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Polynomial system

F1(t1, . . . , tn) = 0

F2(t1, . . . , tn) = 0

· · ·
Fn(t1, . . . , tn) = 0

Bezout Theorem
The number of solutions of a complex generic system is the
product of the degrees of F1,F2, . . . ,Fn.

For a system with real coefficients let

d := # complex solutions r := # real solutions

d mod2 ≤ r ≤ d

Better lower bound?
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Kushnirenko’s Theorem

Sparse polynomial system:

(?) F1(t1, . . . , tn) = F2(t1, . . . , tn) = · · · = Fn(t1, . . . , tn) = 0

∆ :=Newton Polytope(Fi ), same for all Fi
Kushnirenko: Number of complex solutions of a generic system in
(C×)n is n!Vol(∆)

Number of complex solutions = 2! · 3 = 6
= number of triangles in a unimodular triangulation T∆
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Hexagonal Example

Unimodular Balanced Triangulation:

t1

t2utu

t2u2tu2

u

c0(1 + tu + t2u2) + c1(t + tu2) + c2(u + t2u) = 0

d0(1 + tu + t2u2) + d1(t + tu2) + d2(u + t2u) = 0

Signature σ(T∆) := |#yellow triangles−#white triangles |= 2

Theorem (S., Sottile)

Such a system has at least two real solutions.
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Projective toric variety

X∆ – projective toric variety parametrized by the monomials in ∆,
that is, X∆ is the closure of the image of the map

ϕ∆ :
(C×)n −→ P∆

(t1, t2, . . . , tn) 7−→ [tm | m ∈ ∆ ∩ Zn]

∑
m∈∆∩Zm

cmt
m = 0←→

∑
m∈∆∩Zm

cmxm = 0

System (?) ←→ n linear equations on X∆

solutions to (?) ←→ Λ ∩ X∆

codim = n dim = n

Jenya Soprunova (with Frank Sottile) Orientability of real toric varieties and lower bounds



Projection

E ⊂ Λ— real hyperplane disjoint from X∆

H(' Pn) — real linear subspace disjoint from E
π — linear projection with center E

π : P∆ − E −→ H,
x 7−→ Span(x ,E ) ∩ H .

X¢

p

¤

H

Solutions to (?) are points X∆ ∩ π−1(p), where p := π(Λ).
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Real Degree

over R:
Set Y∆ := ϕ∆((R×)n), π := π

∣∣
Y∆

.

π : Y∆ → RPn

If Y∆ and RPn are oriented, #π−1(p) ≥ degπ and

# real solutions of (?)≥ degπ

Y¢

p

¤
+

¡
+

RPn
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Hexagonal Example
7(1 + tu + t2u2)− 3(t + tu2)− 2(u + t2u) = 0

3(1 + tu + t2u2) + 5(t + tu2)− 4(u + t2u) = 0

ϕ : (t, u) 7−→ [1 : t : u : tu : t2u : tu2 : t2u2]
t1

t2utu

t2u2tu2

u

Then the system is the linear section of Y = ϕ((R×)2) by

7(x0 + x3 + x6)− 3(x1 + x5)− 2(x2 + x4) = 0

3(x0 + x3 + x6) + 5(x1 + x5)− 4(x2 + x4) = 0

Further, replace y0 = x0 + x3 + x6, y1 = x1 + x5, and
y2 = x2 + x4:

7y0 − 3y1 − 2y2 = 0

3y0 + 5y1 − 4y2 = 0

Then p = [y0 : y1 : y2] = [1 : 1 : 2].
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Hexagonal Example: real degree
Real solutions are the preimages in Y of p = [1 : 1 : 2] under

π :
RP6 −− → RP2 = {[y0 : y1 : y2]}

[x0 : · · · : x6] 7−→ [x0 + x3 + x6 : x1 + x5 : x2 + x4]

Y
p = [1 : 1 : 2]

¤
+

¡
+

RP2

π : Y → RP2

If Y and RP2 were oriented, #π−1(p) ≥ degπ and

Number of real solutions ≥ degπ
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Kronecker

Y∆ ⊂ RP∆
π

−−− → RPn

Y +
∆ ⊂ S∆

π+

−−− → Sn

? ? ?

