[r][1]; // This is the vector C*xhat

float yCxhat[r][1]; // This is the vector y C*xhat

float KyCxhat[n][1]; // This is the vector K*(y C*xhat)

float Axhat[n][1]; // This is the vector A*xhat

float Bu[n][1]; // This is the vector B*u

float AxhatBu[n][1]; // This is the vector A*xhat+B*u

float AT[n][n]; // This is the matrix AT

float APLAT[n][n]; // This is the matrix A*P*L*AT

// The following sequence of function calls computes the L matrix.

MatrixTranspose((float*)C, r, n, (float*)CT);

MatrixMultiply((float*)CT, (float*)Vinv, n, r, r, (float*)CTVinv);

MatrixMultiply((float*)CTVinv, (float*)C, n, r, n, (float*)CTVinvC);

MatrixMultiply((float*)CTVinvC, (float*)P, n, n, n, (float*)CTVinvCP);

MatrixMultiply((float*)Q, (float*)P, n, n, n, (float*)QP);

MatrixScalarMultiply((float*)QP, gamma, n, n, (float*)QPgamma);

MatrixSubtraction((float*)EYE, (float*)QPgamma, n, n, (float*)EYEQPgamma);

MatrixAddition((float*)EYEQPgamma, (float*)CTVinvCP, n, n, (float*)Linv);

MatrixInversion((float*)Linv, n, (float*)L);

// The following sequence of function calls computes the K matrix.

MatrixMultiply((float*)A, (float*)P, n, n, n, (float*)AP);

MatrixMultiply((float*)AP, (float*)L, n, n, n, (float*)APL);

MatrixMultiply((float*)APL, (float*)CT, n, n, r, (float*)APLCT);

MatrixMultiply((float*)APLCT, (float*)Vinv, n, r, r, (float*)K);

// The following sequence of function calls updates the xhat vector.

MatrixMultiply((float*)C, (float*)xhat, r, n, 1, (float*)Cxhat);

MatrixSubtraction((float*)y, (float*)Cxhat, r, 1, (float*)yCxhat);

MatrixMultiply((float*)K, (float*)yCxhat, n, r, 1, (float*)KyCxhat);

MatrixMultiply((float*)A, (float*)xhat, n, n, 1, (float*)Axhat);

MatrixMultiply((float*)B, (float*)u, n, r, 1, (float*)Bu);

MatrixAddition((float*)Axhat, (float*)Bu, n, 1, (float*)AxhatBu);

MatrixAddition((float*)AxhatBu, (float*)KyCxhat, n, 1, (float*)xhat);

Listing 1 continued on p. #.

// The following sequence of function calls updates the P matrix.

MatrixTranspose((float*)A, n, n, (float*)AT);

MatrixMultiply((float*)APL, (float*)AT, n, n, n, (float*)APLAT);

MatrixAddition((float*)APLAT, (float*)W, n, n, (float*)P);



Vehicle navigation
To demonstrate the H• filter, we will
consider a vehicle navigation prob-
lem, similar to the one that we used
for our Kalman filter example. Say we
have a vehicle traveling along a road,
and we are measuring its velocity
(instead of position). The velocity
measurement error is 2 feet/sec (one
sigma), the acceleration noise (due to
potholes, gusts of wind, motor irregu-
larities, and so on) is 0.2 feet/sec2

(one sigma), and the position is mea-
sured 10 times per second. The linear
model that represents this system is
similar to the model discussed in the
Kalman filter article. The xk+1 equa-
tion is the same, but the yk equation is
different. In the Kalman filter article,
we measured position, and in this arti-
cle we are measuring velocity.

The state vector x is composed of
vehicle position and velocity, u is the
known commanded vehicle accelera-
tion, and w is acceleration noise. The
measured output y is the measured
velocity corrupted by measurement
noise z. As explained in the Kalman fil-
ter article, we derive the Sz and Sw

matrices used in the Kalman filter
equations as follows:

It looks, though, as if a fly has land-
ed in the ointment. We thought that
the velocity measurement noise was
Gaussian with a standard deviation of
2 feet/sec. In reality, the measurement
noise is uniformly distributed between
±1 foot/sec. That is, the true measure-
ment noise is a random number with
all values between ±1 foot/sec equally
likely. In addition, we thought that the
acceleration noise had a standard

deviation of 0.2 feet/sec2. In reality,
the acceleration noise is twice as bad
as we thought. It actually has a stan-
dard deviation of 0.4 feet/sec2. This is
because we took the road less traveled,
and it has more potholes than expect-
ed.

