The maximum likelihood degree of a very affine variety

June Huh
University of Michigan at Ann Arbor

October 21, 2012

The maximum likelihood degree

- \mathbb{P}^{n-1}, the projective space with coordinates p_{1}, \ldots, p_{n}, where the p_{i} represents the probability of the i-th event.
- An implicit statistical model is a closed subvariety $V \subseteq \mathbb{P}^{n-1}$.
- The data comes in the form of integers u_{1}, \ldots, u_{n}, where the u_{i} is the number of times the i-th event was observed.

The maximum likelihood degree

- In order to find the values of p_{i} on V which best explains the given data u_{i}, one finds critical points of the likelihood function

$$
L\left(p_{1}, \ldots, p_{n}\right)=p_{1}^{u_{1}} \cdots p_{n}^{u_{n}} /\left(p_{1}+\cdots+p_{n}\right)^{u_{1}+\cdots+u_{n}} .
$$

- The maximum likelihood degree of the model is the number of critical points of $\left.L\right|_{V}$, for sufficiently general u_{1}, \ldots, u_{n}.
- This number is well-defined.

Log-concavity conjectures

- A sequnce a_{0}, \ldots, a_{p} is log-concave if for all i

$$
a_{i-1} a_{i+1} \leq a_{i}^{2}
$$

- If there are no internal zeroes, log-concavity implies unimodality:

$$
a_{0} \leq \cdots \leq a_{i-1} \leq a_{i} \geq a_{i+1} \geq \cdots \geq a_{p} \quad \text { for some } i
$$

Chromatic polynomial of graphs

Let G be a graph.

- The chromatic polynomial of G is the function

$$
\chi_{G}(q)=\text { (number of proper colorings of } G \text { with } q \text { colors). }
$$

Example

$$
\begin{aligned}
\chi_{G}(q) & =q(q-1)(q-2)(q-2)+q(q-1)(q-1) \\
& =1 q^{4}-4 q^{3}+6 q^{2}-3 q
\end{aligned}
$$

Independent sets of vectors

- Let $\mathcal{A}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a subset of a vector space V.
- Define the f-vector of \mathcal{A} by

$$
f_{i}=(\text { number of independent subsets of cardinality } i \text { in } \mathcal{A}) .
$$

Example (Fano plane)

For $\mathcal{A}=\mathbb{F}_{2}^{3} \backslash\{0\}$, we have

$$
f_{0}=1, \quad f_{1}=7, \quad f_{2}=21, \quad f_{3}=28 .
$$

Conjecture (Read-Rota 68, Mason-Welsh 69)

- The first sequence is log-concave for any G.
- The second sequence is log-concave for any \mathcal{A}.
- These conjectures are proved (H, H-Katz, Lenz) using the topology of hypersurface complements, CSM class, tropical geometry, and matroid theory.
- The maximum likelihood framework provides solutions to stronger conjectures (Hoggar 74, Dawson 84, Colbourn 87) with simpler proofs, in characteristic zero.

Theorem

Let M be a matroid representable over a field of characteristic zero.

1. The h-vector of the matroid complex of M is log-concave.
2. The h-vector of the broken circuit complex of M is log-concave.

- " 1 " implies a conjecture of Colbourn on the reliability of a network.
- " 1 " was conjectured by Dawson in general.
- Any matroid complex is a broken circuit complex, but not conversely. Therefore " 2 " is stronger than " 1 ".

Log-concavity conjectures

Corollary

Let M be a matroid representable over a field of characteristic zero.

1. The f-vector of the matroid complex of M is strictly log-concave.
2. The f-vector of the broken circuit complex of M is strictly log-concave.

This should be compared to f-vectors and h-vectors of
other "nice" shellable simplicial complexes, such as. . .

Björner's example (from Ziegler's polytope book)

Examples 8.40. The unimodality conjecture fails for a simplicial polytope of dimension $d=20$ with the following f-vector, for which $f_{11}>f_{12}<f_{13}$.

$$
\begin{array}{llr}
f_{-1} & = & 1 \\
f_{0} & = & 4203045807626 \\
f_{1} & = & 84060916163336 \\
f_{2} & = & 798578704207074 \\
f_{3} & = & 4791472253296106 \\
f_{4} & = & 20363758019368323 \\
f_{5} & = & 65164051780016980 \\
f_{6} & = & 162910744316489788 \\
f_{7} & = & 325834059588060117 \\
f_{8} & = & 529707205213463823 \\
f_{9} & = & 709935971390166248 \\
f_{10} & = & 805494832051588614 \\
f_{11} & =821976324224631043 \\
f_{12} & = & 821976324224611712 \\
f_{13} & = & 822000129478641948 \\
f_{14} & =747383755288236256 \\
f_{15} & = & 546761228419958342 \\
f_{16} & =293715859557026466 \\
f_{17} & = & 106920718330384544 \\
f_{18} & = & 23458617733909980 \\
f_{19} & = & 2345861773390998
\end{array}
$$

How do you prove that a sequence is log-concave?

Let's say that a homology class of an algebraic variety is representable if it is the class of a subvariety.

Theorem

Write an even dimensional homology class ξ as a linear combination

$$
\xi=\sum_{i} e_{i}\left[\mathbb{P}^{k-i} \times \mathbb{P}^{i}\right] \in H_{2 k}\left(\mathbb{P}^{m} \times \mathbb{P}^{n} ; \mathbb{Z}\right)
$$

Then some positive multiple of ξ is representable if and only if $\left\{e_{i}\right\}$ form a log-concave sequence of nonnegative integers with no internal zeros.

