Tropical Severi Varieties and Applications

Jihyeon Jessie Yang McMaster University

October 20, 2012

"Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."

Ex.
$$f = 1 + x + y^2 + z^2$$

 $x(t) = x_0 t^u + l.o.t.,$
 $y(t) = y_0 t^v + l.o.t.,$
 $z(t) = z_0 t^w + l.o.t.$
 $(t \to \infty)$
 $f_{(u,v,w)} = y^2 + z^2$: two $(\mathbb{C}^*)^2$

"Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."

Ex.
$$f = 1 + x + y^2 + z^2$$

 $x(t) = x_0 t^{u} + l.o.t.,$
 $y(t) = y_0 t^{v} + l.o.t.,$
 $z(t) = z_0 t^{w} + l.o.t.$
 $(t \to \infty)$
 $f_{(u,v,w)} = y^2 + z^2$: two (\mathbb{C}^*)

"Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."

Ex.
$$f = 1 + x + y^2 + z^2$$

 $x(t) = x_0 t^u + l.o.t.,$
 $y(t) = y_0 t^v + l.o.t.,$
 $z(t) = z_0 t^w + l.o.t.$
 $(t \to \infty)$
 $f_{(u,v,w)} = y^2 + z^2$: two $(\mathbb{C}^*)^2$

- "Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."
- An application: (BKK counts) number of common roots of polynomials as mixed volume of polytopes

•
$$X = V(f)$$
 \longrightarrow $X = V(I)$, $I \subset \mathbb{C}[\mathbb{Z}^n]$

- "Asymptotic behavior of X
 - is described by Trop(X), weighted fan with dim = dim(X)"
- intersections in $(\mathbb{C}^*)^n \leftrightarrow$ intersections of fans in \mathbb{R}^n
- algebro-geometric

 combinatorial/polytopal

- "Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."
- An application: (BKK counts) number of common roots of polynomials as mixed volume of polytopes

•
$$X = V(f)$$
 \longrightarrow $X = V(I), I \subset \mathbb{C}[\mathbb{Z}^n]$

- "Asymptotic behavior of X
 - is described by Trop(X), weighted fan with $\dim = \dim(X)$ "
- intersections in $(\mathbb{C}^*)^n \leftrightarrow$ intersections of fans in \mathbb{R}^n
- algebro-geometric

 combinatorial/polytopal

- "Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."
- An application: (BKK counts) number of common roots of polynomials as mixed volume of polytopes

- $\bullet \qquad \qquad X = V(f) \qquad \longrightarrow \qquad X = V(I), \quad I \overset{ideal}{\subset} \mathbb{C}[\mathbb{Z}^n]$
- is described by Trop(X), weighted fan with dim = dim(X)
- is described by $\operatorname{Hop}(X)$, weighted fall with $\operatorname{diff} = \operatorname{diff}(X)$
- algebro-geometric

 — combinatorial/polytopal

- "Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."
- An application: (BKK counts) number of common roots of polynomials as mixed volume of polytopes

- X = V(f) \longrightarrow $X = V(I), I \subset \mathbb{C}[\mathbb{Z}^n]$
- "Asymptotic behavior of X
 is described by Trop(X), weighted fan with dim = dim(X)"
- intersections in $(\mathbb{C}^*)^n \leftrightarrow$ intersections of fans in \mathbb{R}^n
- algebro-geometric

 combinatorial/polytopal

- "Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."
- An application: (BKK counts) number of common roots of polynomials as mixed volume of polytopes

- X = V(f) \longrightarrow X = V(I), $I \subset \mathbb{C}[\mathbb{Z}^n]$
- "Asymptotic behavior of X
 is described by Trop(X), weighted fan with dim = dim(X)"
- intersections in $(\mathbb{C}^*)^n \leftrightarrow$ intersections of fans in \mathbb{R}^n
- algebro-geometric

 combinatorial/polytopal

- "Asymptotic behavior of a hypersurface, X = V(f) in $(\mathbb{C}^*)^n$, $f \in \mathbb{C}[\mathbb{Z}^n]$ is described by Newton(f)."
- An application: (BKK counts) number of common roots of polynomials as mixed volume of polytopes

