Hypergraph Coloring Complexes and Ehrhart f*-Vectors

Felix Breuer

San Francisco State University funded by DFG (German Research Foundation)

Ehrhart Theory...

$$X \subset \mathbb{R}^d$$

$$k \in \mathbb{Z}_{>0}$$

$$k \in \mathbb{Z}_{>0}$$
 $L_X(k) = \#\mathbb{Z}^d \cap k \cdot X$

Ehrhart: If *X* is an integral polytopal complex, then $L_X(k)$ is a polynomial.

... has many Combinatorial Applications

One example:

Flow polynomial $\bar{\varphi}(k)$ of a graph G

Reciprocity

Theorem (B, Sanyal '12)

Combinatorial interpretation of $|\bar{\varphi}(-k)|$.

(Beck, B, Godkin, Martin '12) Theorem

...also works for flows on cell complexes.

Bounds

Theorem (B, Dall '11)

Constraints on coefficients of $\bar{\varphi}(k)$.

Hypergraph Colorings

hypergraph G = (V, E)

(k+1)-coloring $c \in [0, k]^n \cap \mathbb{Z}^n$

c is proper if for all $e \in E$ there exist $v, w \in e$ such that $c_v \neq c_w$

 $\chi_G(k)$ = # proper *k*-colorings of *G*

Coloring Complex

remove cone points

coloring complex Δ_G

triangulated cube of $\dim |V| - |e| + 1$

 $e \in E$

$$H_e = \{x \mid x_a = x_b \ \forall a, b \in e\}$$

$$P_e = [0,1]^V \cap H_e$$

sphere of dim |V| - |e| - 1

$$Q_e = P_e \setminus \{0, 1\}$$

$$\Delta_G = \bigcup_{e \in E} Q_e$$

remove 0,1 and incident faces

Coloring Complex - Properties

properties of Δ_G	graphs	hypergraphs	
wedge of spheres	yes (Steingrimmson '01)	no	
Cohen-Macaulay	yes (Jonsson '05)	no (B	
shellable	yes (Hultman '07)	no (all	
partitionable	yes	no 🖺	
g-constraints	yes (Hersh, Swartz '07)	no Kubitzi no ke	
$h_i^* \ge 0$	yes	no 🚊	
$f_i^* \ge 0$	yes	yes	

Coloring Complex - Not a Wedge of Spheres

1	2	3	1	2	3
1 4 7	5	6	4	5	6
7	8	9	7	8	9

h*- and f*-Vectors

Let p be a polynomial of degree d. Let $d \ge d$.

Then there exist h_i^* and f_i^* for i = 0, ..., d such that

$$p(k) = \sum_{i=0}^{d} h_i^* {k+d-i \choose d} = \sum_{i=0}^{d} f_i^* {k-1 \choose i}.$$

We define the h^* - and f^* -vectors by

$$h^*(p,d) = (h_0^*, \dots, h_d^*),$$

$$f^*(p,d) = (f_0^*, \dots, f_d^*).$$

The Geometry behind h^* - and f^* -Vectors

$$p(k) = \sum_{i=0}^{d} h_i^* \binom{k+d-i}{d} = \sum_{i=0}^{d} f_i^* \binom{k-1}{i}$$

 $\Delta_i^d = d$ -dimensional unimodular simplex with i open facets

$$L_{\Delta_i^d}(k) = \begin{pmatrix} k+d-i \\ d \end{pmatrix} \qquad L_{\Delta_{i+1}^i}(k) = \begin{pmatrix} k-1 \\ i \end{pmatrix}$$

Let K be an integral unimodular d-dimensional simplicial complex. Then

• $h(K) = h^*(L_K, d)$, if K is a shellable ball,

$$\bullet \quad f(K) = f^*(L_K).$$

Non-negativity of h*

Theorem (Stanley '80) If P is a d-dim integral polytope, then $0 \le h_i^*(L_P, d) \in \mathbb{Z}$ for all i

Observation Not true for hypergraph coloring complexes!

$$h^*(\Delta_G, 3) = 3 \cdot h^*(S^3, 3) - 2 \cdot h^*(S^0, 3)$$

$$= 3 \cdot (0, 30, 60, 30) - 2 \cdot (2, -6, 6, -2)$$

$$= (-4, 102, 168, 94)$$

Observation $0 \le f_i^*(\Delta_G) \in \mathbb{Z}$ for all i for all hypergraphs G

Is this true for *all* integral simplicial complexes, even if they are not unimodular and not convex?

Non-negativity of f*

Theorem (B '12)

There is a counting interpretation for the Ehrhart f^* -vector of any simplex.

partial polytopal complex = disjoint union of relatively open polytopes **Corollary** (B '12)

 $p(k) = L_X(k)$ for some integral partial polytopal complex X if and only if

 $0 \le f_i^* \in \mathbb{Z} \text{ for all } i.$

In particular, integral polytopal complexes have a non-negative integral f^* -vector, even if they do not have unimodular triangulation and they are not convex.

Partitioning Cones

 $v_1, ..., v_d \in \mathbb{Z}^d$ linearly independent $x \in \text{relint}(\text{cone}_{\mathbb{R}}(v_1, ..., v_d)) \cap \mathbb{Z}^d$ with $x = \sum_i \lambda_i v_i$

level(x) := the integer k such that $k-1 < \sum_{i} \lambda_i \le k$

x is **atomic** if there does *not* exist $z \in \text{relint}(\text{cone}_{\mathbb{R}}(v_1, ..., v_d)) \cap \mathbb{Z}^d \text{ such that } v_2 \in \text{relint}(z) < \text{level}(z) \text{ and } x \in z + \text{cone}_{\mathbb{Z}}(v_1, ..., v_{\text{level}(z)})$

Theorem (B '12)

$$\operatorname{relint}(\operatorname{cone}_{\mathbb{R}}(v_1,\ldots,v_d)) \cap \mathbb{Z}^d = \bigcup_{z \text{ atomic}} z + \operatorname{cone}_{\mathbb{Z}}(v_1,\ldots,v_{\operatorname{level}(z)})$$

 $f_i^* = \#$ atomic integer points at level i + 1 in the cone over $\Delta \times \{1\}$.