Stable Intersections of Tropical Varieties

Josephine Yu (Georgia Tech)
joint work with:
Anders Jensen (Aarhus, Denmark)

AMS Section Meeting
University of Akron
October 20, 2012

Tropical Varieties

Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. The tropical variety of I is

$$
\mathcal{T}(I):=\left\{w \in \mathbb{R}^{n}: \operatorname{in}_{w}(I) \text { contains no monomials }\right\} .
$$

For ideals I and J,

- $\mathcal{T}(I \cap J)=\mathcal{T}(I) \cup \mathcal{T}(J)$,
- $\mathcal{T}(I+J) \subseteq \mathcal{T}(I) \cap \mathcal{T}(J)$; inclusion may be strict

A tropical variety of a prime ideal

- is a rational polyhedral fan, whose dimension is equal to the Krull dimension of I
- satisfies the balancing condition, with weight of a generic point $w \in \mathcal{T}(I)$ defined as the sum of the multiplicities of monomial-free minimal associated primes of $\mathrm{in}_{w}(I)$.

Example
Let $I=\left\langle 1+x+y+y^{2}\right\rangle \subset \mathbb{C}[x, y]$.
The point $w=(-1,0)$ is in $\mathcal{T}(I)$ because $\operatorname{in}_{w}(I)=\left\langle 1+y+y^{2}\right\rangle$ contains no monomials. It has weight 2 .

Tropical Hypersurfaces

If the ideal is principal, generated by a polynomial f, then $\mathcal{T}(I)$ depends only on the Newton polytope P of f. It is the union of normal cones to edges of P. We will also denote $\mathcal{T}(\langle f\rangle)$ by $\mathcal{T}(P)$.

$$
f=x+x^{2}+y+x y+x^{2} y+x y^{2}
$$

Is every rational balanced polyhedral fan a tropical variety?

- Yes, for fans of dimension 1 or codimension 1.
- There are non-realizable 2-dimensional fans in \mathbb{R}^{4}.

The problem of characterizing realizable fans is very difficult - as a special case, it includes characertizing representable matroids.

Definition

A tropical k-cycle is a pure k-dimensional rational balanced polyhedral fan with integer weigts (negative weights are allowed). Note:

- The union of two tropical k-cyles is again a tropical k-cycles. We think of this as the sum of tropical cycles.
- The intersection of two tropical cycles need not be a tropical cycle.

Stable Intersections

Definition/Lemma Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be tropical cycles. The following sets coincide and are called the stable intersection of \mathcal{F}_{1} and \mathcal{F}_{2}, denoted $\mathcal{F}_{1} \cdot \mathcal{F}_{2}$

1. $\lim _{\varepsilon \rightarrow 0} \mathcal{F}_{1} \cap\left(\mathcal{F}_{2}+\varepsilon v\right)$ for a generic $v \in \mathbb{R}^{n}$
2. $\left\{w \in \mathcal{F}_{1} \cap \mathcal{F}_{2}: \operatorname{link}_{w}\left(\mathcal{F}_{1}\right)-\operatorname{link}_{w}\left(\mathcal{F}_{2}\right)=\mathbb{R}^{n}\right\}$

The second description is better for computations. We have an implementation in the software Gfan.

Properties

- Stable intersection of a codim- k cycle and codim- l cycle is either 0 (empty) or a codim- $(k+l)$ cycle.
- Stable intersection is associative and commutative.
- $\mathcal{F}_{1} \cdot\left(\mathcal{F}_{2}+\mathcal{F}_{3}\right)=\mathcal{F}_{1} \cdot \mathcal{F}_{2}+\mathcal{F}_{1} \cdot \mathcal{F}_{3}$, where + is the union.

The first two statements are difficult to prove.

Relation to Polytopes

- Let P be a polytope, and let Q be its image under orthogonal projection onto a linear subspace L. Then

$$
\mathcal{T}(P) \cdot L=\mathcal{T}(Q) \quad(\text { in } L)
$$

- For polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$,

$$
\mathcal{T}\left(P_{1}\right) \cdots \mathcal{T}\left(P_{n}\right)
$$

is the origin with weight equal to the mixed volume of P_{1}, \ldots, P_{n}.

Stable Intersections of Tropical Varieties

Let I and J be ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Let J^{\prime} be obtained from J by replacing x_{i} with $c_{i} x_{i}$ where c_{1}, \ldots, c_{n} are generic non-zero elements of \mathbb{C}. Then $\mathcal{T}(J)=\mathcal{T}\left(J^{\prime}\right)$, and
Theorem (Osserman-Payne '09, Jensen-Y.)

$$
\mathcal{T}(I) \cdot \mathcal{T}(J)=\mathcal{T}\left(I+J^{\prime}\right)
$$

In particular, stable intersections of tropical hypersurfaces are realizable.

Using this theorem, we can prove Bernstein's Theorem: for n polynomials in n variables, the number of common roots in $\left(\mathbb{C}^{*}\right)^{n}$ is equal to the mixed volume of the Newton polytopes.

Two algebras

Algebra of Tropical Cycles

- Let T^{r} be the \mathbb{R}-vector space of codimension- r tropical cycles in \mathbb{R}^{n}, with \mathbb{R} weights.
- Scalar multiplication acts on the weights.
- Addition is taking union.

Then

$$
\mathcal{T}_{n}=T^{0} \oplus T^{1} \oplus \ldots T^{n}
$$

is a graded algebra with stable intersection as multiplication.

Polytope Algebra of McMullen

Let Π_{n} be an \mathbb{R}-algebra, generated as an \mathbb{R}-vector space by the classes of rational polytopes $[P]$, modulo relations

- $[P]=[P+v]$ for polytope $P \subset \mathbb{R}^{n}$ and $v \in \mathbb{R}^{n}$
- $[P \cup Q]+[P \cap Q]=[P]+[Q]$ if $P \cup Q$ is again a polytope.

The multiplication is Minkowski sum: $[P] \cdot[Q]=[P+Q]$.
[McMullen '89] Π_{n} is a graded algebra, with r-th graded piece spanned by $\left\{(\log [P])^{r}: P\right.$ is a rational polytope in $\left.\mathbb{R}^{n}\right\}$.

Isomorphism

Theorem (follows from McMullen '93 \& Fulton-Sturmfels '97)
The graded algebras Π_{n} and \mathcal{T}_{n} are isomorphic via the isomorphism

$$
[P] \mapsto \exp (\mathcal{T}(P))=1 \oplus \mathcal{T}(P) \oplus \frac{1}{2!} \mathcal{T}(P)^{2} \oplus \cdots \oplus \frac{1}{n!} \mathcal{T}(P)^{n}
$$

In other words, the tropical hypersurface $\mathcal{T}(P)$ is the logarithm of the polytope P.
Corollary
The graded piece T^{r} of \mathcal{T}_{n} is spanned by

$$
\left\{\mathcal{T}(P)^{r}: P \text { is a rational polytope in } \mathbb{R}^{n}\right\} .
$$

Corollary

Every tropical cycle is a linear combination of realizable tropical varieties.

