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Reasonable Ubiquitousness

Definition: f : N→ Z is a quasi-polynomial if there exists a period
m and polynomials pi ∈ Z[t] such that

f (t) = pi (t), for t ≡ i mod m.

Example:

f (t) =

⌊
t + 1

2

⌋
=

{
t
2 if t even,
t+1
2 if t odd.
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f (s, t) = #{(x , y) ∈ N2 : 2y − x ≤ 2t − s, x − y ≤ s − t}.

t ≤ s ≤ 2t

0 ≤ 2t ≤ s 0 ≤ s ≤ t

f (s, t) =





s2

2 − b s2cs + s
2 + b s2c2 + b s2c+ 1 if t ≤ s ≤ 2t,

st − b s2cs − t2

2 + t
2 + b s2c2 + b s2c+ 1 if 0 ≤ 2t ≤ s,

t2

2 + 3t
2 + 1 if 0 ≤ s ≤ t.

Example courtesy of Sven Verdoolaege’s barvinok.
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Reasonable Ubiquitousness

I Need piecewise quasi-polynomials – pieces are polyhedral
regions of parameter space.

I For one parameter, “piecewise” means eventually a
quasi-polynomial.

I For t ∈ Zd , if St is the set of integer points in a polytope
defined with linear inequalities a · x ≤ b(t), then |St| is a
piecewise quasi-polynomial [Bernd Sturmfels].

I If St ⊆ Zn is defined with quantifiers (∀, ∃), boolean
operations (and, or, not), and linear inequalities a · x ≤ b(t),
then |St| is a piecewise quasi-polynomial [KW].
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Example:
St = {x ∈ N : ∃y ∈ N : 2y + 2x + 1 = t and 1 ≤ x ≤ y}.

St =

{

{
1, 2, . . . ,

⌊
t−1
4

⌋}

if t odd,

t ≥ 5,

∅ else.

Facts:

1. St is nonempty for t = 5, 7, 9, . . .. Eventually periodic.

2.

|St | =

{⌊
t−1
4

⌋
if t odd, t ≥ 5,

0 else.

Eventually a quasi-polynomial.
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Facts:

3.

∑

a∈St

xa =

{
x + x2 + · · ·+ xb(t−1)/4c if t odd, t ≥ 5,

0 else

=

{
x−xb(t−1)/4c+1

1−x if t odd, t ≥ 5,
x−x1
1−x else

=
x − xp(t)

1− x
,

where p(t) is eventually a quasi-polynomial. The generating
function is a rational function, with exponents depending on t.

3⇒ 2⇒ 1 (e.g., substitute x = 1 into the generating function and
take limits).
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a · x ≤ b(t), and a does not depend on t.
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Let St is the set of integer points in a polytope defined with linear
inequalities a(t) · x ≤ b(t), where a(t) and b(t) are polynomials in
T .

Then |St | is eventually a quasi-polynomial [Sheng Chen, Nan Li,
Steven Sam].
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Let St be the vertices of the integer hull of a polytope defined with
linear inequalities a(t) · x ≤ b(t), where a(t) and b(t) are
polynomials in T (such that the vertices are O(t)).

Then there exists a modulus m and functions pij(t) : R→ Rn with
polynomial entries, such that, for sufficiently large t ≡ i mod m,

St = {pi1(t),pi2(t), . . . ,piki (t)}

[Danny Calegari, Alden Walker].
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Unreasonable Ubiquitousness

Given relatively prime ai ∈ Z+, define the Frobenius number
F (a1, . . . , an) to be the largest integer not in the semigroup
generated by the ai . Let αi ∈ Z+, βi ∈ Z.

Then F (α1t + β1, . . . , αnt + βn) is eventually a quasi-polynomial
in t [Bjarke Roune, KW; inspired by Stan Wagon].

Defining the Frobenius number requires heavy use of quantifiers:

@λ1, λ2 ∈ N : 53 = λ1 · 7 + λ2 · 10.
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Basic tools

[Chen–Li–Sam, Calegari–Walker]: Given f (t), g(t) ∈ Z[x ],

I Division Algorithm: There exists quasi-polynomials q(t) and
r(t), deg r < deg g , such that

f (t) = q(t)g(t) + r(t).

Example: t2+3
2t =??. Let t = 2s (same for 2s + 1). Then

t2 + 3

2t
=

4s2 + 3

4s
= s remainder 3.

I Division Algorithm II: There exists quasi-polynomials q(t) and
r(t), with eventually 0 ≤ r(t) < g(t), such that

f (t) = q(t)g(t) + r(t).

Example: Don’t want 2t−3
t to be 2 remainder −3. Want it to

be 1 remainder t − 3 for t ≥ 3.
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Basic tools

I GCD and Extended Euclidean Algorithm: There exist
quasi-polynomials p(t) and q(t) and a periodic function d(t),
so that

d(t) = gcd
(
f (t), g(t)

)
and d(t) = p(t)f (t) + q(t)g(t).