When we simulate the Kalman fil-
ter and the H• filter (g=0.01) for this
problem, we obtain the results shown
in Figures 1 and 2 for the velocity esti-
mation error and the position estima-
tion error. Figure 1 shows that the
velocity error is noticeably less for the
H• filter than for the Kalman filter.
Figure 2 shows that the position error
is much better with the H• filter. The
Kalman filter does not perform as well
as we expect because it is using Sz and
Sw matrices that do not accurately
reflect reality. The H• filter, on the
other hand, makes no assumptions at
all about the noise w and z, except that
nature is throwing the worst possible
noise at our estimator.

Next, we consider the steady-state
H• filter. Figure 3 shows the H• filter
gain matrix Kk as a function of time
for the first five seconds of the simula-
tion. Since we are estimating two
states, and we have one measurement,
Kk has two elements. Figure 3 shows
that the elements of Kk quickly
approach the approximate steady state
values Kk(1) = 0.11 and Kk(2) = 0.09.

Let’s pretend that we are poor
struggling embedded systems engi-
neers who can’t afford a fancy enough
microcontroller to perform real-time
matrix inversions. To compensate, we
simulate the steady-state H• filter
using the hard-coded gain matrix:

The results are practically indistin-
guishable from the time-varying H• fil-
ter. We can avoid all the work associat-
ed with real-time matrix inversion and
pay virtually no penalty in terms of
performance. The Matlab code that I
used to generate these results is avail-
able at www.embedded.com/code.htm. If

you use Matlab to run the code you
will get different results every time
because of the random noise that is
simulated. Sometimes the Kalman fil-
ter will perform even better than the
H• filter. But the H• filter generally
outperforms the Kalman filter for this
example. 

Pseudocode for implementing an
H• filter in a high-level language is
shown in Listing 1. This code assumes
that the linear system has n states, m
inputs, and r outputs. The following
variables are assumed:

A: an n�n matrix
B: an n�m matrix
C: an r�n matrix
xhat: an n�1 vector
y: an r�1 vector
u: an m�1 vector
P: an n�n matrix
Vinv: an r�r matrix
W: an n�n matrix
EYE: the n�n identity matrix
Q: an n�n matrix
gamma: a scalar

Infinity and beyond
The simple example shown in this arti-
cle demonstrates the potential bene-
fits of H• filtering. However, H• theo-
ry is actually much more general than
we have discussed here. It can also be
used to design control systems (not
just estimators) that are robust to
unknown noise sources. Our example
showed the robustness of H• filtering
to unknown noise sources. However,
the H• filtering problem can also be
formulated in such a way that the filter
is robust to system modeling errors. In
our example, we assumed that the sys-
tem model was given by:

where A and B were known matrices.
However, suppose we have some
uncertainty in our model. Suppose the
system model is given by:

x A A x B B u wk k k k+ = +( ) + +( ) +1 D D

x Ax Bu wk k k k+ = + +1

K = È
ÎÍ

˘
˚̇

0 11

0 09

.

.

S

S

z

w

=

=
¥

¥ ¥
È

Î
Í

˘

˚
˙

- -

- -

100

10 2 10

2 10 4 10

6 5

5 4

x x u w

y x z

k k k k

k k k

+ = È
ÎÍ

˘
˚̇

+ È
ÎÍ

˘
˚̇

+

= [ ] +

1

1 0 1

0 1

0 005

0 1

0 1

. .

.

Embedded Systems Programming OCTOBER 2001   7

h-
in

fi
ni

ty
 f

ilt
er

s



where, as before, A and B are known,
but DA and DB are unknown matrices.
We may have some bounds on DA and
DB, but we do not know their exact val-
ues. Then the H• filtering problem
can be reformulated to minimize the
effect of these modeling errors on our
estimation error. The H• filter can
therefore be designed to be robust to
uncertainty in the system model.

