The Unreasonable Ubiquitousness of Quasi-polynomials

Kevin Woods
Oberlin College

Reasonable Ubiquitousness

Definition: $f: \mathbb{N} \rightarrow \mathbb{Z}$ is a quasi-polynomial if there exists a period m and polynomials $p_{i} \in \mathbb{Z}[t]$ such that

$$
f(t)=p_{i}(t), \text { for } t \equiv i \bmod m .
$$

Example:

$$
f(t)=\left\lfloor\frac{t+1}{2}\right\rfloor= \begin{cases}\frac{t}{2} & \text { if } t \text { even } \\ \frac{t+1}{2} & \text { if } t \text { odd }\end{cases}
$$

Reasonable Ubiquitousness

Definition: $f: \mathbb{N} \rightarrow \mathbb{Z}$ is a quasi-polynomial if there exists a period m and polynomials $p_{i} \in \mathbb{Z}[t]$ such that

$$
f(t)=p_{i}(t), \text { for } t \equiv i \bmod m
$$

Example:

$$
f(t)=\left\lfloor\frac{t+1}{2}\right\rfloor= \begin{cases}\frac{t}{2} & \text { if } t \text { even } \\ \frac{t+1}{2} & \text { if } t \text { odd }\end{cases}
$$

Reasonable Ubiquitousness

Ehrhart quasi-polynomials: If P is a polytope with rational vertices, then $f(t)=\left|t P \cap \mathbb{Z}^{d}\right|$ is a quasi-polynomial.

Example: $P=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subseteq \mathbb{R}^{2}$.

$$
\begin{aligned}
& f(t)= \begin{cases}(t+1)^{2}, & \text { for } t \text { even } \\
t^{2}, & \text { for } t \text { odd }\end{cases} \\
& t P=\{(x, y):-t \leq 2 x \leq t \\
& -t \leq 2 y \leq t\}
\end{aligned}
$$

Reasonable Ubiquitousness

Ehrhart quasi-polynomials: If P is a polytope with rational vertices, then $f(t)=\left|t P \cap \mathbb{Z}^{d}\right|$ is a quasi-polynomial.

Example: $P=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subseteq \mathbb{R}^{2}$.

$$
\begin{aligned}
& f(t)= \begin{cases}(t+1)^{2}, & \text { for } t \text { even } \\
t^{2}, & \text { for } t \text { odd }\end{cases} \\
& t P=\{(x, y):-t \leq 2 x \leq t \\
& -t \leq 2 y \leq t\}
\end{aligned}
$$

Reasonable Ubiquitousness

Ehrhart quasi-polynomials: If P is a polytope with rational vertices, then $f(t)=\left|t P \cap \mathbb{Z}^{d}\right|$ is a quasi-polynomial.

Example: $P=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subseteq \mathbb{R}^{2}$.

$$
\begin{aligned}
& f(t)= \begin{cases}(t+1)^{2}, & \text { for } t \text { even } \\
t^{2}, & \text { for } t \text { odd }\end{cases} \\
& t P=\{(x, y):-t \leq 2 x \leq t \\
& -t \leq 2 y \leq t\}
\end{aligned}
$$

Reasonable Ubiquitousness

$$
f(s, t)=\#\left\{(x, y) \in \mathbb{N}^{2}: 2 y-x \leq 2 t-s, x-y \leq s-t\right\} .
$$

Reasonable Ubiquitousness

$$
f(s, t)=\#\left\{(x, y) \in \mathbb{N}^{2}: 2 y-x \leq 2 t-s, x-y \leq s-t\right\} .
$$

Reasonable Ubiquitousness

$$
f(s, t)=\#\left\{(x, y) \in \mathbb{N}^{2}: 2 y-x \leq 2 t-s, x-y \leq s-t\right\} .
$$

Reasonable Ubiquitousness

$$
\begin{gathered}
f(s, t)=\#\left\{(x, y) \in \mathbb{N}^{2}: 2 y-x \leq 2 t-s, x-y \leq s-t\right\} . \\
f(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor 2 \\
s t-\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } t \leq s \leq 2 t, \\
\frac{t^{2}}{2}+\frac{3 t}{2}+1 & \text { if } 0 \leq 2 t \leq s,\end{cases} \\
t \leq s \leq 2 t \leq \frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1 \\
0 \leq s \leq t .
\end{gathered}
$$

Reasonable Ubiquitousness

- Need piecewise quasi-polynomials - pieces are polyhedral regions of parameter space.
- For one parameter, "piecewise" means eventually a quasi-polynomial.

Reasonable Ubiquitousness

- Need piecewise quasi-polynomials - pieces are polyhedral regions of parameter space.
- For one parameter, "piecewise" means eventually a quasi-polynomial.