- X = V(f) \longrightarrow $X = V(I), I \subset \mathbb{C}[\mathbb{Z}^n]$
- "Asymptotic behavior of X
 is described by Trop(X), weighted fan with dim = dim(X)"
- intersections in $(\mathbb{C}^*)^n \leftrightarrow$ intersections of fans in \mathbb{R}^n
- algebro-geometric → combinatorial/polytopal

- 1. The support of Trop(X):
- 2. The weighting function:

1. The support of Trop(X):

- (algebraic) $\overline{\{\omega \in \mathbb{Q}^n : \operatorname{in}_\omega I_X \neq \mathbb{C}[\mathbb{Z}^n]\}} =$
- (geometric)

 $\{\omega \in \mathbb{Q}^n : \exists \text{ a germ of a curve } z(t) = \bar{z}t^\omega + I.o.t. \text{ in } X\}$

2. The weighting function: $m_X(\omega)$ = the sum of the multiplicities of minimal associate prime ideals of $\text{in}_{\omega} I_X$

$$X = V((1 + x + y)^2)...$$

- 1. The support of Trop(X):
 - (algebraic) $\overline{\{\omega \in \mathbb{Q}^n : \operatorname{in}_\omega I_X \neq \mathbb{C}[\mathbb{Z}^n]\}} =$
 - (geometric) $\{\omega \in \mathbb{Q}^n : \exists \text{ a germ of a curve } z(t) = \overline{z}t^\omega + l.o.t. \text{ in } X\}$
- 2. The weighting function: $\mathbf{m}_X(\omega)$ = the sum of the multiplicities of minimal associate prime ideals of $\mathrm{in}_\omega I_X$

$$X = V((1 + x + y)^2)...$$

- 1. The support of Trop(X):
 - (algebraic) $\overline{\{\omega\in\mathbb{Q}^n:\operatorname{in}_\omega I_X\neq\mathbb{C}[\mathbb{Z}^n]\}}=$
 - (geometric)

$$\overline{\{\omega\in\mathbb{Q}^n:\exists \text{ a germ of a curve }z(t)=ar{z}t^\omega+I.o.t. \text{ in }X\}}$$

2. The weighting function: $m_X(\omega)$ = the sum of the multiplicities of minimal associate prime ideals of $\text{in}_{\omega} I_X$

$$X = V((1 + x + y)^2)...$$

- 1. The support of Trop(X):
 - (algebraic) $\overline{\{\omega \in \mathbb{Q}^n : \operatorname{in}_\omega I_X \neq \mathbb{C}[\mathbb{Z}^n]\}} =$
 - (geometric) $\{\omega \in \mathbb{Q}^n : \exists \text{ a germ of a curve } z(t) = \bar{z}t^\omega + l.o.t. \text{ in } X\}$
- 2. The weighting function: $\mathbf{m}_X(\omega)$ = the sum of the multiplicities of minimal associate prime ideals of $\mathrm{in}_\omega I_X$

$$X = V((1 + x + y)^2)...$$

- 1. The support of Trop(X):
 - (algebraic) $\overline{\{\omega \in \mathbb{Q}^n : \operatorname{in}_\omega I_X \neq \mathbb{C}[\mathbb{Z}^n]\}} =$
 - (geometric) $\overline{\{\omega \in \mathbb{Q}^n : \exists \text{ a germ of a curve } z(t) = \bar{z}t^\omega + l.o.t. \text{ in } X\}}$
- 2. The weighting function: $\mathbf{m}_X(\omega)$ = the sum of the multiplicities of minimal associate prime ideals of $\mathrm{in}_\omega I_X$

$$X = V((1 + x + y)^2)...$$

- Sev $(\Delta, \delta) =$ { complex plane curves V(f) with δ nodes, $Newton(f) = \Delta$ }, $(\Delta : a polygon, \delta \in \mathbb{N})$
- Found a partial description of Trop(Sev(Δ, δ)) in terms of the polygon, Δ.
- Applications:
 - Mikhalkin's Correspondence theorem in terms of Tropical Intersection Theory
 - 2. Relation with Secondary Fans

- Sev $(\Delta, \delta) =$ { complex plane curves V(f) with δ nodes, $Newton(f) = \Delta$ }, $(\Delta : a polygon, \delta \in \mathbb{N})$
- Found a **partial description of** $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ in terms of the polygon, Δ .
- Applications:
 - Mikhalkin's Correspondence theorem in terms of Tropical Intersection Theory
 - 2. Relation with Secondary Fans

