Orientability of real toric varieties and lower bounds for real polynomial systems

AMS MEETING, AKRON

Jenya Soprunova
(with Frank Sottile)

Kent State University

October 21, 2012

Polynomial system

$$
\begin{aligned}
F_{1}\left(t_{1}, \ldots, t_{n}\right) & =0 \\
F_{2}\left(t_{1}, \ldots, t_{n}\right) & =0 \\
& \ldots \\
F_{n}\left(t_{1}, \ldots, t_{n}\right) & =0
\end{aligned}
$$

Bezout Theorem
The number of solutions of a complex generic system is the product of the degrees of $F_{1}, F_{2}, \ldots, F_{n}$.

Polynomial system

$$
\begin{aligned}
F_{1}\left(t_{1}, \ldots, t_{n}\right) & =0 \\
F_{2}\left(t_{1}, \ldots, t_{n}\right) & =0 \\
& \ldots \\
F_{n}\left(t_{1}, \ldots, t_{n}\right) & =0
\end{aligned}
$$

Bezout Theorem

The number of solutions of a complex generic system is the product of the degrees of $F_{1}, F_{2}, \ldots, F_{n}$.
For a system with real coefficients let

$$
\begin{gathered}
d:=\# \text { complex solutions } \quad r:=\# \text { real solutions } \\
d \bmod 2 \leq r \leq d
\end{gathered}
$$

Polynomial system

$$
\begin{aligned}
F_{1}\left(t_{1}, \ldots, t_{n}\right) & =0 \\
F_{2}\left(t_{1}, \ldots, t_{n}\right) & =0 \\
& \ldots \\
F_{n}\left(t_{1}, \ldots, t_{n}\right) & =0
\end{aligned}
$$

Bezout Theorem

The number of solutions of a complex generic system is the product of the degrees of $F_{1}, F_{2}, \ldots, F_{n}$.

For a system with real coefficients let

$$
\begin{gathered}
d:=\# \text { complex solutions } \quad r:=\# \text { real solutions } \\
d \bmod 2 \leq r \leq d
\end{gathered}
$$

Better lower bound?

Kushnirenko's Theorem

Sparse polynomial system:
$(\star) F_{1}\left(t_{1}, \ldots, t_{n}\right)=F_{2}\left(t_{1}, \ldots, t_{n}\right)=\cdots=F_{n}\left(t_{1}, \ldots, t_{n}\right)=0$
$\Delta:=$ Newton Polytope $\left(F_{i}\right)$, same for all F_{i}
Kushnirenko: Number of complex solutions of a generic system in $\left(\mathbb{C}^{\times}\right)^{n}$ is $n!\operatorname{Vol}(\Delta)$

Kushnirenko's Theorem

Sparse polynomial system:
$(\star) F_{1}\left(t_{1}, \ldots, t_{n}\right)=F_{2}\left(t_{1}, \ldots, t_{n}\right)=\cdots=F_{n}\left(t_{1}, \ldots, t_{n}\right)=0$
$\Delta:=$ Newton Polytope $\left(F_{i}\right)$, same for all F_{i}
Kushnirenko: Number of complex solutions of a generic system in $\left(\mathbb{C}^{\times}\right)^{n}$ is $n!\operatorname{Vol}(\Delta)$

Number of complex solutions $=2!\cdot 3=6$
$=$ number of triangles in a unimodular triangulation T_{Δ}

Hexagonal Example

Unimodular Balanced Triangulation:

$$
\begin{aligned}
& c_{0}\left(1+t u+t^{2} u^{2}\right)+c_{1}\left(t+t u^{2}\right)+c_{2}\left(u+t^{2} u\right)=0 \\
& d_{0}\left(1+t u+t^{2} u^{2}\right)+d_{1}\left(t+t u^{2}\right)+d_{2}\left(u+t^{2} u\right)=0
\end{aligned}
$$