Reasonable Ubiquitousness

- Need piecewise quasi-polynomials - pieces are polyhedral regions of parameter space.
- For one parameter, "piecewise" means eventually a quasi-polynomial.
- For $\mathbf{t} \in \mathbb{Z}^{d}$, if $S_{\mathbf{t}}$ is the set of integer points in a polytope defined with linear inequalities a $\mathbf{x} \leq b(\mathbf{t})$, then $\left|S_{\mathbf{t}}\right|$ is a piecewise quasi-polynomial [Bernd Sturmfels].
- If $S_{\mathbf{t}} \subseteq \mathbb{Z}^{n}$ is defined with quantifiers (\forall, \exists), boolean operations (and, or, not), and linear inequalities $\mathbf{a} \cdot \mathbf{x} \leq b(\mathbf{t})$, then $\left|S_{t}\right|$ is a piecewise quasi-polynomial $[\mathrm{KW}]$.

Reasonable Ubiquitousness

- Need piecewise quasi-polynomials - pieces are polyhedral regions of parameter space.
- For one parameter, "piecewise" means eventually a quasi-polynomial.
- For $\mathbf{t} \in \mathbb{Z}^{d}$, if $S_{\mathbf{t}}$ is the set of integer points in a polytope defined with linear inequalities $\mathbf{a} \cdot \mathbf{x} \leq b(\mathbf{t})$, then $\left|S_{\mathbf{t}}\right|$ is a piecewise quasi-polynomial [Bernd Sturmfels].
- If $S_{\mathbf{t}} \subseteq \mathbb{Z}^{n}$ is defined with quantifiers (\forall, \exists), boolean operations (and, or, not), and linear inequalities $\mathbf{a} \cdot \mathbf{x} \leq b(\mathbf{t})$, then $\left|S_{t}\right|$ is a piecewise quasi-polynomial $[\mathrm{KW}]$.

Reasonable Ubiquitousness

Example:
$S_{t}=\{x \in \mathbb{N}: \exists y \in \mathbb{N}: 2 y+2 x+1=t$ and $1 \leq x \leq y\}$.

$$
S_{t}=\{
$$

Reasonable Ubiquitousness

Example:

$$
S_{t}=\{x \in \mathbb{N}: \exists y \in \mathbb{N}: 2 y+2 x+1=t \text { and } 1 \leq x \leq y\}
$$

$$
S_{t}= \begin{cases}\emptyset & \text { if } t \text { odd } \\ \emptyset & \text { else }\end{cases}
$$

Reasonable Ubiquitousness

Example:

$$
S_{t}=\{x \in \mathbb{N}: \exists y \in \mathbb{N}: 2 y+2 x+1=t \text { and } 1 \leq x \leq y\}
$$

$$
S_{t}= \begin{cases} & \text { if } t \text { odd, } t \geq 5 \\ \emptyset & \text { else }\end{cases}
$$

Reasonable Ubiquitousness

Example:

$$
S_{t}=\{x \in \mathbb{N}: \exists y \in \mathbb{N}: 2 y+2 x+1=t \text { and } 1 \leq x \leq y\}
$$

$$
S_{t}= \begin{cases}\left\{1,2, \ldots,\left\lfloor\frac{t-1}{4}\right\rfloor\right\} & \text { if } t \text { odd, } t \geq 5 \\ \emptyset & \text { else. }\end{cases}
$$

Reasonable Ubiquitousness

Example:

$$
\begin{gathered}
S_{t}=\{x \in \mathbb{N}: \exists y \in \mathbb{N}: 2 y+2 x+1=t \text { and } 1 \leq x \leq y\} . \\
S_{t}= \begin{cases}\left\{1,2, \ldots,\left\lfloor\frac{t-1}{4}\right\rfloor\right\} & \text { if } t \text { odd, } t \geq 5 \\
\emptyset & \text { else. }\end{cases}
\end{gathered}
$$

Facts:

1. S_{t} is nonempty for $t=5,7,9, \ldots$. Eventually periodic.
2.

$$
\left|S_{t}\right|= \begin{cases}\left\lfloor\frac{t-1}{4}\right\rfloor & \text { if } t \text { odd, } t \geq 5 \\ 0 & \text { else }\end{cases}
$$

Eventually a quasi-polynomial.

Reasonable Ubiquitousness

Example:

$$
\begin{gathered}
S_{t}=\{x \in \mathbb{N}: \exists y \in \mathbb{N}: 2 y+2 x+1=t \text { and } 1 \leq x \leq y\} . \\
S_{t}= \begin{cases}\left\{1,2, \ldots,\left\lfloor\frac{t-1}{4}\right\rfloor\right\} & \text { if } t \text { odd, } t \geq 5 \\
\emptyset & \text { else. }\end{cases}
\end{gathered}
$$

Facts:

1. S_{t} is nonempty for $t=5,7,9, \ldots$. Eventually periodic.
2.

$$
\left|S_{t}\right|= \begin{cases}\left\lfloor\frac{t-1}{4}\right\rfloor & \text { if } t \text { odd, } t \geq 5 \\ 0 & \text { else }\end{cases}
$$

Eventually a quasi-polynomial.

