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The maximum likelihood degree

@ P" ! the projective space with coordinates p1, ..., pn,

where the p; represents the probability of the ¢-th event.
@ An implicit statistical model is a closed subvariety V C P" L.

@ The data comes in the form of integers uy, . .., un,

where the u; is the number of times the :-th event was observed.
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The maximum likelihood degree

@ In order to find the values of p; on V which best explains the given

data u;, one finds critical points of the likelihood function

L(py,...,pn) = pit - o /(P14 - + pa) T

@ The maximum likelihood degree of the model is the number of

critical points of L|v, for sufficiently general ua, .. ., un.

@ This number is well-defined.
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Log-concavity conjectures

@ A sequnce ao, ..., ap is log-concave if for all ¢
2
ai-10i11 < a;.
@ If there are no internal zeroes, log-concavity implies unimodality:

ag <---<ai—1<a; > aiy1 > - > a, forsome .

June Huh (University of Michigan at Ann Arbor) The maximum likelihood degree October 21, 2012 4/20



Chromatic polynomial of graphs

Let G be a graph.

@ The chromatic polynomial of G is the function

xc(g) = (number of proper colorings of G with g colors).

Example

(g —1)(g—2)(¢g—2)+4q(g—1)(g—1)
1q4 — 4q3 ar 6q2 —3q

xc(q)
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Independent sets of vectors

@ Let A= {vi,...,v.} be asubset of a vector space V.
@ Define the f-vector of A by

fi = (number of independent subsets of cardinality 7 in A).

Example (Fano plane)
For A = IF3 \ {0}, we have

fo=1, A=7 fo=21, f3=28.
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Conjecture (Read-Rota 68, Mason-Welsh 69)
@ The first sequence is log-concave for any G.

@ The second sequence is log-concave for any A.
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@ These conjectures are proved (H, H-Katz, Lenz) using
the topology of hypersurface complements, CSM class,

tropical geometry, and matroid theory.

@ The maximum likelihood framework provides solutions to
stronger conjectures (Hoggar 74, Dawson 84, Colbourn 87)

with simpler proofs, in characteristic zero.
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Theorem

Let M be a matroid representable over a field of characteristic zero.
1. The h-vector of the matroid complex of M is log-concave.

2. The h-vector of the broken circuit complex of M is log-concave.

@ “1” implies a conjecture of Colbourn on the reliability of a network.

@ “1” was conjectured by Dawson in general.

@ Any matroid complex is a broken circuit complex, but not conversely.

Therefore “2” is stronger than “1”.
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Log-concavity conjectures

Corollary

Let M be a matroid representable over a field of characteristic zero.
1. The f-vector of the matroid complex of M is strictly log-concave.

2. The f-vector of the broken circuit complex of M is strictly log-concave.

This should be compared to f-vectors and h-vectors of

other “nice” shellable simplicial complexes, such as. ..
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Bjorner’s example (from Ziegler’'s polytope book)

Examples 8.40. The unimodality conjecture fails for a simplicial polytope
of dimension d = 20 with the following f-vector, for which fi1 > fi2 < fis.
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fa
fo
I
fa
fa
fa
Ji
fz
fs
fa
fio
bit!
fiz
fa
fia
fis
fie
fir
fis
Jio

o
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4203045807626
84060916163336
TO8578704207074
4791472253296106
20363758019368323
65164051780016980
162910744316489788
325834059588060117
529707205213463823
709935971390166248
805494832051588614
821976324224631043
821976324224611712
822000129478641948
TAT383755288236256
546761228419958342
203715859557026466
106920718330384544
23458617733909980
2345861773390008
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How do you prove that a sequence is log-concave?

Let’'s say that a homology class of an algebraic variety is representable

if it is the class of a subvariety.
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Theorem

Write an even dimensional homology class ¢ as a linear combination

= Z e&[IP* ™ x P'] € Hox(P™ x P™; Z).

Then some positive multiple of £ is representable if and only if {e;} form

a log-concave sequence of nonnegative integers with no internal zeros.
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The maximum likelihood degree

@ Therefore it suffices to show that there is a subvariety of P™ x IP" whose

homology class is given by the coefficients of xu (g + 1).

@ The idea for this comes from the maximum likelihood estimation

in algebraic statistics.
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Varchenko’s conjecture

@ A = (arrangement in C" defined by linear functions fi, ..., fu)-

o p=[[_,f" uez

Conjecture (Varchenko 95)

If the arrangement is essential and the w; are general, then
1. ¢ has only finitely many critical points in C" \ A.

2. All critical points of y are nondegenerate.

3. The number of critical points is equal to (—1)"x(C™\ A) (= xa(1)).

Varchenko’s conjecture is proved by Orlik and Terao.
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@ If A is defined over the real numbers,

xA(1) (the number of critical points of ¢)

= (the number of bounded regions of R" \ A).

@ A is essential iff lowest dimensional flats are zero dimensional.

@ A is essential iff we have the embedding

C"\A— (C)", z+— (fi, .-, fa)

@ Any arrangement is of the form A = C* x A’ with A’ essential.

June Huh (University of Michigan at Ann Arbor) The maximum likelihood degree October 21, 2012 16/20



@ Let U be an r-dimensional smooth subvariety of (C*)".
@ Let fi,...,f. be the coordinate functions on U.

Q= H?zlfiu’, u; € Z.

Theorem

If the w; are sufficiently general, then
1. ¢ has only finitely many critical points in U.
2. All critical points of ¢ are nondegenerate.

3. The number of critical points is equal to (—1)"x(U).
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@ Next we consider the collection of all critical points of all possible

master functions simultaneously:

X°(U) = i u; -dlog(pi)(z) =0p C U x P"7F,

=1

where u, . .., u, are now homogeneous coordinates of P"~*.
@ The closure ¥(U) C IP" x P"~* gives the subvariety we want!

@ In fact, this is truly a natural choice, because it is a geometric realization

of the characteristic class of U.
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Suppose U is r-dimensional and not isomorphic to a torus.

Theorem

If U is wonderful, then

r

[¥(0)] =D " w[P x PP € Hy(P" x PR,

1=0

where

r

csu(ly) =Y (=1)'w: [P"""] € Ho(P").

1=0

If U is the complement C” \ A, then (almost by definition)

xalg+1) =) (-1)'vig "
1=0
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Theorem

Let U be the hypersurface {g = 0} C (C*)" with

r

cou(lu) =Y (=1)'v: [P"'] € Ho(P").

1=0
If g is general with respect to A, then U is wonderful, and
v =MV (A, ... ,AD,, ..., A,), 1=0,...,r.

r—1i i+1

In particular, ML-degree of U is equal to the normalized volume

vy = (—1)T/CSM(1U) = Volume(A,).

June Huh (University of Michigan at Ann Arbor) The maximum likelihood degree October 21, 2012

20/20




