Orientability of real toric varieties and lower bounds for real polynomial systems

AMS MEETING, AKRON

Jenya Soprunova (with Frank Sottile)

Kent State University

October 21, 2012

Polynomial system

$$F_1(t_1,\ldots,t_n) = 0$$

$$F_2(t_1,\ldots,t_n) = 0$$

$$\cdots$$

$$F_n(t_1,\ldots,t_n) = 0$$

Bezout Theorem

The number of solutions of a complex generic system is the product of the degrees of F_1, F_2, \ldots, F_n .

Polynomial system

$$F_{1}(t_{1},...,t_{n}) = 0$$

$$F_{2}(t_{1},...,t_{n}) = 0$$
...
$$F_{n}(t_{1},...,t_{n}) = 0$$

Bezout Theorem

The number of solutions of a complex generic system is the product of the degrees of F_1, F_2, \ldots, F_n .

For a system with real coefficients let

d := # complex solutions r := # real solutions

 $d \mod 2 \le r \le d$

Polynomial system

$$F_{1}(t_{1},...,t_{n}) = 0$$

$$F_{2}(t_{1},...,t_{n}) = 0$$
...
$$F_{n}(t_{1},...,t_{n}) = 0$$

Bezout Theorem

The number of solutions of a complex generic system is the product of the degrees of F_1, F_2, \ldots, F_n .

For a system with real coefficients let

d := # complex solutions r := # real solutions

 $d \mod 2 \le r \le d$

Better lower bound?

Kushnirenko's Theorem

Sparse polynomial system:

 $(\star) F_1(t_1,\ldots,t_n) = F_2(t_1,\ldots,t_n) = \cdots = F_n(t_1,\ldots,t_n) = 0$

 $\Delta :=$ Newton Polytope(F_i), same for all F_i Kushnirenko: Number of complex solutions of a generic system in $(\mathbb{C}^{\times})^n$ is n!Vol (Δ)

Kushnirenko's Theorem

Sparse polynomial system:

 $(\star) F_1(t_1,\ldots,t_n) = F_2(t_1,\ldots,t_n) = \cdots = F_n(t_1,\ldots,t_n) = 0$

 $\Delta := \text{Newton Polytope}(F_i), \text{ same for all } F_i \\ \text{Kushnirenko: Number of complex solutions of a generic system in} \\ (\mathbb{C}^{\times})^n \text{ is } n! \text{Vol}(\Delta)$

Number of complex solutions $= 2! \cdot 3 = 6$ = number of triangles in a unimodular triangulation T_{Δ}

Hexagonal Example

Unimodular Balanced Triangulation:

$$c_0(1 + tu + t^2u^2) + c_1(t + tu^2) + c_2(u + t^2u) = 0$$

$$d_0(1 + tu + t^2u^2) + d_1(t + tu^2) + d_2(u + t^2u) = 0$$

Hexagonal Example

$$c_0(1 + tu + t^2u^2) + c_1(t + tu^2) + c_2(u + t^2u) = 0$$

$$d_0(1 + tu + t^2u^2) + d_1(t + tu^2) + d_2(u + t^2u) = 0$$

Signature $\sigma(T_{\Delta}) := |#$ yellow triangles - #white triangles |= 2

Hexagonal Example

$$c_0(1 + tu + t^2u^2) + c_1(t + tu^2) + c_2(u + t^2u) = 0$$

$$d_0(1 + tu + t^2u^2) + d_1(t + tu^2) + d_2(u + t^2u) = 0$$

Signature $\sigma(T_{\Delta}) := |#$ yellow triangles - #white triangles |= 2Theorem (S., Sottile)

Such a system has at least two real solutions.

Projective toric variety

 X_{Δ} – projective toric variety parametrized by the monomials in Δ , that is, X_{Δ} is the closure of the image of the map

$$\varphi_{\Delta} : \begin{array}{ccc} (\mathbb{C}^{\times})^n & \longrightarrow & \mathbb{P}^{\Delta} \\ (t_1, t_2, \dots, t_n) & \longmapsto & [t^m \mid m \in \Delta \cap \mathbb{Z}^n] \end{array}$$

$$\sum_{m\in\Delta\cap\mathbb{Z}^m}c_mt^m=0\longleftrightarrow\sum_{m\in\Delta\cap\mathbb{Z}^m}c_mx_m=0$$

System (*) \longleftrightarrow *n* linear equations on X_{Δ} solutions to (*) \longleftrightarrow $\Lambda \cap X_{\Delta}$ $\operatorname{codim} = n$ $\operatorname{dim} = n$

ヨト イヨト イヨト

Projection

 $E \subset \Lambda$ — real hyperplane disjoint from X_{Δ} $H(\simeq \mathbb{P}^n)$ — real linear subspace disjoint from E π — linear projection with center E

$$\pi : \mathbb{P}^{\Delta} - E \longrightarrow H,$$

$$x \longmapsto \operatorname{Span}(x, E) \cap H.$$

Solutions to (\star) are points $X_{\Delta} \cap \pi^{-1}(p)$, where $p := \pi(\Lambda)$.