Reasonable Ubiquitousness

Facts:

3.

$$
\begin{aligned}
\sum_{a \in S_{t}} x^{a} & = \begin{cases}x+x^{2}+\cdots+x\lfloor(t-1) / 4\rfloor & \text { if } t \text { odd, } t \geq 5, \\
0 & \text { else }\end{cases} \\
& = \begin{cases}\frac{x-x^{\lfloor(t-1) / 4\rfloor+1}}{x^{1}-x} & \text { if } t \text { odd, } t \geq 5, \\
\frac{x-x^{1}}{1-x} & \text { else }\end{cases} \\
& =\frac{x-x^{p(t)}}{1-x},
\end{aligned}
$$

where $p(t)$ is eventually a quasi-polynomial. The generating function is a rational function, with exponents depending on t.
$3 \Rightarrow 2 \Rightarrow 1$ (e.g., substitute $x=1$ into the generating function and take limits).

Reasonable Ubiquitousness

Facts:

3.

$$
\begin{aligned}
\sum_{a \in S_{t}} x^{a} & = \begin{cases}x+x^{2}+\cdots+x^{\lfloor(t-1) / 4\rfloor} & \text { if } t \text { odd, } t \geq 5, \\
0 & \text { else }\end{cases} \\
& = \begin{cases}\frac{x-x^{\lfloor(t-1) / 4\rfloor+1}}{x^{1-x}} & \text { if } t \text { odd, } t \geq 5, \\
\frac{x-x}{1-x} & \text { else }\end{cases} \\
& =\frac{x-x^{p(t)}}{1-x},
\end{aligned}
$$

where $p(t)$ is eventually a quasi-polynomial. The generating function is a rational function, with exponents depending on t.
$3 \Rightarrow 2 \Rightarrow 1$ (e.g., substitute $x=1$ into the generating function and take limits).

Reasonable Ubiquitousness

Facts:

3.

$$
\begin{aligned}
\sum_{a \in S_{t}} x^{a} & = \begin{cases}x+x^{2}+\cdots+x^{\lfloor(t-1) / 4\rfloor} & \text { if } t \text { odd, } t \geq 5, \\
0 & \text { else }\end{cases} \\
& = \begin{cases}\frac{x-x^{\lfloor(t-1) / 4\rfloor+1}}{x^{1-x}} & \text { if } t \text { odd, } t \geq 5, \\
\frac{x-x^{1}}{1-x} & \text { else }\end{cases} \\
& =\frac{x-x^{p(t)}}{1-x},
\end{aligned}
$$

where $p(t)$ is eventually a quasi-polynomial. The generating function is a rational function, with exponents depending on t.
$3 \Rightarrow 2 \Rightarrow 1$ (e.g., substitute $x=1$ into the generating function and take limits).

Reasonable Ubiquitousness

Facts:

3.

$$
\begin{aligned}
\sum_{a \in S_{t}} x^{a} & = \begin{cases}x+x^{2}+\cdots+x^{\lfloor(t-1) / 4\rfloor} & \text { if } t \text { odd, } t \geq 5, \\
0 & \text { else }\end{cases} \\
& = \begin{cases}\frac{x-x^{\lfloor(t-1) / 4\rfloor+1}}{x^{1}-x} & \text { if } t \text { odd, } t \geq 5, \\
\frac{x-x^{1}}{1-x} & \text { else }\end{cases} \\
& =\frac{x-x^{p(t)}}{1-x},
\end{aligned}
$$

where $p(t)$ is eventually a quasi-polynomial. The generating function is a rational function, with exponents depending on t.
$3 \Rightarrow 2 \Rightarrow 1$ (e.g., substitute $x=1$ into the generating function and take limits).

Reasonable Ubiquitousness

Facts:

3.

$$
\begin{aligned}
\sum_{a \in S_{t}} x^{a} & = \begin{cases}x+x^{2}+\cdots+x^{\lfloor(t-1) / 4\rfloor} & \text { if } t \text { odd, } t \geq 5, \\
0 & \text { else }\end{cases} \\
& = \begin{cases}\frac{x-x^{\lfloor(t-1) / 4\rfloor+1}}{x^{1-x}} & \text { if } t \text { odd, } t \geq 5, \\
\frac{x-x^{1}}{1-x} & \text { else }\end{cases} \\
& =\frac{x-x^{p(t)}}{1-x},
\end{aligned}
$$

where $p(t)$ is eventually a quasi-polynomial. The generating function is a rational function, with exponents depending on t.
$3 \Rightarrow 2 \Rightarrow 1$ (e.g., substitute $x=1$ into the generating function and take limits).

Reasonable Ubiquitousness

Facts:

3.

$$
\begin{aligned}
\sum_{a \in S_{t}} x^{a} & = \begin{cases}x+x^{2}+\cdots+x^{\lfloor(t-1) / 4\rfloor} & \text { if } t \text { odd, } t \geq 5, \\
0 & \text { else }\end{cases} \\
& = \begin{cases}\frac{x-x^{\lfloor(t-1) / 4\rfloor+1}}{x^{1-x}} & \text { if } t \text { odd, } t \geq 5, \\
\frac{x-x^{1}}{1-x} & \text { else }\end{cases} \\
& =\frac{x-x^{p(t)}}{1-x},
\end{aligned}
$$

where $p(t)$ is eventually a quasi-polynomial. The generating function is a rational function, with exponents depending on t.
$3 \Rightarrow 2 \Rightarrow 1$ (e.g., substitute $x=1$ into the generating function and take limits).