Hexagonal Example

Unimodular Balanced Triangulation:

$$
\begin{aligned}
& c_{0}\left(1+t u+t^{2} u^{2}\right)+c_{1}\left(t+t u^{2}\right)+c_{2}\left(u+t^{2} u\right)=0 \\
& d_{0}\left(1+t u+t^{2} u^{2}\right)+d_{1}\left(t+t u^{2}\right)+d_{2}\left(u+t^{2} u\right)=0
\end{aligned}
$$

Signature $\sigma\left(T_{\Delta}\right):=\mid \#$ yellow triangles $-\#$ white triangles $\mid=2$

Hexagonal Example

Unimodular Balanced Triangulation:

$$
\begin{aligned}
& c_{0}\left(1+t u+t^{2} u^{2}\right)+c_{1}\left(t+t u^{2}\right)+c_{2}\left(u+t^{2} u\right)=0 \\
& d_{0}\left(1+t u+t^{2} u^{2}\right)+d_{1}\left(t+t u^{2}\right)+d_{2}\left(u+t^{2} u\right)=0
\end{aligned}
$$

Signature $\sigma\left(T_{\Delta}\right):=\mid \#$ yellow triangles $-\#$ white triangles $\mid=2$
Theorem (S., Sottile)
Such a system has at least two real solutions.

Projective toric variety

X_{Δ} - projective toric variety parametrized by the monomials in Δ, that is, X_{Δ} is the closure of the image of the map

$$
\left.\begin{array}{rl}
\left(\mathbb{C}^{\times}\right)^{n} & \longrightarrow \mathbb{P}^{\Delta} \\
\varphi_{\Delta}: & \left.t_{1}, t_{2}, \ldots, t_{n}\right)
\end{array}\right)\left[t^{m} \mid m \in \Delta \cap \mathbb{Z}^{n}\right]
$$

$$
\sum_{m \in \Delta \cap \mathbb{Z}^{m}} c_{m} t^{m}=0 \longleftrightarrow \sum_{m \in \Delta \cap \mathbb{Z}^{m}} c_{m} x_{m}=0
$$

System (\star)	\longleftrightarrow	n linear equations	on	X_{Δ}
solutions to (\star)	\longleftrightarrow	Λ	\cap	X_{Δ}
		codim $=n$		$\operatorname{dim}=n$

Projection

$E \subset \Lambda$ - real hyperplane disjoint from X_{Δ} $H\left(\simeq \mathbb{P}^{n}\right)$ - real linear subspace disjoint from E π - linear projection with center E

$$
\begin{aligned}
\pi: \mathbb{P}^{\Delta}-E & \longrightarrow H, \\
x & \longmapsto \operatorname{Span}(x, E) \cap H .
\end{aligned}
$$

Solutions to (\star) are points $X_{\Delta} \cap \pi^{-1}(p)$, where $p:=\pi(\Lambda)$.

Real Degree

over \mathbb{R} :
Set $Y_{\Delta}:=\overline{\varphi_{\Delta}\left(\left(\mathbb{R}^{\times}\right)^{n}\right)}, \pi:=\left.\pi\right|_{Y_{\Delta}}$.

$$
\pi: Y_{\Delta} \rightarrow \mathbb{R} \mathbb{P}^{n}
$$

If Y_{Δ} and $\mathbb{R} \mathbb{P}^{n}$ are oriented, $\# \pi^{-1}(p) \geq \operatorname{deg} \pi$ and

$$
\# \text { real solutions of }(\star) \geq \operatorname{deg} \pi
$$

Hexagonal Example

$$
\begin{aligned}
& 7\left(1+t u+t^{2} u^{2}\right)-3\left(t+t u^{2}\right)-2\left(u+t^{2} u\right)=0 \\
& 3\left(1+t u+t^{2} u^{2}\right)+5\left(t+t u^{2}\right)-4\left(u+t^{2} u\right)=0
\end{aligned}
$$