Proposition

If Y +
∆ is orientable, the number of real solutions of (?) is bounded

below by deg π+.
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Questions

I When is the real toric variety Y∆ orientable?

I When is its double cover in the sphere Y +
∆ orientable?

I How to compute deg π (at least for some systems)?
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Orientability

Let Y be an abstract real toric variety defined by a fan Σ in Zn.

Theorem (S., Sottile)

The smooth part of Y is orientable if and only if there exists a
basis of {±1}n such that (−1)v is a product of an odd number of
basis vectors, for each primitive vector v lying on a ray of Σ.

Let Y be a projective real toric variety defined by ∆ in Zn and let
Y + be its double cover in S∆.

Theorem (S., Sottile)

The smooth part of Y + is orientable if and only if there exists a
basis of {±1}n+1 such that (−1)(v ,v ·F ) is a product of an odd
number of basis vectors, for each primitive vector v normal to a
facet F of ∆.
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Examples

Cross Polytopes

∆ = 〈e1, · · · en,−e1, · · · ,−en〉
The rays of the normal fan are the vertices
(±1, . . . ,±1) of the n-cube. Hence
(−1)v = (−1, . . . ,−1), and Y∆ is orientable.

RP2

v = (1, 1), (−1, 0), (0,−1)
(−1,−1)v = (−1,−1), (−1, 1), (1,−1)
(−1,−1) = (−1, 1) · (1,−1)
⇒ RP2 is not orientable.
(−1,−1,−1)(v ,b) = (−1,−1,−1), (−1, 1, 1),
(1,−1, 1)
⇒ S2 is orientable.
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YΣ as a cell complex

Let YΣ be defined by a fan Σ ⊂ Rn with orbits Oσ(R).
Then O0(R) ' Tn = (R×)n = (R>0)n × {±1}n.
{±1}n ⊂ Tn acts on YΣ permuting 2n components of O0(R).
Let Y≥ be the closure of one of the components of O0(R).
Each Oσ(R) has a unique component (face) Fσ in Y≥.
For each σ let σ ≤ {±1}n be the integer pts of σ reduced mod 2.

Proposition

The real toric variety YΣ is obtained as the quotient of
Y≥ × {±1}n by the relation

(p, ξ) ∼ (q, η)⇔ p = q and ξσ = ησ, where p ∈ Fσ.

One can reveal the cell complex structure of Y +
∆ in a similar way.
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YΣ is orientable ⇔ Hn(YΣ,Z) is nontrivial.
Our computation for both real toric varieties and spherical real
toric varieties follows Nakayama and Nishimura’s argument, who
characterized the orientability of small covers.
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Toric Varieties from Order Polytopes

P poset, #P = n.

Def
The order polytope O(P) is the set of all y = (ya : a ∈ P) ∈ [0, 1]n

such that ya ≤ yb whenever a ≤ b in P.

Theorem (S., Sottile)

YO(P) is orientable ⇔ all max chains of P have odd length.

Theorem (S., Sottile)

Y +
O(P) is orientable ⇔ all max chains of P are of the same parity.
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Computing the degree for some systems

Let the projection π be defined by the balanced triangulation T∆.

t1

t2utu

t2u2tu2

u

π :
RP6 −→ RP2 = {[y0 : y1 : y2]}

[x0 : · · · : x6] 7−→ [x0 + x3 + x6 : x1 + x5 : x2 + x4]
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Computing the Degree: Degeneration

I A regular triangulation T∆ of ∆ gives rise to an R×-action on
P∆

lim
t→0

t.Y∆ =: Y0 = Union of coordinate planes

I Each plane of Y0 corresponds to a simplex in the regular
triangulation.

I At the preimages on the planes that correspond to adjacent
simplices, dπ has opposite signs.