- Sev $(\Delta, \delta) =$ { complex plane curves V(f) with δ nodes, $Newton(f) = \Delta$ }, $(\Delta : a polygon, \delta \in \mathbb{N})$
- Found a partial description of Trop(Sev(Δ, δ)) in terms of the polygon, Δ.
- · Applications:
 - 1. *Mikhalkin's Correspondence theorem* in terms of Tropical Intersection Theory
 - 2. Relation with Secondary Fans

- Sev $(\Delta, \delta) =$ { complex plane curves V(f) with δ nodes, $Newton(f) = \Delta$ }, $(\Delta: a polygon, \delta \in \mathbb{N})$
- Found a partial description of Trop(Sev(Δ, δ)) in terms of the polygon, Δ.
- Applications:
 - 1. Mikhalkin's Correspondence theorem:
 - a major work in tropical mathematics(2005).
 - "Counting complex curves (GW invariants) is equal to counting tropical curves."
 - Direct counting (Purely combinatorial)
 → Intersection number of Trop(Sev(Δ, δ))
 - 2. Secondary Fans
 - Gelfand, Kapranov, Zelevinsky (1994)
 - complete fans in real vector spaces
 - Rich connections to algebraic geometry
 - Found a criteria when Trop(Sev(Δ, δ)) fails to be a subfan of a Secondary fan.

- Sev $(\Delta, \delta) =$ { complex plane curves V(f) with δ nodes, $Newton(f) = \Delta$ }, $(\Delta: a polygon, \delta \in \mathbb{N})$
- Found a partial description of Trop(Sev(Δ, δ)) in terms of the polygon, Δ.
- Applications:
 - 1. Mikhalkin's Correspondence theorem:
 - a major work in tropical mathematics(2005).
 - "Counting complex curves (GW invariants) is equal to counting tropical curves."
 - Direct counting (Purely combinatorial)
 → Intersection number of Trop(Sev(Δ, δ))
 - 2. Secondary Fans:
 - Gelfand, Kapranov, Zelevinsky (1994)
 - · complete fans in real vector spaces
 - · Rich connections to algebraic geometry
 - Found a criteria when Trop(Sev(Δ, δ)) fails to be a subfan of a Secondary fan.

- 1. If $rank(\omega) > r$, $\omega \notin Trop(Sev(\Delta, \delta))$.
- 2. If $rank(\omega) = r$ and $\omega \in Trop(Sev(\Delta, \delta))$, Δ_{ω} is simple-nodal.
- 3. If $\omega \in \text{Trop}(\text{Sev}(\Delta, \delta))$ is regular with the maximal rank r,

$$\operatorname{in}_{\omega}\operatorname{Sev}(\Delta,\delta) \leftrightarrow_{\operatorname{set}} \mathbb{V}_{\Delta_{\omega}}$$

$$m_{\operatorname{Sev}(\Delta,\delta)}(\omega) = \mathit{I}(\mathbb{V}) \cdot \prod \mathit{length}(\mathit{Edges}(\Delta_\omega)).$$

- 4. Let $\mathbf{p} = \{p_1, \dots, p_r\} \subset ((\mathbb{K}^*)^2)^r$, generic $(\mathbb{K} = \bigcup_{n \geq 1} \mathbb{C}(t^{1/n}))$. $\operatorname{Trop}(\mathcal{L}(\mathbf{p})) \cap \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta)) \leftrightarrow \{\operatorname{tropical curves passing points in } \mathbf{Val}(\mathbf{p}) = \mathbf{m}(\omega; \operatorname{Trop}(\mathcal{L}(\mathbf{p})), \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))) = \prod 2 \operatorname{area}(\operatorname{Triangles}).$
- 5. If $\exists \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank, not extending to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{SecFan}(\Delta, \Delta \cap \mathbb{Z}^2)$.

- 1. If $rank(\omega) > r$, $\omega \notin Trop(Sev(\Delta, \delta))$.
- 2. If $rank(\omega) = r$ and $\omega \in Trop(Sev(\Delta, \delta))$, Δ_{ω} is simple-nodal.
- 3. If $\omega \in \text{Trop}(\text{Sev}(\Delta, \delta))$ is regular with the maximal rank r,

$$\operatorname{in}_{\omega}\operatorname{Sev}(\Delta,\delta) \leftrightarrow_{\operatorname{set}} \mathbb{V}_{\Delta_{\omega}}$$

$$m_{\operatorname{Sev}(\Delta,\delta)}(\omega) = I(\mathbb{V}) \cdot \prod$$
 length(Edges(Δ_{ω})).