$\varphi:(t, u) \longmapsto\left[1: t: u: t u: t^{2} u: t u^{2}: t^{2} u^{2}\right]$
Then the system is the linear section of $Y=\overline{\varphi\left(\left(\mathbb{R}^{\times}\right)^{2}\right)}$ by

$$
\begin{aligned}
& 7\left(x_{0}+x_{3}+x_{6}\right)-3\left(x_{1}+x_{5}\right)-2\left(x_{2}+x_{4}\right)=0 \\
& 3\left(x_{0}+x_{3}+x_{6}\right)+5\left(x_{1}+x_{5}\right)-4\left(x_{2}+x_{4}\right)=0
\end{aligned}
$$

Hexagonal Example

$$
\begin{aligned}
& 7\left(1+t u+t^{2} u^{2}\right)-3\left(t+t u^{2}\right)-2\left(u+t^{2} u\right)=0 \\
& 3\left(1+t u+t^{2} u^{2}\right)+5\left(t+t u^{2}\right)-4\left(u+t^{2} u\right)=0
\end{aligned}
$$

$\varphi:(t, u) \longmapsto\left[1: t: u: t u: t^{2} u: t u^{2}: t^{2} u^{2}\right]$
Then the system is the linear section of $Y=\overline{\varphi\left(\left(\mathbb{R}^{\times}\right)^{2}\right)}$ by

$$
\begin{aligned}
& 7\left(x_{0}+x_{3}+x_{6}\right)-3\left(x_{1}+x_{5}\right)-2\left(x_{2}+x_{4}\right)=0 \\
& 3\left(x_{0}+x_{3}+x_{6}\right)+5\left(x_{1}+x_{5}\right)-4\left(x_{2}+x_{4}\right)=0
\end{aligned}
$$

Further, replace $y_{0}=x_{0}+x_{3}+x_{6}, y_{1}=x_{1}+x_{5}$, and
$y_{2}=x_{2}+x_{4}$:

$$
\begin{aligned}
& 7 y_{0}-3 y_{1}-2 y_{2}=0 \\
& 3 y_{0}+5 y_{1}-4 y_{2}=0
\end{aligned}
$$

Then $p=\left[y_{0}: y_{1}: y_{2}\right]=[1: 1: 2]$.

Hexagonal Example: real degree

Real solutions are the preimages in Y of $p=[1: 1: 2]$ under

$$
\pi: \begin{array}{rcl}
\quad \mathbb{R} \mathbb{P}^{6} & --\rightarrow & \mathbb{R P}^{2}=\left\{\left[y_{0}: y_{1}: y_{2}\right]\right\} \\
{\left[x_{0}: \cdots: x_{6}\right]} & \longmapsto & {\left[x_{0}+x_{3}+x_{6}: x_{1}+x_{5}: x_{2}+x_{4}\right]}
\end{array}
$$

$\pi: Y \rightarrow \mathbb{R} \mathbb{P}^{2}$
If Y and $\mathbb{R P}^{2}$ were oriented, $\# \pi^{-1}(p) \geq \operatorname{deg} \pi$ and
Number of real solutions $\geq \operatorname{deg} \pi$

Kronecker

Proposition
If Y_{Δ}^{+}is orientable, the number of real solutions of (\star) is bounded below by $\operatorname{deg} \pi^{+}$.

Questions

- When is the real toric variety Y_{Δ} orientable?
- When is its double cover in the sphere Y_{Δ}^{+}orientable?
- How to compute $\operatorname{deg} \pi$ (at least for some systems)?

Orientability

Let Y be an abstract real toric variety defined by a fan Σ in \mathbb{Z}^{n}.
Theorem (S., Sottile)
The smooth part of Y is orientable if and only if there exists a basis of $\{ \pm 1\}^{n}$ such that $(-1)^{v}$ is a product of an odd number of basis vectors, for each primitive vector v lying on a ray of Σ.

