The maximum likelihood degree of a very affine variety

June Huh

University of Michigan at Ann Arbor

October 21, 2012

June Huh (University of Michigan at Ann Arbor)

The maximum likelihood degree

Image: A matrix

October 21, 2012 1 / 20

(4) (3) (4) (4) (4)

The maximum likelihood degree

- *Pⁿ⁻¹*, the projective space with coordinates *p*₁,..., *p_n*,
 where the *p_i* represents the probability of the *i*-th event.
- An implicit statistical model is a closed subvariety $V \subseteq \mathbb{P}^{n-1}$.
- The data comes in the form of integers u₁,..., u_n,
 where the u_i is the number of times the *i*-th event was observed.

(D) (A) (A) (A)

The maximum likelihood degree

 In order to find the values of p_i on V which best explains the given data u_i, one finds critical points of the likelihood function

$$L(p_1,\ldots,p_n)=p_1^{u_1}\cdots p_n^{u_n}/(p_1+\cdots+p_n)^{u_1+\cdots+u_n}$$

- The maximum likelihood degree of the model is the number of critical points of L|_V, for sufficiently general u₁,..., u_n.
- This number is well-defined.

(4) (3) (4) (4) (4)

Log-concavity conjectures

• A sequnce a_0, \ldots, a_p is *log-concave* if for all *i*

$$a_{i-1} a_{i+1} \leq a_i^2.$$

• If there are no internal zeroes, log-concavity implies unimodality:

$$a_0 \leq \cdots \leq a_{i-1} \leq a_i \geq a_{i+1} \geq \cdots \geq a_p \quad ext{for some } i.$$

(D) (A) (A) (A)

Chromatic polynomial of graphs

Let G be a graph.

• The chromatic polynomial of G is the function

 $\chi_G(q) = ($ number of proper colorings of *G* with *q* colors).

Independent sets of vectors

- Let $\mathcal{A} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a subset of a vector space V.
- Define the *f*-vector of A by

 $f_i = ($ number of independent subsets of cardinality *i* in A).

Example (Fano plane)

For $\mathcal{A} = \mathbb{F}_2^3 \setminus \{\mathbf{0}\}$, we have

$$f_0 = 1$$
, $f_1 = 7$, $f_2 = 21$, $f_3 = 28$.

Conjecture (Read-Rota 68, Mason-Welsh 69)

- The first sequence is log-concave for any G.
- The second sequence is log-concave for any A.

- These conjectures are proved (H, H-Katz, Lenz) using the topology of hypersurface complements, CSM class, tropical geometry, and matroid theory.
- The maximum likelihood framework provides solutions to stronger conjectures (Hoggar 74, Dawson 84, Colbourn 87) with simpler proofs, in characteristic zero.

Let M be a matroid representable over a field of characteristic zero.

- 1. The *h*-vector of the matroid complex of *M* is log-concave.
- 2. The h-vector of the broken circuit complex of M is log-concave.

- "1" implies a conjecture of Colbourn on the reliability of a network.
- "1" was conjectured by Dawson in general.
- Any matroid complex is a broken circuit complex, but not conversely. Therefore "2" is stronger than "1".

Log-concavity conjectures

Corollary

Let M be a matroid representable over a field of characteristic zero.

- 1. The *f*-vector of the matroid complex of *M* is strictly log-concave.
- 2. The *f*-vector of the broken circuit complex of *M* is strictly log-concave.

This should be compared to *f*-vectors and *h*-vectors of

other "nice" shellable simplicial complexes, such as...

Björner's example (from Ziegler's polytope book)

Examples 8.40. The unimodality conjecture fails for a simplicial polytope of dimension d = 20 with the following *f*-vector, for which $f_{11} > f_{12} < f_{13}$.

f_{-1}	=	1	
f_0	=	4203045807626	
f_1	=	84060916163336	
f_2	=	798578704207074	
f_3	=	4791472253296106	
f_4	=	20363758019368323	
f_5	=	65164051780016980	
f_6	=	162910744316489788	
f_7	=	325834059588060117	
f_8	-	529707205213463823	
f_9	=	709935971390166248	
f_{10}	=	805494832051588614	
f_{11}	=	821976324224631043	1
f_{12}	=	821976324224611712	
f_{13}	=	822000129478641948	1
f_{14}	=	747383755288236256	
f_{15}	=	546761228419958342	
f_{16}	=	293715859557026466	
f_{17}	=	106920718330384544	
f_{18}	-	23458617733909980	
f_{19}		2345861773390998	

イロト イヨト イヨト イヨト

How do you prove that a sequence is log-concave?

Let's say that a homology class of an algebraic variety is *representable* if it is the class of a subvariety.