- 4. Let $\mathbf{p} = \{p_1, \dots, p_r\} \subset ((\mathbb{K}^*)^2)^r$, generic $(\mathbb{K} = \bigcup_{n \geq 1} \mathbb{C}(t^{1/n}))$. $\operatorname{Trop}(\mathcal{L}(\mathbf{p})) \cap \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta)) \leftrightarrow \{\operatorname{tropical curves passing points in } \mathbf{Val}(\mathbf{p}) = \mathbf{m}(\omega; \operatorname{Trop}(\mathcal{L}(\mathbf{p})), \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))) = \prod 2 \operatorname{area}(\operatorname{Triangles}).$
- 5. If $\exists \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank, not extending to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{SecFan}(\Delta, \Delta \cap \mathbb{Z}^2)$.

- 1. If $rank(\omega) > r$, $\omega \notin Trop(Sev(\Delta, \delta))$.
- 2. If $rank(\omega) = r$ and $\omega \in Trop(Sev(\Delta, \delta))$, Δ_{ω} is simple-nodal.
- 3. If $\omega \in \text{Trop}(\text{Sev}(\Delta, \delta))$ is regular with the maximal rank r,

$$\operatorname{in}_{\omega} \operatorname{Sev}(\Delta, \delta) \leftrightarrow_{\operatorname{set}} \mathbb{V}_{\Delta_{\omega}}$$

$$\mathit{m}_{\operatorname{Sev}(\Delta,\delta)}(\omega) = \mathit{I}(\mathbb{V}) \cdot \widetilde{\prod} \mathit{length}(\mathit{Edges}(\Delta_{\omega})).$$

- 4. Let $\mathbf{p} = \{p_1, \dots, p_r\} \subset ((\mathbb{K}^*)^2)^r$, generic $(\mathbb{K} = \bigcup_{n \geq 1} \mathbb{C}(t^{1/n}))$.

 Trop $(\mathcal{L}(\mathbf{p})) \cap \text{Trop}(\text{Sev}(\Delta, \delta)) \leftrightarrow \{\text{tropical curves passing points in } Val(\mathbf{p})\}$ $\mathbf{m}(\omega; \text{Trop}(\mathcal{L}(\mathbf{p})), \text{Trop}(\text{Sev}(\Delta, \delta))) = \prod 2area(\textit{Triangles}).$
- 5. If $\exists \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank, not extending to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{SecFan}(\Delta, \Delta \cap \mathbb{Z}^2)$.

- 1. If $rank(\omega) > r$, $\omega \notin Trop(Sev(\Delta, \delta))$.
- 2. If $rank(\omega) = r$ and $\omega \in Trop(Sev(\Delta, \delta))$, Δ_{ω} is simple-nodal.
- 3. If $\omega \in \text{Trop}(\text{Sev}(\Delta, \delta))$ is regular with the maximal rank r,

$$\operatorname{in}_{\omega} \operatorname{Sev}(\Delta, \delta) \leftrightarrow_{\operatorname{set}} \mathbb{V}_{\Delta_{\omega}}$$

$$\mathit{m}_{\operatorname{Sev}(\Delta,\delta)}(\omega) = \mathit{I}(\mathbb{V}) \cdot \widetilde{\prod} \mathit{length}(\mathit{Edges}(\Delta_{\omega})).$$

- 4. Let $\mathbf{p} = \{p_1, \dots, p_r\} \subset ((\mathbb{K}^*)^2)^r$, generic $(\mathbb{K} = \bigcup_{n \geq 1} \mathbb{C}(t^{1/n}))$. $\operatorname{Trop}(\mathcal{L}(\mathbf{p})) \cap \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta)) \leftrightarrow \{\operatorname{tropical curves passing points in } \mathbf{Val}(\mathbf{p})\}$
- 5. If $\exists \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank, not extending to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{SecFan}(\Delta, \Delta \cap \mathbb{Z}^2)$.