Orientability

Let Y be an abstract real toric variety defined by a fan Σ in \mathbb{Z}^{n}.
Theorem (S., Sottile)
The smooth part of Y is orientable if and only if there exists a basis of $\{ \pm 1\}^{n}$ such that $(-1)^{v}$ is a product of an odd number of basis vectors, for each primitive vector v lying on a ray of Σ.

Let Y be a projective real toric variety defined by Δ in \mathbb{Z}^{n} and let Y^{+}be its double cover in S^{Δ}.

Theorem (S., Sottile)

The smooth part of Y^{+}is orientable if and only if there exists a basis of $\{ \pm 1\}^{n+1}$ such that $(-1)^{(v, v \cdot F)}$ is a product of an odd number of basis vectors, for each primitive vector v normal to a facet F of Δ.

Examples

Cross Polytopes
$\Delta=\left\langle e_{1}, \cdots e_{n},-e_{1}, \cdots,-e_{n}\right\rangle$
The rays of the normal fan are the vertices $(\pm 1, \ldots, \pm 1)$ of the n-cube. Hence $(-1)^{\vee}=(-1, \ldots,-1)$, and Y_{Δ} is orientable.

Examples

Cross Polytopes
$\Delta=\left\langle e_{1}, \cdots e_{n},-e_{1}, \cdots,-e_{n}\right\rangle$
The rays of the normal fan are the vertices $(\pm 1, \ldots, \pm 1)$ of the n-cube. Hence $(-1)^{v}=(-1, \ldots,-1)$, and Y_{Δ} is orientable.

$\mathbb{R P}^{2}$
$v=(1,1),(-1,0),(0,-1)$
$(-1,-1)^{v}=(-1,-1),(-1,1),(1,-1)$
$(-1,-1)=(-1,1) \cdot(1,-1)$
$\Rightarrow \mathbb{R P}^{2}$ is not orientable.
$(-1,-1,-1)^{(v, b)}=(-1,-1,-1),(-1,1,1)$,
$(1,-1,1)$

$\Rightarrow S^{2}$ is orientable.

Y_{Σ} as a cell complex

Let Y_{Σ} be defined by a fan $\Sigma \subset \mathbb{R}^{n}$ with orbits $\mathcal{O}_{\sigma}(\mathbb{R})$.
Then $\mathcal{O}_{0}(\mathbb{R}) \simeq \mathbb{T}^{n}=\left(\mathbb{R}^{\times}\right)^{n}=\left(\mathbb{R}_{>0}\right)^{n} \times\{ \pm 1\}^{n}$.
$\{ \pm 1\}^{n} \subset \mathbb{T}^{n}$ acts on Y_{Σ} permuting 2^{n} components of $\mathcal{O}_{0}(\mathbb{R})$.
Let Y_{\geq}be the closure of one of the components of $\mathcal{O}_{0}(\mathbb{R})$.
Each $\mathcal{O}_{\sigma}(\mathbb{R})$ has a unique component (face) F_{σ} in Y_{\geq}.
For each σ let $\bar{\sigma} \leq\{ \pm 1\}^{n}$ be the integer pts of σ reduced $\bmod 2$.

Proposition

The real toric variety Y_{Σ} is obtained as the quotient of $Y_{\geq} \times\{ \pm 1\}^{n}$ by the relation

$$
(p, \xi) \sim(q, \eta) \Leftrightarrow p=q \text { and } \xi \bar{\sigma}=\eta \bar{\sigma}, \text { where } p \in F_{\sigma}
$$

One can reveal the cell complex structure of Y_{Δ}^{+}in a similar way.
Y_{Σ} is orientable $\Leftrightarrow H_{n}\left(Y_{\Sigma}, \mathbb{Z}\right)$ is nontrivial.
Our computation for both real toric varieties and spherical real toric varieties follows Nakayama and Nishimura's argument, who characterized the orientability of small covers.

Toric Varieties from Order Polytopes

P poset, $\# P=n$.
Def
The order polytope $O(P)$ is the set of all $y=\left(y_{a}: a \in P\right) \in[0,1]^{n}$ such that $y_{a} \leq y_{b}$ whenever $a \leq b$ in P.