The maximum likelihood degree

- Therefore it suffices to show that there is a subvariety of $\mathbb{P}^{m} \times \mathbb{P}^{n}$ whose homology class is given by the coefficients of $\chi_{M}(q+1)$.
- The idea for this comes from the maximum likelihood estimation in algebraic statistics.

Varchenko's conjecture

- $\mathcal{A}=$ (arrangement in \mathbb{C}^{r} defined by linear functions $\left.f_{1}, \ldots, f_{n}\right)$.
- $\varphi=\prod_{i=1}^{n} f_{i}^{u_{i}}, u_{i} \in \mathbb{Z}$.

Conjecture (Varchenko 95)

If the arrangement is essential and the u_{i} are general, then

1. φ has only finitely many critical points in $\mathbb{C}^{r} \backslash \mathcal{A}$.
2. All critical points of φ are nondegenerate.
3. The number of critical points is equal to $(-1)^{r} \chi\left(\mathbb{C}^{r} \backslash \mathcal{A}\right) \quad\left(=\chi_{\mathcal{A}}(1)\right)$.

Varchenko's conjecture is proved by Orlik and Terao.

- If \mathcal{A} is defined over the real numbers,

$$
\begin{aligned}
\chi_{\mathcal{A}}(1) & =(\text { the number of critical points of } \varphi) \\
& =\left(\text { the number of bounded regions of } \mathbb{R}^{r} \backslash \mathcal{A}\right) .
\end{aligned}
$$

- \mathcal{A} is essential iff lowest dimensional flats are zero dimensional.
- \mathcal{A} is essential iff we have the embedding

$$
\mathbb{C}^{r} \backslash \mathcal{A} \longrightarrow\left(\mathbb{C}^{*}\right)^{n}, \quad x \longmapsto\left(f_{1}, \ldots, f_{n}\right) .
$$

- Any arrangement is of the form $\mathcal{A}=\mathbb{C}^{k} \times \mathbb{A}^{\prime}$ with \mathcal{A}^{\prime} essential.
- Let U be an r-dimensional smooth subvariety of $\left(\mathbb{C}^{*}\right)^{n}$.
- Let f_{1}, \ldots, f_{n} be the coordinate functions on U.
- $\varphi=\prod_{i=1}^{n} f_{i}^{u_{i}}, u_{i} \in \mathbb{Z}$.

Theorem

If the u_{i} are sufficiently general, then

1. φ has only finitely many critical points in U.
2. All critical points of φ are nondegenerate.
3. The number of critical points is equal to $(-1)^{r} \chi(U)$.

- Next we consider the collection of all critical points of all possible master functions simultaneously:

$$
\mathfrak{X}^{\circ}(U)=\left\{\sum_{i=1}^{n} u_{i} \cdot \operatorname{dlog}\left(p_{i}\right)(x)=0\right\} \subseteq U \times \mathbb{P}^{n-1},
$$

where u_{1}, \ldots, u_{n} are now homogeneous coordinates of \mathbb{P}^{n-1}.

- The closure $\mathfrak{X}(U) \subseteq \mathbb{P}^{n} \times \mathbb{P}^{n-1}$ gives the subvariety we want!
- In fact, this is truly a natural choice, because it is a geometric realization of the characteristic class of U.

Suppose U is r-dimensional and not isomorphic to a torus.

Theorem

If U is wonderful, then

$$
[\mathfrak{X}(U)]=\sum_{i=0}^{r} v_{i}\left[\mathbb{P}^{r-i} \times \mathbb{P}^{n-1-r+i}\right] \in H_{*}\left(\mathbb{P}^{n} \times \mathbb{P}^{n-1}\right),
$$

where

$$
\operatorname{cSM}\left(\mathbf{1}_{U}\right)=\sum_{i=0}^{r}(-1)^{i} v_{i}\left[\mathbb{P}^{r-i}\right] \in H_{*}\left(\mathbb{P}^{n}\right) .
$$

If U is the complement $\mathbb{C}^{r} \backslash \mathcal{A}$, then (almost by definition)

$$
\chi_{\mathcal{A}}(q+1)=\sum_{i=0}^{r}(-1)^{i} v_{i} q^{r-i} .
$$

Theorem

Let U be the hypersurface $\{g=0\} \subseteq\left(\mathbb{C}^{*}\right)^{n}$ with

$$
\operatorname{cSM}^{\prime}\left(\mathbf{1}_{U}\right)=\sum_{i=0}^{r}(-1)^{i} v_{i}\left[\mathbb{P}^{r-i}\right] \in H_{*}\left(\mathbb{P}^{n}\right) .
$$

If g is general with respect to Δ_{g}, then U is wonderful, and

$$
v_{i}=M V_{n}(\underbrace{\Delta, \ldots, \Delta}_{r-i}, \underbrace{\Delta_{g}, \ldots, \Delta_{g}}_{i+1}), \quad i=0, \ldots, r .
$$

In particular, ML-degree of U is equal to the normalized volume

$$
v_{r}=(-1)^{r} \int \operatorname{css}^{\prime}\left(\mathbf{1}_{U}\right)=\operatorname{Volume}\left(\Delta_{g}\right) .
$$