• 3 >

Write an even dimensional homology class ξ as a linear combination

$$\xi = \sum_i e_i [\mathbb{P}^{k-i} \times \mathbb{P}^i] \in H_{2k}(\mathbb{P}^m \times \mathbb{P}^n; \mathbb{Z}).$$

Then some positive multiple of ξ is representable if and only if $\{e_i\}$ form a log-concave sequence of nonnegative integers with no internal zeros.

The maximum likelihood degree

- Therefore it suffices to show that there is a subvariety of P^m × Pⁿ whose homology class is given by the coefficients of χ_M(q + 1).
- The idea for this comes from the *maximum likelihood estimation* in algebraic statistics.

Varchenko's conjecture

- $\mathcal{A} = (\text{arrangement in } \mathbb{C}^r \text{ defined by linear functions } f_1, \ldots, f_n).$
- $\varphi = \prod_{i=1}^n f_i^{u_i}, u_i \in \mathbb{Z}.$

Conjecture (Varchenko 95)

If the arrangement is essential and the u_i are general, then

- 1. φ has only finitely many critical points in $\mathbb{C}^r \setminus \mathcal{A}$.
- 2. All critical points of φ are nondegenerate.
- 3. The number of critical points is equal to $(-1)^r \chi(\mathbb{C}^r \setminus A) \quad (= \chi_A(1)).$

Varchenko's conjecture is proved by Orlik and Terao.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• If A is defined over the real numbers,

$$\chi_{\mathcal{A}}(1) = (\text{the number of critical points of } \varphi)$$

- = (the number of bounded regions of $\mathbb{R}^r \setminus \mathcal{A}$).
- A is essential iff lowest dimensional flats are zero dimensional.
- A is essential iff we have the embedding

$$\mathbb{C}^r \setminus \mathcal{A} \longrightarrow (\mathbb{C}^*)^n, \qquad x \longmapsto (f_1, \dots, f_n).$$

• Any arrangement is of the form $\mathcal{A} = \mathbb{C}^k \times \mathbb{A}'$ with \mathcal{A}' essential.

(D) (A) (A) (A)

- Let U be an r-dimensional smooth subvariety of $(\mathbb{C}^*)^n$.
- Let f_1, \ldots, f_n be the coordinate functions on U.
- $\varphi = \prod_{i=1}^n f_i^{u_i}, u_i \in \mathbb{Z}.$

If the u_i are sufficiently general, then

- 1. φ has only finitely many critical points in U.
- 2. All critical points of φ are nondegenerate.
- 3. The number of critical points is equal to $(-1)^r \chi(U)$.

 Next we consider the collection of all critical points of all possible master functions simultaneously:

$$\mathfrak{X}^{\circ}(\,U) = \left\{\,\sum_{i=1}^n \, u_i \cdot \mathsf{dlog}(p_i)(x) = 0\,
ight\} \subseteq \, U imes \mathbb{P}^{n-1},$$

where u_1, \ldots, u_n are now homogeneous coordinates of \mathbb{P}^{n-1} .

- The closure $\mathfrak{X}(U) \subseteq \mathbb{P}^n \times \mathbb{P}^{n-1}$ gives the subvariety we want!
- In fact, this is truly a natural choice, because it is a geometric realization of the characteristic class of U.

Suppose U is r-dimensional and not isomorphic to a torus.

Theorem

If U is wonderful, then

$$\left[\mathfrak{X}(U)\right] = \sum_{i=0}^{r} v_i \left[\mathbb{P}^{r-i} \times \mathbb{P}^{n-1-r+i}\right] \in H_*(\mathbb{P}^n \times \mathbb{P}^{n-1}),$$

where

$$c_{SM}(\mathbf{1}_U)=\sum_{i=0}^r (-1)^i v_i \, [\mathbb{P}^{r-i}]\in H_*(\mathbb{P}^n).$$

If *U* is the complement $\mathbb{C}^r \setminus \mathcal{A}$, then (almost by definition)

$$\chi_{\mathcal{A}}(q+1) = \sum_{i=0}^r (-1)^i v_i \; q^{r-i}.$$

June Huh (University of Michigan at Ann Arbor)

 ►
 ►
 ►

 </t

・ロン ・回 と ・ 回 と ・ 回 と

Let *U* be the hypersurface $\{g = 0\} \subseteq (\mathbb{C}^*)^n$ with

$$\mathcal{L}_{SM}(\mathbf{1}_U)=\sum_{i=0}^r (-1)^i v_i \, [\mathbb{P}^{r-i}]\in H_*(\mathbb{P}^n).$$

If g is general with respect to Δ_g , then U is wonderful, and

$$v_i = MV_n(\underbrace{\Delta, \ldots, \Delta}_{r-i}, \underbrace{\Delta_g, \ldots, \Delta_g}_{i+1}), \qquad i = 0, \ldots, r.$$

In particular, ML-degree of U is equal to the normalized volume

$$v_r = (-1)^r \int c_{SM}(\mathbf{1}_U) = \mathsf{Volume}(\Delta_g).$$