It appears that H• filtering was first
introduced in 1987 by Mike Grimble, a
professor at the University of
Strathclyde in the UK. It has its roots
in the mathematics developed in 1981
by George Zames, a professor at
McGill University in Montreal. Since
the late 1980s, there have been several
different approaches to the formula-
tion of the H• filter. In Kalman filter-
ing, different approaches all lead to
the same (or similar) equations. With
H• filtering, different approaches
lead to widely different equations.
Perhaps this is one reason that H• fil-
tering is not as well known as Kalman
filtering; so many different formula-
tions of the H• filter are available that
it is difficult to get an overarching view
of the entire field.

The Kalman filter is more widely
used and understood, and generally
gives better performance than the H•
filter. The H• filter requires more tun-
ing to get acceptable performance.
Looking at the H• filter equations, we
can see that the tuning parameters
include g, P0, V, W, and Q. That’s a lot
of parameters to tune, especially when
P0, V, W, and Q are all matrices. For
this reason, it is often more difficult to
tune an H• filter than a Kalman filter.
However, the effort required to tune
an H• filter can be worthwhile, as seen
from the simulation results in this arti-
cle.

Since Kalman filtering generally
performs better than H• filtering, but
the H• approach is so intuitively
appealing, some researchers have pro-

posed mixed Kalman/H• filtering.
This is usually referred to as mixed
H2/H• filtering. This is an approach
to find the best state estimator in the
Kalman filter sense subject to the con-
straint that the maximum estimation
error is bounded.

Dan Simon is a professor in the electrical
and computer engineering department at
Cleveland State University and a consul-
tant to industry. His teaching and research
interests include filtering, control theory,
embedded systems, fuzzy logic, and neural
networks. He teaches a course on H•-based
control and estimation, and is presently
working on a project to evaluate aircraft
engine health using H• filtering. You can
contact him at d.j.simon@csuohio.edu.

Endnotes
1. Also discussed in the Kalman filtering

article was the concept of linear sys-

tems, which should be considered a pre-

requisite to this article.

2. The Kalman filter is also called the H2

filter because it minimizes the two-norm

of the transfer function from the system

noise to the state estimation error.

3. Note that D has to be square in order

for the concept of eigenvector to exist.

If D is not square, then, by definition, it

does not have any eigenvalues. The g

vector in the eigenvalue equation is

called an eigenvector, but we will not

concern ourselves with eigenvectors in

this article.

4. More specifically, this is the two-norm

of a vector. However, we will refer to it

simply as the norm for ease of notation.

For further reading
Shen, W. and L. Deng. “Game Theory

Approach to Discrete H• Filter Design,”

IEEE Transactions on Signal Processing,

pp. 1092-1095, April 1997. 

This is an academic paper that derives

the equations on which this article is

based.

Simon, D. and H. El-Sherief. “Hybrid

Kalman/Minimax Filtering in Phase-

Locked Loops,” Control Engineering

Practice, pp. 615-623, 1996. 

This paper presents a formulation of the

H• filter that is different from the one

given in this article. The H• filter is then

combined with a Kalman filter to obtain

a new estimator that performs better

than either the Kalman filter or the H•
filter.

www.innovatia.com/software/papers/

minimax.htm

This web page (and its links) summarize

the approach and results of the Control

Engineering Practice paper referenced

above.

Burl, J. Linear Optimal Control. Reading,

MA: Addison Wesley, 1999. 

This is one of the best and most accessi-

ble texts that covers H• filtering.

However, that’s not saying much. There

aren’t many books on the subject, per-

haps because of its novelty. One good

point about this book is that the author

makes all of the Matlab files used in the

examples available on the web.

However, this text is limited to continu-

ous time systems and is full of confusing

typographical errors. Hopefully these

problems will be addressed in a future

printing.

Green, M. and D. Limebeer. Linear Robust

Control. Englewood Cliffs, NJ: Prentice

Hall, 1995. 

This reference, slightly more academical-

ly oriented than Burl’s book, offers good

theoretical coverage of discrete time H•
filtering, but it doesn’t have any exam-

ples. It is out of print but, you can find

copies (new and used) from bookstores

on the Internet.

8 OCTOBER 2001  Embedded Systems Programming

h-infinity filters