Reasonable Ubiquitousness

Reasonable Ubiquitousness

In all of these examples, S_{t} is defined with linear inequalities $\mathbf{a} \cdot \mathbf{x} \leq b(t)$, and \mathbf{a} does not depend on t.

Unreasonable Ubiquitousness

Unreasonable Ubiquitousness

Let S_{t} is the set of integer points in a polytope defined with linear inequalities $\mathbf{a}(t) \cdot \mathbf{x} \leq b(t)$, where $\mathbf{a}(t)$ and $b(t)$ are polynomials in T.

Then $\left|S_{t}\right|$ is eventually a quasi-polynomial [Sheng Chen, Nan Li, Steven Sam].

Unreasonable Ubiquitousness

Let S_{t} be the vertices of the integer hull of a polytope defined with linear inequalities $\mathbf{a}(t) \cdot \mathbf{x} \leq b(t)$, where $\mathbf{a}(t)$ and $b(t)$ are polynomials in T (such that the vertices are $O(t)$).

Then there exists a modulus m and functions $\mathbf{p}_{i j}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$ with polynomial entries, such that, for sufficiently large $t \equiv i \bmod m$,

$$
S_{t}=\left\{\mathbf{p}_{i 1}(t), \mathbf{p}_{i 2}(t), \ldots, \mathbf{p}_{i k_{i}}(t)\right\}
$$

[Danny Calegari, Alden Walker].

Unreasonable Ubiquitousness

Let S_{t} be the vertices of the integer hull of a polytope defined with linear inequalities $\mathbf{a}(t) \cdot \mathbf{x} \leq b(t)$, where $\mathbf{a}(t)$ and $b(t)$ are polynomials in T (such that the vertices are $\mathrm{O}(t)$).

Then there exists a modulus m and functions $\mathbf{p}_{i j}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$ with polynomial entries, such that, for sufficiently large $t \equiv i \bmod m$,

$$
S_{t}=\left\{\mathbf{p}_{i 1}(t), \mathbf{p}_{i 2}(t), \ldots, \mathbf{p}_{i k_{i}}(t)\right\}
$$

[Danny Calegari, Alden Walker].

Unreasonable Ubiquitousness

Given relatively prime $a_{i} \in \mathbb{Z}_{+}$, define the Frobenius number $F\left(a_{1}, \ldots, a_{n}\right)$ to be the largest integer not in the semigroup generated by the a_{i}. Let $\alpha_{i} \in \mathbb{Z}_{+}, \beta_{i} \in \mathbb{Z}$.

Then $F\left(\alpha_{1} t+\beta_{1}, \ldots, \alpha_{n} t+\beta_{n}\right)$ is eventually a quasi-polynomial in t [Bjarke Roune, KW; inspired by Stan Wagon].

Unreasonable Ubiquitousness

Given relatively prime $a_{i} \in \mathbb{Z}_{+}$, define the Frobenius number $F\left(a_{1}, \ldots, a_{n}\right)$ to be the largest integer not in the semigroup generated by the a_{i}. Let $\alpha_{i} \in \mathbb{Z}_{+}, \beta_{i} \in \mathbb{Z}$.

Then $F\left(\alpha_{1} t+\beta_{1}, \ldots, \alpha_{n} t+\beta_{n}\right)$ is eventually a quasi-polynomial in t [Bjarke Roune, KW; inspired by Stan Wagon].

Unreasonable Ubiquitousness

Given relatively prime $a_{i} \in \mathbb{Z}_{+}$, define the Frobenius number $F\left(a_{1}, \ldots, a_{n}\right)$ to be the largest integer not in the semigroup generated by the a_{i}. Let $\alpha_{i} \in \mathbb{Z}_{+}, \beta_{i} \in \mathbb{Z}$.

Then $F\left(\alpha_{1} t+\beta_{1}, \ldots, \alpha_{n} t+\beta_{n}\right)$ is eventually a quasi-polynomial in t [Bjarke Roune, KW; inspired by Stan Wagon].

Defining the Frobenius number requires heavy use of quantifiers:

$$
\nexists \lambda_{1}, \lambda_{2} \in \mathbb{N}: 53=\lambda_{1} \cdot 7+\lambda_{2} \cdot 10 .
$$

Basic tools

[Chen-Li-Sam, Calegari-Walker]: Given $f(t), g(t) \in \mathbb{Z}[x]$,

- Division Algorithm: There exists quasi-polynomials $q(t)$ and $r(t), \operatorname{deg} r<\operatorname{deg} g$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: $\frac{t^{2}+3}{2 t}=? ?$. Let $t=2 s($ same for $2 s+1)$. Then

$$
\frac{t^{2}+3}{2 t}=\frac{4 s^{2}+3}{4 s}=s \text { remainder } 3
$$

Basic tools

[Chen-Li-Sam, Calegari-Walker]: Given $f(t), g(t) \in \mathbb{Z}[x]$,

- Division Algorithm: There exists quasi-polynomials $q(t)$ and $r(t), \operatorname{deg} r<\operatorname{deg} g$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: $\frac{t^{2}+3}{2 t}=? ?$. Let $t=2 s($ same for $2 s+1)$. Then