Real Degree

over
$$\mathbb{R}$$
:
Set $Y_{\Delta} := \overline{\varphi_{\Delta}((\mathbb{R}^{\times})^n)}, \ \pi := \pi |_{Y_{\Delta}}.$
 $\pi \colon Y_{\Delta} \to \mathbb{RP}^n$
If Y_{Δ} and \mathbb{RP}^n are oriented, $\#\pi^{-1}(p) \ge \deg \pi$ and
 $\#$ real solutions of $(\star) \ge \deg \pi$

 $\varphi : (t,u) \longmapsto [1:t:u:tu:t^2u:tu^2:t^2u^2]$

Then the system is the linear section of $Y = \overline{\varphi((\mathbb{R}^{\times})^2)}$ by

$$7(x_0 + x_3 + x_6) - 3(x_1 + x_5) - 2(x_2 + x_4) = 0$$

$$3(x_0 + x_3 + x_6) + 5(x_1 + x_5) - 4(x_2 + x_4) = 0$$

 $\varphi : (t,u) \longmapsto [1:t:u:tu:t^2u:tu^2:t^2u^2]$

Then the system is the linear section of $Y = \overline{\varphi((\mathbb{R}^{\times})^2)}$ by

$$7(x_0 + x_3 + x_6) - 3(x_1 + x_5) - 2(x_2 + x_4) = 0$$

$$3(x_0 + x_3 + x_6) + 5(x_1 + x_5) - 4(x_2 + x_4) = 0$$

Further, replace $y_0 = x_0 + x_3 + x_6$, $y_1 = x_1 + x_5$, and $y_2 = x_2 + x_4$: $7y_0 - 3y_1 - 2y_2 = 0$ $3y_0 + 5y_1 - 4y_2 = 0$

Then $p = [y_0 : y_1 : y_2] = [1 : 1 : 2].$

Hexagonal Example: real degree

Real solutions are the preimages in Y of p = [1 : 1 : 2] under

If Y and \mathbb{RP}^2 were oriented, $\#\pi^{-1}(p) \ge \deg \pi$ and

Number of real solutions $\geq \deg \pi$

Kronecker

Proposition

If Y^+_{Δ} is orientable, the number of real solutions of (*) is bounded below by deg π^+ .

Questions

- When is the real toric variety Y_{Δ} orientable?
- When is its double cover in the sphere Y^+_{Λ} orientable?
- How to compute $deg \pi$ (at least for some systems)?

Orientability

Let Y be an abstract real toric variety defined by a fan Σ in \mathbb{Z}^n . Theorem (S., Sottile)

The smooth part of Y is orientable if and only if there exists a basis of $\{\pm 1\}^n$ such that $(-1)^v$ is a product of an odd number of basis vectors, for each primitive vector v lying on a ray of Σ .

Orientability

Let Y be an abstract real toric variety defined by a fan Σ in \mathbb{Z}^n . Theorem (S., Sottile)

The smooth part of Y is orientable if and only if there exists a basis of $\{\pm 1\}^n$ such that $(-1)^v$ is a product of an odd number of basis vectors, for each primitive vector v lying on a ray of Σ .

Let Y be a projective real toric variety defined by Δ in \mathbb{Z}^n and let Y^+ be its double cover in S^{Δ} .

Theorem (S., Sottile)

The smooth part of Y^+ is orientable if and only if there exists a basis of $\{\pm 1\}^{n+1}$ such that $(-1)^{(v,v\cdot F)}$ is a product of an odd number of basis vectors, for each primitive vector v normal to a facet F of Δ .