I If the the toric degeneration t.Y∆ does not intersect center of
projection,
deg π = σ(T∆) = |#yellow triangles−#white triangles |.
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Computing the Degree: Degeneration

Deform Y∆ (or Y +
∆ ) to a union of coordinate planes (or spheres):

+

-

p

Y¢

yellow
triangle

white
triangle

degπ = σ(T∆) = |#yellow triangles−#white triangles|
Difficulty: the deformation may intersect center of projection.
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Theorem (Soprunova, Sottile)

Suppose that

I Y +
∆ is orientable

I the toric degeneration t.Y +
∆ does not intersect center of

projection π

Then deg π = σ(T∆) and the number of real solutions to (?) is at
least σ(T∆).
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Poset Example

t1

t2

u1

u2

P =

;

ft2g fu2g

ft1; t2g ft2;u2g fu1;u2g

ft1; t2;u2g ft2;u1;u2g

ft1; t2;u1;u2g

J(P) =

c4t1t2u1u2+
c3(t1t2u2 + t2u1u2)+

c2(t1t2 + t2u2 + u1u2)+

c1(t2 + u2)+
c0 = 0
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Poset Example, cont’d
Consider max chains of J (P):

+ − + + − +

Sign imbalance σ(P) := |#even max chains −#odd max chains | = 2

c4t1t2u1u2+
c3(t1t2u2 + t2u1u2)+

c2(t1t2 + t2u2 + u1u2)+

c1(t2 + u2)+
c0 = 0

Theorem(S., Sottile)

A system of 4 such real equations has at least σ(P) = 2 real
solutions.
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Polynomial Systems from Posets

P - finite poset, #P = n
J - upward closed subset of P

tJ =
∏
a∈J

ta monomial in R[ta | a ∈ P]

Polynomials of the form

(∗)
∑
J

c#Jt
J = 0, c#J ∈ R×
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Poset Theorem

Sign-imbalance:
σ(P) := |#even max chains in J (P)−#odd max chains in J (P)|

Theorem (Soprunova, Sottile)

Suppose the maximal chains of P are all of the same parity. Then
a system of n real polynomial equations of the form (∗) has at
least σ(P) real solutions.
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Sketch of the proof: the Order Polytope is behind this.

Poset P, #P = n.

I Vertices of the order polytope O(P) are char functions of
upward closed subsets.

I Canonical triangulation:
λ - linear extension, λ(ak) = k, then

0 ≤ fa1 ≤ fa2 ≤ · · · ≤ fan ≤ 1

defines a simplex in O(P).

I This triangulation is balanced, regular, and unimodular. Its
signature = σ(P).

I If all max chains are of the same parity, YO(P) is orientable.

I The degeneration t.YO(P) does not intersect the center of
projection.
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Thank you!

Let Y be an abstract real toric variety defined by a fan Σ in Zn.

Theorem (S., Sottile)

The smooth part of Y is orientable if and only if there exists a
basis of {±1}n such that (−1)v is a product of an odd number of
basis vectors, for each primitive vector v lying on a ray of Σ.
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Wronski map

f1, . . . , fp - real polynomials in one variable

W (f1, . . . , fp) =

∣∣∣∣∣∣∣∣∣
f1 . . . fp
f ′1 . . . f ′p
...

...

f
(p−1)

1 . . . f
(p−1)
p

∣∣∣∣∣∣∣∣∣
Let deg fi ≤ m + p − 1, then

fi ←→ lin. form on Rm+p

W (f1, . . . , fp) ←→ vector of coeff in Rmp+1

This induces the Wronski map

W : G (m,m + p) −→ RPmp
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Eremenko-Gabrielov Theorem

Fact: In the Plucker imbedding, W is a restriction of a linear
projection.

Theorem (Eremenko-Gabrielov)

degW = σ(G (m,m + p))

We recover this result degenerating the Grassmannian to a toric
variety.
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Non-Unimodular Case

σ(P) =|#yellow odd−#white odd|
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