$$
\frac{t^{2}+3}{2 t}=\frac{4 s^{2}+3}{4 s}=s \text { remainder } 3
$$

Basic tools

[Chen-Li-Sam, Calegari-Walker]: Given $f(t), g(t) \in \mathbb{Z}[x]$,

- Division Algorithm: There exists quasi-polynomials $q(t)$ and $r(t), \operatorname{deg} r<\operatorname{deg} g$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: $\frac{t^{2}+3}{2 t}=?$?. Let $t=2 s($ same for $2 s+1)$. Then

$$
\frac{t^{2}+3}{2 t}=\frac{4 s^{2}+3}{4 s}=s \text { remainder } 3
$$

Basic tools

[Chen-Li-Sam, Calegari-Walker]: Given $f(t), g(t) \in \mathbb{Z}[x]$,

- Division Algorithm: There exists quasi-polynomials $q(t)$ and $r(t), \operatorname{deg} r<\operatorname{deg} g$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: $\frac{t^{2}+3}{2 t}=?$?. Let $t=2 s($ same for $2 s+1)$. Then

$$
\frac{t^{2}+3}{2 t}=\frac{4 s^{2}+3}{4 s}=s \text { remainder } 3
$$

- Division Algorithm II: There exists quasi-polynomials $q(t)$ and $r(t)$, with eventually $0 \leq r(t)<g(t)$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: Don't want $\frac{2 t-3}{t}$ to be 2 remainder -3 . Want it to be 1 remainder $t-3$ for $t \geq 3$.

Basic tools

[Chen-Li-Sam, Calegari-Walker]: Given $f(t), g(t) \in \mathbb{Z}[x]$,

- Division Algorithm: There exists quasi-polynomials $q(t)$ and $r(t), \operatorname{deg} r<\operatorname{deg} g$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: $\frac{t^{2}+3}{2 t}=? ?$. Let $t=2 s($ same for $2 s+1)$. Then

$$
\frac{t^{2}+3}{2 t}=\frac{4 s^{2}+3}{4 s}=s \text { remainder } 3
$$

- Division Algorithm II: There exists quasi-polynomials $q(t)$ and $r(t)$, with eventually $0 \leq r(t)<g(t)$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: Don't want $\frac{2 t-3}{t}$ to be 2 remainder -3 . Want it to be 1 remainder $t-3$ for $t \geq 3$.

Basic tools

[Chen-Li-Sam, Calegari-Walker]: Given $f(t), g(t) \in \mathbb{Z}[x]$,

- Division Algorithm: There exists quasi-polynomials $q(t)$ and $r(t), \operatorname{deg} r<\operatorname{deg} g$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: $\frac{t^{2}+3}{2 t}=? ?$. Let $t=2 s($ same for $2 s+1)$. Then

$$
\frac{t^{2}+3}{2 t}=\frac{4 s^{2}+3}{4 s}=s \text { remainder } 3
$$

- Division Algorithm II: There exists quasi-polynomials $q(t)$ and $r(t)$, with eventually $0 \leq r(t)<g(t)$, such that

$$
f(t)=q(t) g(t)+r(t)
$$

Example: Don't want $\frac{2 t-3}{t}$ to be 2 remainder -3 . Want it to be 1 remainder $t-3$ for $t \geq 3$.

Basic tools

- GCD and Extended Euclidean Algorithm: There exist quasi-polynomials $p(t)$ and $q(t)$ and a periodic function $d(t)$, so that

$$
d(t)=\operatorname{gcd}(f(t), g(t)) \text { and } d(t)=p(t) f(t)+q(t) g(t)
$$

- Smith/Hermite normal forms: Important for finding bases of sublattices of \mathbb{Z}^{d}.
- Dominance: If $f \neq g$, then we eventually either always have $f(t)>g(t)$ or always have $g(t)>f(t)$.
- Rounding: $\frac{f(t)}{g(t)}$ converges to a polynomial, and $\left\lfloor\frac{f(t)}{g(t)}\right\rfloor$ is eventually a quasi-polynomial.

On top of these basic tools, each of the three unreasonable results has their own trick.

Basic tools

- GCD and Extended Euclidean Algorithm: There exist quasi-polynomials $p(t)$ and $q(t)$ and a periodic function $d(t)$, so that

$$
d(t)=\operatorname{gcd}(f(t), g(t)) \text { and } d(t)=p(t) f(t)+q(t) g(t)
$$

- Smith/Hermite normal forms: Important for finding bases of sublattices of \mathbb{Z}^{d}.
- Dominance: If $f \neq g$, then we eventually either always have $f(t)>g(t)$ or always have $g(t)>f(t)$.
- Rounding: $\frac{f(t)}{g(t)}$ converges to a polynomial, and $\left\lfloor\frac{f(t)}{g(t)}\right\rfloor$ is eventually a quasi-polynomial.

On top of these basic tools, each of the three unreasonable results has their own trick.