- 1. If $rank(\omega) > r$, $\omega \notin Trop(Sev(\Delta, \delta))$.
- 2. If $rank(\omega) = r$ and $\omega \in Trop(Sev(\Delta, \delta))$, Δ_{ω} is simple-nodal.
- 3. If $\omega \in \text{Trop}(\text{Sev}(\Delta, \delta))$ is regular with the maximal rank r,

$$\operatorname{in}_{\omega} \operatorname{Sev}(\Delta, \delta) \leftrightarrow_{\operatorname{set}} \mathbb{V}_{\Delta_{\omega}}$$

$$m_{\operatorname{Sev}(\Delta,\delta)}(\omega) = I(\mathbb{V}) \cdot \prod \operatorname{length}(\operatorname{Edges}(\Delta_{\omega})).$$

- 4. Let $\mathbf{p} = \{p_1, \dots, p_r\} \subset ((\mathbb{K}^*)^2)^r$, generic $(\mathbb{K} = \bigcup_{n \geq 1} \mathbb{C}(t^{1/n}))$.

 Trop $(\mathcal{L}(\mathbf{p})) \cap \text{Trop}(\text{Sev}(\Delta, \delta)) \leftrightarrow \{\text{tropical curves passing points in } \mathbf{Val}(\mathbf{p})$ $\mathbf{m}(\omega; \text{Trop}(\mathcal{L}(\mathbf{p})), \text{Trop}(\text{Sev}(\Delta, \delta))) = \prod 2 \text{area}(\text{Triangles}).$
- 5. If $\exists \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank, not extending to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{Sec} Fan(\Delta, \Delta \cap \mathbb{Z}^2)$.

- 1. If $rank(\omega) > r$, $\omega \notin Trop(Sev(\Delta, \delta))$.
- 2. If $rank(\omega) = r$ and $\omega \in Trop(Sev(\Delta, \delta))$, Δ_{ω} is simple-nodal.
- 3. If $\omega \in \text{Trop}(\text{Sev}(\Delta, \delta))$ is regular with the maximal rank r,

$$\operatorname{in}_{\omega}\operatorname{Sev}(\Delta,\delta) \leftrightarrow_{\operatorname{set}} \mathbb{V}_{\Delta_{\omega}}$$

$$\mathit{m}_{\operatorname{Sev}(\Delta,\delta)}(\omega) = \mathit{I}(\mathbb{V}) \cdot \prod \mathit{length}(\mathit{Edges}(\Delta_{\omega})).$$

- 4. Let $\mathbf{p} = \{p_1, \dots, p_r\} \subset ((\mathbb{K}^*)^2)^r$, generic $(\mathbb{K} = \bigcup_{n \geq 1} \mathbb{C}(t^{1/n}))$. $\operatorname{Trop}(\mathcal{L}(\mathbf{p})) \cap \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta)) \leftrightarrow \{\operatorname{tropical curves passing points in } \mathbf{Val}(\mathbf{p})\}$
 - $m(\omega; \operatorname{Trop}(\mathcal{L}(\boldsymbol{\rho})), \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))) = \prod \operatorname{2area}(\operatorname{\textit{Triangles}}).$
- 5. If $\exists \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank, not extending to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{SecFan}(\Delta, \Delta \cap \mathbb{Z}^2)$.

$$f = ay^2 + bx^2y + cxy + dy + e \in \mathbb{P}^4_{[a:\cdots:e]}$$

$$Sev(\Delta, 1)$$

$$= \{ f \in \mathbb{P}^4 : f \text{ defines a curve with one node} \}$$

$$= V(16b^2d^2 - 8bc^2d + c^4 - 64ab^2e)$$

$$= -64ab^2e$$

$$16b^2d^2 -8bc^2d$$
 \mathbb{R}^5

$$\Delta: \begin{array}{c} a \\ d \\ c \\ b \end{array} \mathbb{R}^2$$

$$\mathit{f} = \mathit{a}\mathit{y}^2 + \mathit{b}\mathit{x}^2\mathit{y} + \mathit{c}\mathit{x}\mathit{y} + \mathit{d}\mathit{y} + \mathit{e} \in \mathbb{P}^4_{[\mathit{a}:\cdots:\mathit{e}]}$$