Toric Varieties from Order Polytopes

P poset, $\# P=n$.
Def
The order polytope $O(P)$ is the set of all $y=\left(y_{a}: a \in P\right) \in[0,1]^{n}$ such that $y_{a} \leq y_{b}$ whenever $a \leq b$ in P.

Theorem (S., Sottile)
$Y_{O(P)}$ is orientable \Leftrightarrow all max chains of P have odd length.

Toric Varieties from Order Polytopes

P poset, $\# P=n$.
Def
The order polytope $O(P)$ is the set of all $y=\left(y_{a}: a \in P\right) \in[0,1]^{n}$ such that $y_{a} \leq y_{b}$ whenever $a \leq b$ in P.

Theorem (S., Sottile)
$Y_{O(P)}$ is orientable \Leftrightarrow all max chains of P have odd length.
Theorem (S., Sottile)
$Y_{O(P)}^{+}$is orientable \Leftrightarrow all max chains of P are of the same parity.

Computing the degree for some systems

Let the projection π be defined by the balanced triangulation T_{Δ}.

π :

$$
\begin{aligned}
\mathbb{R P}^{6} & \longrightarrow \mathbb{R}^{2}=\left\{\left[y_{0}: y_{1}: y_{2}\right]\right\} \\
{\left[x_{0}: \cdots: x_{6}\right] } & \longmapsto\left[x_{0}+x_{3}+x_{6}: x_{1}+x_{5}: x_{2}+x_{4}\right]
\end{aligned}
$$

Computing the Degree: Degeneration

- A regular triangulation T_{Δ} of Δ gives rise to an \mathbb{R}^{\times}-action on \mathbb{P}^{Δ}

$$
\lim _{t \rightarrow 0} t . Y_{\Delta}=: Y_{0}=\text { Union of coordinate planes }
$$

- Each plane of Y_{0} corresponds to a simplex in the regular triangulation.
- At the preimages on the planes that correspond to adjacent simplices, $d \pi$ has opposite signs.
- If the the toric degeneration $t . Y_{\Delta}$ does not intersect center of projection, $\operatorname{deg} \pi=\sigma\left(T_{\Delta}\right)=\mid \#$ yellow triangles $-\#$ white triangles \mid.

Computing the Degree: Degeneration

Deform $Y_{\Delta}\left(\right.$ or $\left.Y_{\Delta}^{+}\right)$to a union of coordinate planes (or spheres):

$\operatorname{deg} \pi=\sigma\left(T_{\Delta}\right)=\mid \#$ yellow triangles $-\#$ white triangles \mid
Difficulty: the deformation may intersect center of projection.

Theorem (Soprunova, Sottile)
Suppose that

- Y_{Δ}^{+}is orientable
- the toric degeneration $t . Y_{\Delta}^{+}$does not intersect center of projection π
Then $\operatorname{deg} \pi=\sigma\left(T_{\Delta}\right)$ and the number of real solutions to (\star) is at least $\sigma\left(T_{\Delta}\right)$.

Poset Example

Poset Example, cont'd

Consider max chains of $\mathcal{J}(P)$:

Poset Example, cont'd

Consider max chains of $\mathcal{J}(P)$:

Sign imbalance $\sigma(P):=\mid \#$ even max chains -\#odd max chains $\mid=2$

$$
\begin{gathered}
c_{4} t_{1} t_{2} u_{1} u_{2}+ \\
c_{3}\left(t_{1} t_{2} u_{2}+t_{2} u_{1} u_{2}\right)+ \\
c_{2}\left(t_{1} t_{2}+t_{2} u_{2}+u_{1} u_{2}\right)+ \\
c_{1}\left(t_{2}+u_{2}\right)+ \\
c_{0}=0
\end{gathered}
$$

Poset Example, cont'd

Consider max chains of $\mathcal{J}(P)$:

Sign imbalance $\sigma(P):=\mid \#$ even max chains $-\#$ odd max chains $\mid=2$

$$
\begin{gathered}
c_{4} t_{1} t_{2} u_{1} u_{2}+ \\
c_{3}\left(t_{1} t_{2} u_{2}+t_{2} u_{1} u_{2}\right)+ \\
c_{2}\left(t_{1} t_{2}+t_{2} u_{2}+u_{1} u_{2}\right)+ \\
c_{1}\left(t_{2}+u_{2}\right)+ \\
c_{0}=0
\end{gathered}
$$

Theorem(S., Sottile)
A system of 4 such real equations has at least $\sigma(P)=2$ real solutions.

Polynomial Systems from Posets

P - finite poset, $\# P=n$
J - upward closed subset of P

$$
t^{J}=\prod_{a \in J} t_{a} \quad \text { monomial in } \mathbb{R}\left[t_{a} \mid a \in P\right]
$$

Polynomials of the form

$$
(*) \sum_{J} c_{\# J} t^{J}=0, \quad c_{\# J} \in \mathbb{R}^{\times}
$$

Poset Theorem

Sign-imbalance:
$\sigma(P):=\mid \#$ even max chains in $\mathcal{J}(\mathcal{P})-\#$ odd max chains in $\mathcal{J}(\mathcal{P}) \mid$
Theorem (Soprunova, Sottile)
Suppose the maximal chains of P are all of the same parity. Then a system of n real polynomial equations of the form $(*)$ has at least $\sigma(P)$ real solutions.

Sketch of the proof: the Order Polytope is behind this.

Poset $P, \# P=n$.

- Vertices of the order polytope $O(P)$ are char functions of upward closed subsets.
- Canonical triangulation:
λ - linear extension, $\lambda\left(a_{k}\right)=k$, then

$$
0 \leq f_{a_{1}} \leq f_{a_{2}} \leq \cdots \leq f_{a_{n}} \leq 1
$$

defines a simplex in $O(P)$.

- This triangulation is balanced, regular, and unimodular. Its signature $=\sigma(P)$.
- If all max chains are of the same parity, $Y_{O(P)}$ is orientable.
- The degeneration $t . Y_{O(P)}$ does not intersect the center of projection.

Thank you!

Let Y be an abstract real toric variety defined by a fan Σ in \mathbb{Z}^{n}.
Theorem (S., Sottile)
The smooth part of Y is orientable if and only if there exists a basis of $\{ \pm 1\}^{n}$ such that $(-1)^{v}$ is a product of an odd number of basis vectors, for each primitive vector v lying on a ray of Σ.

Wronski map

f_{1}, \ldots, f_{p} - real polynomials in one variable

$$
W\left(f_{1}, \ldots, f_{p}\right)=\left|\begin{array}{ccc}
f_{1} & \ldots & f_{p} \\
f_{1}^{\prime} & \ldots & f_{p}^{\prime} \\
\vdots & & \vdots \\
f_{1}^{(p-1)} & \ldots & f_{p}^{(p-1)}
\end{array}\right|
$$

Let $\operatorname{deg} f_{i} \leq m+p-1$, then

$$
\begin{aligned}
& f_{i} \longleftrightarrow \\
& W\left(f_{1}, \ldots, f_{p}\right) \longleftrightarrow \text { lin. form on } \mathbb{R}^{m+p} \\
& \text { vector of coeff in } \mathbb{R}^{m p+1}
\end{aligned}
$$

This induces the Wronski map

$$
W: G(m, m+p) \longrightarrow \mathbb{R P}^{m p}
$$

Eremenko-Gabrielov Theorem

Fact: In the Plucker imbedding, W is a restriction of a linear projection.

Theorem (Eremenko-Gabrielov)

$$
\operatorname{deg} W=\sigma(G(m, m+p))
$$

We recover this result degenerating the Grassmannian to a toric variety.

Non-Unimodular Case

$\sigma(P)=\mid \#$ yellow odd $-\#$ white odd \mid