I Smith/Hermite normal forms: Important for finding bases of
sublattices of Zd .

I Dominance: If f 6= g , then we eventually either always have
f (t) > g(t) or always have g(t) > f (t).

I Rounding: f (t)
g(t) converges to a polynomial, and

⌊
f (t)
g(t)

⌋
is

eventually a quasi-polynomial.

On top of these basic tools, each of the three unreasonable results
has their own trick.
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Unreasonable Ubiquitousness?

Can one trick work in all cases?

Conjecture: Let St ⊆ Zn is defined with quantifiers (∀, ∃), boolean
operations (and, or, not), and linear inequalities a(t) · x ≤ b(t),
where a(t) and b(t) have polynomial entries. Then

1. The set {t : St is nonempty} is eventually periodic.

2. |St | is eventually a quasi-polynomial.

3. ∑

a∈St

xa =

∑
i αix

pi (t)

(
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Unreasonable Ubiquitousness?

Conjecture is true if

I No quantifiers are needed [KW, building on Chen–Li–Sam] or

I a(t) is constant [KW].

Conjecture does not hold for more than one parameter:

I If Ss,t =
{

(x , y) ∈ N2 : sx + ty = st
}

= conv
{

(t, 0), (0, s)
}

,
then |Ss,t | = gcd(s, t) + 1.
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Unreasonable Ubiquitousness?

More Conjectures:

1 . The set {t : St is nonempty} is eventually periodic.

1b. When nonempty, one can eventually specify some p(t) ∈ St ,
where p(t) has quasi-polynomial entries.

1c. One can eventually specify some p(t) ∈ St maximizing some
c · x. (Frobenius Problem)

1d. If |St | ≤ k for all t, then one can specify

St = {pi1(t),pi2(t), . . . ,piki (t)}

for sufficiently large t ≡ i mod m (as in Calegari–Walker).

1b, 1c, and 1d are all equivalent [KW].
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Unreasonable Ubiquitousness?

Specific Conjectures:

I We can do it for the Frobenius problem with nonlinear
generators.

I Given a parametric matrix A(t) defining a toric ideal IA, we
can do it for the set of (u+,u−) ∈ N2d such that xu

+ − xu
−

is
an element of some Gröbner basis of IA.

I We can do it for test sets, neighborhood complexes, ...
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Thank You!
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are distance O(1) apart. In particular, the span of the linear part of each such
simplex is not full dimensional, and we can reduce to a previous case where the
induction hypothesis is assumed to hold.

Hence the integer hull of each simplex in the convex hull of Vn but outside the
convex hull of Pn is QIQ. The integer hull of Vn is the convex hull of the integer
hulls of these finitely many simplices, together with the convex hull of Pn. By
Lemma 3.3 this is itself QIQ. This completes the induction step, and proves the
theorem. !

Example 3.6. We give an example of the theorem in the case of a full-dimensional
polyhedron in R2 to illustrate the decomposition into 1-dimensional polyhedra.

Figure 2. The decomposition into polyhedra of dimension 1 for
n = 8.

Let

v1 =

[
2n + 1

n
3n + 1

]
, v2 =

[
n + 1

2
4

]
, v3 =

[
1
n

3n + 2

]

We find the pi; first subtract the linear part of v1 and obtain the Hermite normal
form:[

−1 0
−3 1

] [
1
n −n + 1

2 −2n + 1
n

1 −3n + 4 2

]
=

[
− 1

n n − 1
2 2n − 1

n
1 − 3

n 4 − 3
2 6n + 2 − 6

n

]

So v1 → (0, 1) (we will write column vectors as row vectors for simplicity), and the
cone at v1 limits to the cone spanned by (1, 0) and (2, 6). A fixed point in this cone
is, for example, (1, 2), or p1 = (2n−1, 3n−1) in the original coordinates. Similarly
for v2:[

1 0
−3 1

] [
n + 1

n
1
2 −n + 1

n
3n + 1 4 3n − 2

]
=

[
n + 1

n
1
2 −n + 1

n
1 − 3

n 4 − 3
2 6n − 2 − 3

n

]

So v2 → (1/2, 5/2) and the cone limits to the cone spanned by (1, 0) and (−1, 6). A
fixed point in this cone is (1, 3). In the original coordinates, then, p2 = (n + 1, 6).
A similar procedure gives p3 = (2, 3n + 1).

The remaining integral points are contained in three quadrilaterals, which can be
decomposed into six triangles with degenerate linear part. The integer lattice points
in these simplices are contained in finitely many additional affine linear subspaces,
as indicated in Figure 2.

Calegari and Walker