 $Sev(\Delta, 1)$

$$=\{f\in\mathbb{P}^4: f \text{ defines a curve with one node}\}$$

$$= V(16b^2d^2 - 8bc^2d + c^4 - 64ab^2e)$$

$$= -64ab^2e$$

$$16b^2d^2 -8bc^2d$$
 \mathbb{R}^5

$$f = ay^2 + bx^2y + cxy + dy + e \in \mathbb{P}^4_{[a:\cdots:e]}$$

Sev(Δ , 1)

 $=\overline{\{f\in\mathbb{P}^4:f ext{ defines a curve with one node}\}}$

$$= V(16b^2d^2 - 8bc^2d + c^4 - 64ab^2e)$$

$$= -64ab^2e$$

$$16b^2d^2 -8bc^2d$$

$$= -64ab^2e$$

$$f = ay^2 + bx^2y + cxy + dy + e \in \mathbb{P}^4_{[a:\cdots:e]}$$

Sev(Δ , 1)

 $=\overline{\{f\in\mathbb{P}^4:f ext{ defines a curve with one node}\}}$

$$= V(16b^2d^2 - 8bc^2d + c^4 - 64ab^2e)$$

$$= -64ab^2e$$

$$16b^2d^2 -8bc^2d$$

$$= -64ab^2e$$

$$f = ay^2 + bx^2y + cxy + dy + e \in \mathbb{P}^4_{[a:\cdots:e]}$$

Sev(Δ , 1)

$$= \overline{\{f \in \mathbb{P}^4 : f \text{ defines a curve with one node}\}}$$

$$= V(16b^2d^2 - 8bc^2d + c^4 - 64ab^2e)$$

$$= -64ab^2e$$

$$16b^2d^2 -8bc^2d \longrightarrow 5$$

$$f = ay^2 + bx^2y + cxy + dy + e \in \mathbb{P}^4_{[a:\cdots:e]}$$

Sev(\land 1)

$$\textit{Sev}(\Delta,1)$$

 $= \overline{\{f \in \mathbb{P}^4 : f \text{ defines a curve with one node}\}}$

$$= V(16b^2d^2 - 8bc^2d + c^4 - 64ab^2e)$$

$$= -64ab^2e$$

$$16b^2d^2 -8bc^2d \mathbb{R}^5$$

$$f = ay^2 + bx^2y + cxy + dy + e \in \mathbb{P}^4_{[a:\cdots:e]}$$

$$Sev(\Delta, 1)$$

 $=\overline{\{f\in\mathbb{P}^4:f \text{ defines a curve with one node}\}}$

$$= V(16b^2d^2 - 8bc^2d + c^4 - 64ab^2e)$$

$$= -64ab^2e$$

$$16b^2d^2 -8bc^2d \mathbb{R}^5$$

$\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ vs. Subdivisions of Δ

Sev($\Delta, \delta = 1$):

$\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ vs. Subdivisions of Δ

$\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ vs. Subdivisions of Δ

$$m(\omega; \operatorname{Trop}(\mathcal{L}(\boldsymbol{p})), \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta)))$$

= $m_{\mathcal{L}(\boldsymbol{p})}(\omega) \cdot m_{\operatorname{Sev}(\Delta, 1)}(\omega) \cdot \xi(\omega; T_1, T_2)$
= $1 \cdot 2 \cdot 2 = 4$
(combinatorial formula for ξ
is also found in (Y.11))

Mikhalkin's multiplicity of τ_{ω} := $\prod_{\Delta_{\omega}} 2area(Triangles)$ = $2 \cdot 2 = 4$

$$m(\omega; \operatorname{Trop}(\mathcal{L}(\boldsymbol{p})), \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta)))$$

= $m_{\mathcal{L}(\boldsymbol{p})}(\omega) \cdot m_{\operatorname{Sev}(\Delta, 1)}(\omega) \cdot \xi(\omega; \mathcal{T}_1, \mathcal{T}_2)$
= $1 \cdot 2 \cdot 2 = 4$
(combinatorial formula for ξ
is also found in (Y.11))

Mikhalkin's multiplicity of au_{ω} := $\prod_{\Delta_{\omega}}$ 2area(Triangles)

$$m(\omega; \operatorname{Trop}(\mathcal{L}(\boldsymbol{p})), \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta)))$$

= $m_{\mathcal{L}(\boldsymbol{p})}(\omega) \cdot m_{\operatorname{Sev}(\Delta, 1)}(\omega) \cdot \xi(\omega; \mathcal{T}_1, \mathcal{T}_2)$
= $1 \cdot 2 \cdot 2 = 4$
(combinatorial formula for ξ
is also found in (Y,11))