Examples

Cross Polytopes

$$\begin{split} \Delta &= \langle e_1, \cdots e_n, -e_1, \cdots, -e_n \rangle \\ \text{The rays of the normal fan are the vertices} \\ (\pm 1, \ldots, \pm 1) \text{ of the n-cube. Hence} \\ (-1)^{\nu} &= (-1, \ldots, -1) \text{, and } Y_{\Delta} \text{ is orientable.} \end{split}$$

Examples

Cross Polytopes

$$\begin{split} \Delta &= \langle e_1, \cdots e_n, -e_1, \cdots, -e_n \rangle \\ \text{The rays of the normal fan are the vertices} \\ (\pm 1, \ldots, \pm 1) \text{ of the n-cube. Hence} \\ (-1)^{\nu} &= (-1, \ldots, -1) \text{, and } Y_{\Delta} \text{ is orientable.} \end{split}$$

\mathbb{RP}^2

$$\begin{split} \mathbf{v} &= (1,1), (-1,0), (0,-1) \\ (-1,-1)^{\mathbf{v}} &= (-1,-1), (-1,1), (1,-1) \\ (-1,-1) &= (-1,1) \cdot (1,-1) \\ \Rightarrow \mathbb{RP}^2 \text{ is not orientable.} \\ (-1,-1,-1)^{(\mathbf{v},b)} &= (-1,-1,-1), (-1,1,1), \\ (1,-1,1) \\ \Rightarrow S^2 \text{ is orientable.} \end{split}$$

Y_{Σ} as a cell complex

Let Y_{Σ} be defined by a fan $\Sigma \subset \mathbb{R}^n$ with orbits $\mathcal{O}_{\sigma}(\mathbb{R})$. Then $\mathcal{O}_0(\mathbb{R}) \simeq \mathbb{T}^n = (\mathbb{R}^{\times})^n = (\mathbb{R}_{>0})^n \times \{\pm 1\}^n$. $\{\pm 1\}^n \subset \mathbb{T}^n$ acts on Y_{Σ} permuting 2^n components of $\mathcal{O}_0(\mathbb{R})$. Let Y_{\geq} be the closure of one of the components of $\mathcal{O}_0(\mathbb{R})$. Each $\mathcal{O}_{\sigma}(\mathbb{R})$ has a unique component (face) F_{σ} in Y_{\geq} . For each σ let $\overline{\sigma} \leq \{\pm 1\}^n$ be the integer pts of σ reduced mod 2.

Proposition

The real toric variety Y_{Σ} is obtained as the quotient of $Y_{\geq} \times \{\pm 1\}^n$ by the relation

 $(p,\xi) \sim (q,\eta) \Leftrightarrow p = q \text{ and } \xi \overline{\sigma} = \eta \overline{\sigma}, \text{ where } p \in F_{\sigma}.$

One can reveal the cell complex structure of Y^+_{Λ} in a similar way.

伺 ト イ ヨ ト イ ヨ ト

 Y_{Σ} is orientable $\Leftrightarrow H_n(Y_{\Sigma}, \mathbb{Z})$ is nontrivial.

Our computation for both real toric varieties and spherical real toric varieties follows Nakayama and Nishimura's argument, who characterized the orientability of small covers.

Toric Varieties from Order Polytopes

P poset, #P = n.

Def

The order polytope O(P) is the set of all $y = (y_a : a \in P) \in [0, 1]^n$ such that $y_a \leq y_b$ whenever $a \leq b$ in P.

Toric Varieties from Order Polytopes

P poset, #P = n.

Def

The order polytope O(P) is the set of all $y = (y_a : a \in P) \in [0, 1]^n$ such that $y_a \le y_b$ whenever $a \le b$ in P.

Theorem (S., Sottile)

 $Y_{O(P)}$ is orientable \Leftrightarrow all max chains of P have odd length.

Toric Varieties from Order Polytopes

P poset, #P = n.

Def

The order polytope O(P) is the set of all $y = (y_a : a \in P) \in [0, 1]^n$ such that $y_a \le y_b$ whenever $a \le b$ in P.

Theorem (S., Sottile)

 $Y_{O(P)}$ is orientable \Leftrightarrow all max chains of P have odd length.

Theorem (S., Sottile)

 $Y^+_{O(P)}$ is orientable \Leftrightarrow all max chains of P are of the same parity.

Computing the degree for some systems

Let the projection π be defined by the balanced triangulation T_{Δ} .

Computing the Degree: Degeneration

• A regular triangulation T_{Δ} of Δ gives rise to an \mathbb{R}^{\times} -action on \mathbb{P}^{Δ}

 $\lim_{t\to 0} t. Y_{\Delta} =: Y_0 = \text{Union of coordinate planes}$

- ► Each plane of Y₀ corresponds to a simplex in the regular triangulation.
- At the preimages on the planes that correspond to adjacent simplices, $d\pi$ has opposite signs.
- If the the toric degeneration t.Y_△ does not intersect center of projection,

 $\deg \pi = \sigma(T_{\Delta}) = |$ #yellow triangles – #white triangles |.

