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e algebro-geometric ——  combinatorial/polytopal
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1. The support of Trop(X):

e (algebraic) {w e Q":in,lx # C[Z"]} =
e (geometric)
{weQ":Jagermofacurve z(t) = Zt~ + l.o.t. in X}

2. The weighting function: my (w) = the sum of the
multiplicities of minimal associate prime ideals of in,lx

Example
X =V((@+x+Y)?)..
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Tropical Severi Varieties

e Se\(A,)) =
{ complex plane curves V (f) with ¢ nodes,Newton(f) =

A} (A

a polygon ,$ € N)

e Found a partial description of  Trop(SeYA, 9)) in terms of
the polygon, A.
e Applications:
1. Mikhalkin’s Correspondence theorem:

a major work in tropical mathematics(2005).

“Counting complex curves (GW invariants) is equal to
counting tropical curves.”

Direct counting (Purely combinatorial)— Intersection number
of Trop(SeVA, §))

2. Secondary Fans:
e Gelfand, Kapranov, Zelevinsky (1994)

complete fans in real vector spaces

Rich connections to algebraic geometry

Found a criteria when Trop(SeA, §)) fails to be a subfan of
a Secondary fan.
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Letr = dim(SeV A, d)).
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2.
3.

If rank(w) > r, w ¢ Trop(SeyA, 9)).
If rank(w) =r and w € Trop(SeV(A, d)), A, is simple-nodal.
If w € Trop(SeVA, §)) is regular with the maximal rank r,

iane\(A, 5) “set VAM

Mseya,s5)(w) = (V) - ﬁlength(Edges(Aw)).

Letp = {p1,...,pr} C ((K*)?)", generic (K = Up>1C(t*/M)).
Trop(L(p))NTrop(SeV A, §)) < {tropical curves passing points inVal (p)

m(w; Trop(L(p)), Trop(Seu A, d))) = [] 2area(Triangles).

If 3w € Trop(SeW A, §)) with maximal rank, not extending to a
concave function on A, then Trop(SeW A, §)) cannot be a subfan
of SecFan(A, A N Z?).
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First Application: Degree of Se(A, §)

m(w; Trop(L(p)), Trop(SeV A, §)))

= Mgp)(w) - Msey(a,1) (W) - §(w; 71, T2)
(£(p)) =1.2.2=4
Trop(L(p
(combinatorial formula for £

is also found in (Y,11))

Mikhalkin’s multiplicity of 7,
:= [[a, 2area(Triangles)
=2.-2=4
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Second Application: Secondary Fans

SecFan(A, A) is a complete fan in R4 parameterizing
regular marked subdivisions of (A, A). (Discriminantal
variety, Chow quotient, etc)

Trop(Sev (A, 1)) is a subfan of SecFan(A, A N Z?)
What about SeV(A, 9) for general §?
¢ A counterexample is found by E.Katz(2008).

Theorem (Y,11)

If 3w € Trop(SeV A, ¢)) with maximal rank which does not
extend to a concave function on A, then Trop(Se|A, §)) cannot
be a subfan of SecFan(A, A N Z?).



[Yangl] J.Yang, Initial Schemes of Very Affine Severi Varieties.
arXiv:1108.5839

[Yang2] J.Yang, Some Parameter Spaces of Curves on Toric
Surfaces, Their tropicalizations and Degrees. In preparation.

Thank you!
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supp(71) Nsupp(7z)

The tropical intersection multiplicity of 7; and 7, at w is
m(w) =m(w; T, 72) == M7 (w) - M7 (w) - §(w; T, T2),

where {(w; 71, 72), is the volume of the parallelepiped
constructed by the fundamental cells of the lattices
LNz, (i=1,2).



Algebraic Geometry

Tropical Geometry

very affine varieties

tropical varieties: balanced weighted
rational polyhedral complex c R"

X C (C) —

sTrop(X), tropicalization of X
e dim(X) = dim(Trop(X))
e Trop(Xy UXy) = Trop(Xy) + Trop(Xz)
o Trop(Xy NgXy) = Trop(Xy) - Trop(Xz)
for generic g € (C*)"
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e s € Edges(S(A)) = fs is a pure power of a binomial,
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e Ajis atrangle = fa, defines a rational curve which is
unibranch at each intersection point with the boundary
divisors of the toric surface Xa;
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in,SevA, ) Vs Vo, o
Definition

Let S(A) : Ay U--- U Ay be a nodal subdivision of A.

f € V‘S(A)w,nodal - PA <

e s € Edges(S(A)) = fs is a pure power of a binomial,
xayb(axc + ﬁyd)|s\;

e Ajis atrangle = f, defines a rational curve which has a
unibranch at each intersection point with the boundary
divisors of the toric surface Xu,;

 Ajis a parallelogram =- f5; has the form
x<y!(ax? + ByP)P(x© + dy )9

Theorem
Vs(A). naa 1S @ translation of a closed subgroup Gs(a),, o Of
an algebraic torus.



&1 & & & & &

M | Fm -2 1 1 0 0 O
58~ F, 0 -1 0 4 1 O
F; 0 0 -1 0 -1 2

a; f1 az B2 az B3
M B s1p 1 2 -1 -2 0 0
oMt T 1 555 1 0 0O 0 -1 O
s,3 0 0 -1 2 1 -2

The Smith Normal Forms of Mys(a) and Mys(a) pr Coincide to

each other as :

Thus V5(a) is a union of two translations of 3-dimensional
subtorus of Ta.

O O
o r o
N OO
oNoNe]
O oo
o oo