Mikhalkin's multiplicity of τ_{ω} := $\prod_{\Delta_{\omega}} 2area(Triangles)$ = $2 \cdot 2 = 4$

$$m(\omega; \operatorname{Trop}(\mathcal{L}(\boldsymbol{p})), \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta)))$$

= $m_{\mathcal{L}(\boldsymbol{p})}(\omega) \cdot m_{\operatorname{Sev}(\Delta, 1)}(\omega) \cdot \xi(\omega; \mathcal{T}_1, \mathcal{T}_2)$
= $1 \cdot 2 \cdot 2 = 4$
(combinatorial formula for ξ
is also found in (Y,11))

Mikhalkin's multiplicity of τ_{ω} := $\prod_{\Delta_{\omega}} 2area(Triangles)$ = $2 \cdot 2 = 4$

Second Application: Secondary Fans

- $SecFan(\Delta, A)$ is a complete fan in \mathbb{R}^A parameterizing regular marked subdivisions of (Δ, A) . (Discriminantal variety, Chow quotient, etc)
- Trop(Sev(Δ , 1)) is a subfan of SecFan(Δ , $\Delta \cap \mathbb{Z}^2$)
- What about $Sev(\Delta, \delta)$ for general δ ?
- A counterexample is found by E.Katz(2008).

Theorem (Y,11)

If $\exists \ \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank which does not extend to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{SecFan}(\Delta, \Delta \cap \mathbb{Z}^2)$.

Second Application: Secondary Fans

- $SecFan(\Delta, A)$ is a complete fan in \mathbb{R}^A parameterizing regular marked subdivisions of (Δ, A) . (Discriminantal variety, Chow quotient, etc)
- Trop($Sev(\Delta, 1)$) is a subfan of $SecFan(\Delta, \Delta \cap \mathbb{Z}^2)$
- What about $Sev(\Delta, \delta)$ for general δ ?
- A counterexample is found by E.Katz(2008).

Theorem (Y,11)

If $\exists \ \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank which does not extend to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{SecFan}(\Delta, \Delta \cap \mathbb{Z}^2)$.

Second Application: Secondary Fans

- $SecFan(\Delta, A)$ is a complete fan in \mathbb{R}^A parameterizing regular marked subdivisions of (Δ, A) . (Discriminantal variety, Chow quotient, etc)
- Trop(Sev(Δ, 1)) is a subfan of SecFan(Δ, Δ ∩ Z²)
- What about $Sev(\Delta, \delta)$ for general δ ?
- A counterexample is found by E.Katz(2008).

Theorem (Y,11)

If $\exists \ \omega \in \operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ with maximal rank which does not extend to a concave function on Δ , then $\operatorname{Trop}(\operatorname{Sev}(\Delta, \delta))$ cannot be a subfan of $\operatorname{SecFan}(\Delta, \Delta \cap \mathbb{Z}^2)$.

[Yang1] J.Yang, Initial Schemes of Very Affine Severi Varieties. arXiv:1108.5839

[Yang2] J.Yang, Some Parameter Spaces of Curves on Toric Surfaces, Their tropicalizations and Degrees. In preparation.

Thank you!

Tropical Product

The tropical intersection multiplicity of \mathcal{T}_1 and \mathcal{T}_2 at ω is

$$\mathbf{m}(\omega) = \mathbf{m}(\omega; \mathcal{T}_1, \mathcal{T}_2) := \mathbf{m}_{\mathcal{T}_1}(\omega) \cdot \mathbf{m}_{\mathcal{T}_2}(\omega) \cdot \xi(\omega; \mathcal{T}_1, \mathcal{T}_2),$$

where $\xi(\omega; \mathcal{T}_1, \mathcal{T}_2)$, is the volume of the parallelepiped constructed by the fundamental cells of the lattices $\mathbb{L}_i \cap \mathbb{Z}^n$, (i = 1, 2).