Computing the Degree: Degeneration

Deform Y_{Δ} (or Y_{Δ}^+) to a union of coordinate planes (or spheres):

deg $\pi = \sigma(T_{\Delta}) = |$ #yellow triangles – #white triangles| Difficulty: the deformation may intersect center of projection.

Theorem (Soprunova, Sottile)

Suppose that

- Y_{Δ}^+ is orientable
- the toric degeneration t. Y⁺_Δ does not intersect center of projection π

Then deg $\pi = \sigma(T_{\Delta})$ and the number of real solutions to (*) is at least $\sigma(T_{\Delta})$.

Poset Example

Poset Example, cont'd

Consider max chains of $\mathcal{J}(P)$:

Poset Example, cont'd

Consider max chains of $\mathcal{J}(P)$:

Sign imbalance $\sigma(P) := |\#$ even max chains -# odd max chains |= 2 $C_4 t_1 t_2 u_1 u_2 +$ $c_3(t_1t_2u_2 + t_2u_1u_2) +$ $c_2(t_1t_2 + t_2u_2 + u_1u_2) +$ $c_1(t_2 + u_2) +$ $c_0 = 0$

Poset Example, cont'd

Consider max chains of $\mathcal{J}(P)$:

Sign imbalance $\sigma(P) := |\#$ even max chains -# odd max chains |= 2 $C_4 t_1 t_2 u_1 u_2 +$ $c_3(t_1t_2u_2 + t_2u_1u_2) +$ $c_2(t_1t_2 + t_2u_2 + u_1u_2) +$ $c_1(t_2 + u_2) +$ $c_0 = 0$

Theorem(S., Sottile)

A system of 4 such real equations has at least $\sigma(P) = 2$ real solutions.

Polynomial Systems from Posets

- P finite poset, #P = n
- J upward closed subset of P

$$t^J = \prod_{a \in J} t_a$$
 monomial in $\mathbb{R}[t_a \mid a \in P]$

Polynomials of the form

$$(*)\sum_J c_{\#J}t^J=0, \qquad c_{\#J}\in \mathbb{R}^ imes$$

Sign-imbalance:

 $\sigma(P) := |\#$ even max chains in $\mathcal{J}(\mathcal{P}) - \#$ odd max chains in $\mathcal{J}(\mathcal{P})|$

Theorem (Soprunova, Sottile)

Suppose the maximal chains of P are all of the same parity. Then a system of n real polynomial equations of the form (*) has at least $\sigma(P)$ real solutions.

Sketch of the proof: the Order Polytope is behind this.

Poset P, #P = n.

- Vertices of the order polytope O(P) are char functions of upward closed subsets.
- Canonical triangulation:

 λ - linear extension, $\lambda(a_k) = k$, then

 $0 \leq f_{a_1} \leq f_{a_2} \leq \cdots \leq f_{a_n} \leq 1$

defines a simplex in O(P).

- This triangulation is balanced, regular, and unimodular. Its signature = σ(P).
- If all max chains are of the same parity, $Y_{O(P)}$ is orientable.
- The degeneration t.Y_{O(P)} does not intersect the center of projection.

通 と イ ヨ と イ ヨ と

Thank you!

Let Y be an abstract real toric variety defined by a fan Σ in \mathbb{Z}^n . Theorem (S., Sottile)

The smooth part of Y is orientable if and only if there exists a basis of $\{\pm 1\}^n$ such that $(-1)^v$ is a product of an odd number of basis vectors, for each primitive vector v lying on a ray of Σ .

Wronski map

 f_1, \ldots, f_p - real polynomials in one variable

$$W(f_1,...,f_p) = \begin{vmatrix} f_1 & \dots & f_p \\ f'_1 & \dots & f'_p \\ \vdots & & \vdots \\ f_1^{(p-1)} & \dots & f_p^{(p-1)} \end{vmatrix}$$

Let $\deg f_i \leq m + p - 1$, then

 $f_i \longleftrightarrow$ lin. form on \mathbb{R}^{m+p} $W(f_1, \dots, f_p) \longleftrightarrow$ vector of coeff in \mathbb{R}^{mp+1}

This induces the Wronski map

$$W: G(m, m+p) \longrightarrow \mathbb{RP}^{mp}$$

ヨト イヨト イヨト

Fact: In the Plucker imbedding, W is a restriction of a linear projection.

Theorem (Eremenko-Gabrielov)

 $\deg W = \sigma(G(m, m+p))$

We recover this result degenerating the Grassmannian to a toric variety.

Non-Unimodular Case