Basic tools

- GCD and Extended Euclidean Algorithm: There exist quasi-polynomials $p(t)$ and $q(t)$ and a periodic function $d(t)$, so that

$$
d(t)=\operatorname{gcd}(f(t), g(t)) \text { and } d(t)=p(t) f(t)+q(t) g(t)
$$

- Smith/Hermite normal forms: Important for finding bases of sublattices of \mathbb{Z}^{d}.
- Dominance: If $f \neq g$, then we eventually either always have $f(t)>g(t)$ or always have $g(t)>f(t)$.
- Rounding: $\frac{f(t)}{g(t)}$ converges to a polynomial, and $\left\lfloor\frac{f(t)}{g(t)}\right\rfloor$ is eventually a quasi-polynomial.

On top of these basic tools, each of the three unreasonable results has their own trick.

Basic tools

- GCD and Extended Euclidean Algorithm: There exist quasi-polynomials $p(t)$ and $q(t)$ and a periodic function $d(t)$, so that

$$
d(t)=\operatorname{gcd}(f(t), g(t)) \text { and } d(t)=p(t) f(t)+q(t) g(t)
$$

- Smith/Hermite normal forms: Important for finding bases of sublattices of \mathbb{Z}^{d}.
- Dominance: If $f \neq g$, then we eventually either always have $f(t)>g(t)$ or always have $g(t)>f(t)$.
- Rounding: $\frac{f(t)}{g(t)}$ converges to a polynomial, and $\left\lfloor\frac{f(t)}{g(t)}\right\rfloor$ is eventually a quasi-polynomial.

On top of these basic tools, each of the three unreasonable results has their own trick.

Basic tools

- GCD and Extended Euclidean Algorithm: There exist quasi-polynomials $p(t)$ and $q(t)$ and a periodic function $d(t)$, so that

$$
d(t)=\operatorname{gcd}(f(t), g(t)) \text { and } d(t)=p(t) f(t)+q(t) g(t)
$$

- Smith/Hermite normal forms: Important for finding bases of sublattices of \mathbb{Z}^{d}.
- Dominance: If $f \neq g$, then we eventually either always have $f(t)>g(t)$ or always have $g(t)>f(t)$.
- Rounding: $\frac{f(t)}{g(t)}$ converges to a polynomial, and $\left\lfloor\frac{f(t)}{g(t)}\right\rfloor$ is eventually a quasi-polynomial.

On top of these basic tools, each of the three unreasonable results has their own trick.

Unreasonable Ubiquitousness?

Can one trick work in all cases?

Unreasonable Ubiquitousness?

Can one trick work in all cases?
Conjecture: Let $S_{t} \subseteq \mathbb{Z}^{n}$ is defined with quantifiers (\forall, \exists), boolean operations (and, or, not), and linear inequalities $\mathbf{a}(t) \cdot \mathbf{x} \leq b(t)$, where $a(t)$ and $b(t)$ have polynomial entries. Then

1. The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
2. $\left|S_{t}\right|$ is eventually a quasi-polynomial.
3.

$$
\sum_{\mathbf{a} \in S_{t}} \mathbf{x}^{\mathbf{a}}=\frac{\sum_{i} \alpha_{i} \mathbf{x}^{\mathbf{p}_{i}(t)}}{\left(1-\mathbf{x}^{\mathbf{q}_{1}(t)}\right) \cdots\left(1-\mathbf{x}^{\mathbf{q}_{k}(t)}\right)},
$$

where $\alpha_{i} \in \mathbb{Q}$ and $\mathbf{p}_{i}, \mathbf{q}_{i j}$ have quasi-polynomial entries.
$3 \Rightarrow 2 \Rightarrow 1[K W]$.

Unreasonable Ubiquitousness?

Can one trick work in all cases?
Conjecture: Let $S_{t} \subseteq \mathbb{Z}^{n}$ is defined with quantifiers (\forall, \exists), boolean operations (and, or, not), and linear inequalities $\mathbf{a}(t) \cdot \mathbf{x} \leq b(t)$, where $a(t)$ and $b(t)$ have polynomial entries. Then

1. The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
2. $\left|S_{t}\right|$ is eventually a quasi-polynomial.
3.

$$
\sum_{\mathbf{a} \in S_{t}} \mathbf{x}^{\mathbf{a}}=\frac{\sum_{i} \alpha_{i} \mathbf{x}^{\mathbf{p}_{i}(t)}}{\left(1-\mathbf{x}^{\mathbf{q}_{1}(t)}\right) \cdots\left(1-\mathbf{x}^{\mathbf{q}_{k}(t)}\right)},
$$

where $\alpha_{i} \in \mathbb{Q}$ and $\mathbf{p}_{i}, \mathbf{q}_{i j}$ have quasi-polynomial entries.
$3 \Rightarrow 2 \Rightarrow 1[K W]$.

Unreasonable Ubiquitousness?

Can one trick work in all cases?
Conjecture: Let $S_{t} \subseteq \mathbb{Z}^{n}$ is defined with quantifiers (\forall, \exists), boolean operations (and, or, not), and linear inequalities $\mathbf{a}(t) \cdot \mathbf{x} \leq b(t)$, where $a(t)$ and $b(t)$ have polynomial entries. Then

1. The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
2. $\left|S_{t}\right|$ is eventually a quasi-polynomial.
3.

$$
\sum_{\mathbf{a} \in S_{t}} \mathbf{x}^{\mathbf{a}}=\frac{\sum_{i} \alpha_{i} \mathbf{x}^{\mathbf{p}_{i}(t)}}{\left(1-\mathbf{x}^{\mathbf{q}_{1}(t)}\right) \cdots\left(1-\mathbf{x}^{\mathbf{q}_{k}(t)}\right)},
$$

where $\alpha_{i} \in \mathbb{Q}$ and $\mathbf{p}_{i}, \mathbf{q}_{i j}$ have quasi-polynomial entries.
$3 \Rightarrow 2 \Rightarrow 1[K W]$.

Unreasonable Ubiquitousness?

Can one trick work in all cases?
Conjecture: Let $S_{t} \subseteq \mathbb{Z}^{n}$ is defined with quantifiers (\forall, \exists), boolean operations (and, or, not), and linear inequalities $\mathbf{a}(t) \cdot \mathbf{x} \leq b(t)$, where $a(t)$ and $b(t)$ have polynomial entries. Then

1. The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
2. $\left|S_{t}\right|$ is eventually a quasi-polynomial.
3.

$$
\sum_{\mathbf{a} \in S_{t}} \mathbf{x}^{\mathbf{a}}=\frac{\sum_{i} \alpha_{i} \mathbf{x}^{\mathbf{p}_{i}(t)}}{\left(1-\mathbf{x}^{\mathbf{q}_{1}(t)}\right) \cdots\left(1-\mathbf{x}^{\mathbf{q}_{k}(t)}\right)},
$$

where $\alpha_{i} \in \mathbb{Q}$ and $\mathbf{p}_{i}, \mathbf{q}_{i j}$ have quasi-polynomial entries.
$3 \Rightarrow 2 \Rightarrow 1[K W]$.

Unreasonable Ubiquitousness?

Can one trick work in all cases?
Conjecture: Let $S_{t} \subseteq \mathbb{Z}^{n}$ is defined with quantifiers (\forall, \exists), boolean operations (and, or, not), and linear inequalities $\mathbf{a}(t) \cdot \mathbf{x} \leq b(t)$, where $a(t)$ and $b(t)$ have polynomial entries. Then

1. The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
2. $\left|S_{t}\right|$ is eventually a quasi-polynomial.
3.

$$
\sum_{\mathbf{a} \in S_{t}} \mathbf{x}^{\mathbf{a}}=\frac{\sum_{i} \alpha_{i} \mathbf{x}^{\mathbf{p}_{i}(t)}}{\left(1-\mathbf{x}^{\mathbf{q}_{1}(t)}\right) \cdots\left(1-\mathbf{x}^{\mathbf{q}_{k}(t)}\right)},
$$

where $\alpha_{i} \in \mathbb{Q}$ and $\mathbf{p}_{i}, \mathbf{q}_{i j}$ have quasi-polynomial entries.
$3 \Rightarrow 2 \Rightarrow 1[K W]$.

Unreasonable Ubiquitousness?

Conjecture is true if

- No quantifiers are needed [KW, building on Chen-Li-Sam] or
- $\mathbf{a}(t)$ is constant [KW].

Conjecture does not hold for more than one parameter:

- If $S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}=\operatorname{conv}\{(t, 0),(0, s)\}$, then $\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1$.

Unreasonable Ubiquitousness?

Conjecture is true if

- No quantifiers are needed [KW, building on Chen-Li-Sam] or
- $\mathbf{a}(t)$ is constant [KW].

Conjecture does not hold for more than one parameter:

- If $S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}=\operatorname{conv}\{(t, 0),(0, s)\}$, then $\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1$.

Unreasonable Ubiquitousness?

Conjecture is true if

- No quantifiers are needed [KW, building on Chen-Li-Sam] or
- $\mathbf{a}(t)$ is constant [KW].

Conjecture does not hold for more than one parameter:

- If $S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}=\operatorname{conv}\{(t, 0),(0, s)\}$, then $\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1$.

Unreasonable Ubiquitousness?

Conjecture is true if

- No quantifiers are needed [KW, building on Chen-Li-Sam] or
- $\mathbf{a}(t)$ is constant [KW].

Conjecture does not hold for more than one parameter:

- If $S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}=\operatorname{conv}\{(t, 0),(0, s)\}$, then $\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1$.

Unreasonable Ubiquitousness?

Conjecture is true if

- No quantifiers are needed [KW, building on Chen-Li-Sam] or
- $\mathbf{a}(t)$ is constant [KW].

Conjecture does not hold for more than one parameter:

- If $S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}=\operatorname{conv}\{(t, 0),(0, s)\}$, then $\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1$.

Unreasonable Ubiquitousness?

More Conjectures:
1 . The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.

Unreasonable Ubiquitousness?

More Conjectures:

1 . The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
1 b. When nonempty, one can eventually specify some $\mathbf{p}(t) \in S_{t}$, where $\mathbf{p}(t)$ has quasi-polynomial entries.
1c. One can eventually specify some $\mathbf{p}(t) \in S_{t}$ maximizing some $\mathbf{c} \cdot \mathbf{x}$. (Frobenius Problem)
1d. If $\left|S_{t}\right| \leq k$ for all t, then one can specify

$$
S_{t}=\left\{\mathbf{p}_{i 1}(t), \mathbf{p}_{i 2}(t), \ldots, \mathbf{p}_{i k_{i}}(t)\right\}
$$

for sufficiently large $t \equiv i \bmod m$ (as in Calegari-Walker).
$1 \mathrm{~b}, 1 \mathrm{c}$, and 1 d are all equivalent $[\mathrm{KW}]$.

Unreasonable Ubiquitousness?

More Conjectures:

1 . The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
1 b. When nonempty, one can eventually specify some $\mathbf{p}(t) \in S_{t}$, where $\mathbf{p}(t)$ has quasi-polynomial entries.
1c. One can eventually specify some $\mathbf{p}(t) \in S_{t}$ maximizing some c • x. (Frobenius Problem)
1d. If $\left|S_{t}\right| \leq k$ for all t, then one can specify

$$
S_{t}=\left\{\mathbf{p}_{i 1}(t), \mathbf{p}_{i 2}(t), \ldots, \mathbf{p}_{i k_{i}}(t)\right\}
$$

for sufficiently large $t \equiv i \bmod m$ (as in Calegari-Walker).
$1 \mathrm{~b}, 1 \mathrm{c}$, and 1 d are all equivalent $[\mathrm{KW}]$.

Unreasonable Ubiquitousness?

More Conjectures:

1 . The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
1 b. When nonempty, one can eventually specify some $\mathbf{p}(t) \in S_{t}$, where $\mathbf{p}(t)$ has quasi-polynomial entries.
1c. One can eventually specify some $\mathbf{p}(t) \in S_{t}$ maximizing some $\mathbf{c} \cdot \mathbf{x}$. (Frobenius Problem)
1d. If $\left|S_{t}\right| \leq k$ for all t, then one can specify

$$
S_{t}=\left\{\mathbf{p}_{i 1}(t), \mathbf{p}_{i 2}(t), \ldots, \mathbf{p}_{i k_{i}}(t)\right\}
$$

for sufficiently large $t \equiv i \bmod m$ (as in Calegari-Walker).
$1 \mathrm{~b}, 1 \mathrm{c}$, and 1 d are all equivalent $[\mathrm{KW}]$.

Unreasonable Ubiquitousness?

More Conjectures:

1 . The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is eventually periodic.
1 b. When nonempty, one can eventually specify some $\mathbf{p}(t) \in S_{t}$, where $\mathbf{p}(t)$ has quasi-polynomial entries.
1c. One can eventually specify some $\mathbf{p}(t) \in S_{t}$ maximizing some $\mathbf{c} \cdot \mathbf{x}$. (Frobenius Problem)
1d. If $\left|S_{t}\right| \leq k$ for all t, then one can specify

$$
S_{t}=\left\{\mathbf{p}_{i 1}(t), \mathbf{p}_{i 2}(t), \ldots, \mathbf{p}_{i k_{i}}(t)\right\}
$$

for sufficiently large $t \equiv i \bmod m$ (as in Calegari-Walker).
$1 \mathrm{~b}, 1 \mathrm{c}$, and 1 d are all equivalent $[\mathrm{KW}]$.

Unreasonable Ubiquitousness?

Specific Conjectures:

- We can do it for the Frobenius problem with nonlinear generators.
- Given a parametric matrix $A(t)$ defining a toric ideal I_{A}, we can do it for the set of $\left(\mathbf{u}^{+}, \mathbf{u}^{-}\right) \in \mathbb{N}^{2 d}$ such that $\mathbf{x}^{\mathbf{u}^{+}}-\mathbf{x}^{\mathbf{u}^{-}}$is an element of some Gröbner basis of I_{A}.
- We can do it for test sets, neighborhood complexes, ...

Unreasonable Ubiquitousness?

Specific Conjectures:

- We can do it for the Frobenius problem with nonlinear generators.
- Given a parametric matrix $A(t)$ defining a toric ideal I_{A}, we can do it for the set of $\left(\mathbf{u}^{+}, \mathbf{u}^{-}\right) \in \mathbb{N}^{2 d}$ such that $\mathbf{x}^{\mathbf{u}^{+}}-\mathbf{x}^{\mathbf{u}^{-}}$is an element of some Gröbner basis of I_{A}.
- We can do it for test sets, neighborhood complexes, ...

Unreasonable Ubiquitousness?

Specific Conjectures:

- We can do it for the Frobenius problem with nonlinear generators.
- Given a parametric matrix $A(t)$ defining a toric ideal I_{A}, we can do it for the set of $\left(\mathbf{u}^{+}, \mathbf{u}^{-}\right) \in \mathbb{N}^{2 d}$ such that $\mathbf{x}^{\mathbf{u}^{+}}-\mathbf{x}^{\mathbf{u}^{-}}$is an element of some Gröbner basis of I_{A}.
- We can do it for test sets, neighborhood complexes, ...

Thank You!

Calegari-Walker's Trick