Algebraic Geometry	Tropical Geometry
very affine varieties	tropical varieties: balanced weighted
	rational polyhedral complex $\subset \mathbb{R}^n$
$X \subset (\mathbb{C}^*)^n$ —	\rightarrow Trop(X), tropicalization of X
	$\bullet dim(X) = dim(\operatorname{Trop}(X))$
	$\bullet \operatorname{Trop}(X_1 \cup X_2) = \operatorname{Trop}(X_1) + \operatorname{Trop}(X_2)$
	• $\operatorname{Trop}(X_1 \cap gX_2) = \operatorname{Trop}(X_1) \cdot \operatorname{Trop}(X_2)$
	• $dim(X) = dim(\operatorname{Trop}(X))$ • $\operatorname{Trop}(X_1 \cup X_2) = \operatorname{Trop}(X_1) + \operatorname{Trop}(X_2)$ • $\operatorname{Trop}(X_1 \cap gX_2) = \operatorname{Trop}(X_1) \cdot \operatorname{Trop}(X_2)$ for generic $g \in (\mathbb{C}^*)^n$

$in_{\omega}Sev(\Delta,\delta)$ vs $\mathbb{V}_{\partial\Delta_{\omega,nodal}}$

Definition

Let $S(\Delta)$: $\Delta_1 \cup \cdots \cup \Delta_m$ be a nodal subdivision of Δ . $f \in \mathbb{V}_{\partial \Delta_{\omega} \text{ nodal}} \subset \mathbb{P}_{\Delta} \Leftrightarrow$

- s ∈ Edges(S(Δ)) ⇒ f_s is a pure power of a binomial, x^ay^b(αx^c + βy^d)^{|s|};
- Δ_i is a trangle ⇒ f_{Δi} defines a rational curve which is unibranch at each intersection point with the boundary divisors of the toric surface X_{Δi};
- Δ_j is a parallelogram $\Rightarrow f_{\Delta_j}$ has the form $x^k y^l (\alpha x^a + \beta y^b)^p (\gamma x^c + \delta y^d)^q$.

$in_{\omega}Sev(\Delta,\delta)$ vs $\mathbb{V}_{\partial\Delta_{\omega,nodal}}$

Definition

Let $S(\Delta)$: $\Delta_1 \cup \cdots \cup \Delta_m$ be a nodal subdivision of Δ .

$$f \in \mathbb{V}_{\mathcal{S}(\Delta)_{\omega,\mathit{nodal}}} \subset \mathbb{P}_{\Delta} \Leftrightarrow$$

- s ∈ Edges(S(Δ)) ⇒ f_s is a pure power of a binomial, x^ay^b(αx^c + βy^d)^{|s|};
- Δ_i is a trangle ⇒ f_{Δi} defines a rational curve which has a unibranch at each intersection point with the boundary divisors of the toric surface X_{Δi};
- Δ_j is a parallelogram $\Rightarrow f_{\Delta_j}$ has the form $x^k v^l (\alpha x^a + \beta v^b)^p (\gamma x^c + \delta v^d)^q$.

Theorem

 $\mathbb{V}_{\mathcal{S}(\Delta)_{\omega,nodal}}$ is a translation of a closed subgroup $\mathbb{G}_{\mathcal{S}(\Delta)_{\omega,nodal}}$ of an algebraic torus.

$$M_{\partial S(\Delta)} = \begin{pmatrix} \xi_1 & \xi_2 & \xi_3 & \xi_4 & \xi_5 & \xi_6 \\ F_1 & -2 & 1 & 1 & 0 & 0 & 0 \\ F_2 & 0 & -1 & 0 & 4 & 1 & 0 \\ F_3 & 0 & 0 & -1 & 0 & -1 & 2 \end{pmatrix}$$

$$M_{\partial\Delta,\mathbb{P}^1} = \begin{pmatrix} \alpha_1 & \beta_1 & \alpha_2 & \beta_2 & \alpha_3 & \beta_3 \\ s_{12} & 1 & 2 & -1 & -2 & 0 & 0 \\ s_{13} & 1 & 0 & 0 & 0 & -1 & 0 \\ s_{23} & 0 & 0 & -1 & 2 & 1 & -2 \end{pmatrix}$$

The Smith Normal Forms of $M_{\partial S(\Delta)}$ and $M_{\partial S(\Delta), \mathbb{P}^1}$ coincide to each other as:

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0
\end{array}\right).$$

Thus $\mathbb{V}_{\mathcal{S}(\Delta)}$ is a union of two translations of 3-dimensional subtorus of \mathbb{T}_{Λ} . <ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □