The combinatorial commutative algebra
of conformal blocks
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Objects we want to study

VC,ﬁ(Xa L)

Vector spaces of conformal blocks.

M7 G)

Moduli of quasi-parabolic principal bundles on a curve C with
parabolic structure at marked points p.



The combinatorics behind the dimensions of these
vector spaces allow us to prove:

For (C,p) generic,

The projective coordinate ring of M 5(SL2(C)) associated to
the square L£? of an effective line bundle is Koszul.




The combinatorics behind the dimensions of these
vector spaces allow us to prove:

For (C,p) generic,

The Cox ring of Mg SL2(C)) is generated in degree < 2
with relations generated in degree < 4.

The Cox ring of Mp1 (SL3(C)) is generated in degree 1 with
relations generated in degree < 3.




. with these objects:




. with these objects:

(1,0)

(0,1) (1,0)

(0,0 (0,0)

(0,1)



you may recognize conformal blocks from:

Mathematical Physics: Partition functions for the WZW model
of conformal field theory, TQFT, Modular functors.

Geometry: Moduli of (vector/principal) bundles, Moduli of
flat connections, Gromov-Witten invariants, (non-abelian)
theta functions, birational geometry of Moy,,.

Representation Theory: Quantum Horn problem, Saturation
conjectures, Kac-Moody algebras, Quantum groups at roots
of unity.



Conformal Blocks: notation

G a simply connected, simple group over C.

Lie(G) = g, a simple Lie algebra over C (e.g. sl,,(C), sp2,(C)).
A- a Weyl chamber for g.

A € A- dominant weights for g.

A - the L—restricted Weyl chamber.



Conformal Blocks

C' a stable curve of genus g over C, with n
specified "marked” points, p1,...,p, € C.

This defines a point in the Deligne-Mumford stack /\7lg,n.



Example: Ms g

SRR I

RN



Conformal Blocks

For any n dominant weights \; € A, there is a vector space
Ve s(A, L) called the Space of Conformal Blocks.

(07 ﬁ)a X) L = VC,ﬁ(Xa L)

This is built from the representation theory of the affine Kac-
Moody algebra g associated to g.



Properties of Conformal Blocks

1. Each space Vg (X, L) is finite dimensional

2. The dimension of VCJ;’(X,L) depends only on the data
(A, L), the genus g, and the number of points n.

The dimension is given by the Verlinde formula:

4 (1 + p) (w el p)
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Moduli of bundles

Proposition [Kumar, Narisimhan, Ramanathan, Faltings, Beauville, La-
zlo, Sorger] :
For every A, L there is a line bundle £L(\, L) on Mg G) such that

HY (Mo (G, LN, L)) = Vo i(X, L)

For a line bundle £(\, L) we let RCJ;(X, L) denote the corre-
sponding graded projective coordinate ring.

The sum of all the spaces of global sections over all these
line bundles is the Cox ring, Coxz(M¢(G)).



Innocent questions

What generates Cox(Mc;(G)) 7
What relations hold between these generators?

What is the multigraded Hilbert function of Cox(M¢czG)) 7



Conformal Blocks: vector bundle property

T heorem [Tsuchiya, Ueno, Yamadal]:
For every X,L there is a vector bundle V(X, L) on /\7lg,n, with fiber over
(C,p) equal to VC,ﬁ(X, L).

Tsuchiya, Ueno, and Yamada; Faltings also established the
Factorization Rules:



Conformal Blocks: Factorization

For (C,p) a stable curve with a doubled point g € C, there is
a normalized stable marked curve (C’, q1,q2,D).



Conformal Blocks: Factorization

For a marked curve (C,p) with a doubled point g,

VC,ﬁ(A7 L) = @ VC”,ql,QQ,ﬁ(aa Oé*, )‘7 L)
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Conformal Blocks: Factorization

The fusion rules allow us to express d?:m(VCJ;’()—\), L)) purely
in terms of the spaces Vo 3(A1, A2, A3, L).
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SL>(C) case

In the case G = SL»(C), the spaces Vp3(ri,rz,r3, L) are di-
mension 1 or O.

Proposition [Quantum Clebsch-Gordon rule] :
The dimension of Vp 3(r1,r2,73, L) is either 1 or 0. It is dimension 1 if and
only if r1 +r>+ r3 is even, < 2L, and ri,r2,r3 are the side-lengths of a

triangle




SL>(C) case

For [' a trivalent graph of genus g with n marked points we
define P-(L) to be the polytope given by non-negative inte-
ger weightings of the edges of ' which satisfy the Quantum
Clebsch-Gordon rules at each trinode with respect to level L.




Example: g= 2, n =0, L =2




SL>(C) case

For I as above, we define P-(7,L) to be the polyope given
by integer weightings of I which satisfy the Clebsch-Gordon
rules for L, with leaf weights specified to be ri,...,7r,.

Corollary [of the factorization rules] :
The dimension of Vg z(7, L) is equal to the number of lattice points in
PI_(,Fa L)

Note: it follows that the number of lattice points in P-(#, L)
IS independent of the graph.



Multiplying conformal blocks

There is a natural multiplication operation:

Pr(F, L) X Pr(g, K) — Pr(?z’—l- §,L —+ K)

Pr(L) X Pr(K) — Pr(L —I— K)



Multiplying conformal blocks

T his operation defines semigroups:

Pr(7, L) = & Pr(N7,NL)
N>0

Pr= &P Pr(N)

N>0

with associated semigroup algebras C[Pr(7, L)], C[Pr(L)].



Factorization in terms of commutative algebra

[M; Sturmfels, Xu] : For any C of genus g with n marked points, and I
a trivalent graph with with first Betti number g and n leaves, there is a

flat degeneration
Cox(Mcz(SL2(C)) = C[Pr]

RC,ﬁ(,ﬁ L) = C[Pr(’?, L)]




Factorization in terms of commutative algebra

For any C' of genus g with n marked points, and [ a trivalent
graph with with first Betti number g and n leaves, there is a

flat degeneration
Cox(Mcz(G)) = [ Q) Cox(Mos(G)]'T.

veV (M)




The SL>(C) case

Cox(Mop3(SL2(C))) = C[P5(1)]

(L,0,L)

(L,0,0)




The SL>(C) case

For any g,n, there is a special choice of [' such that the
semigroup algebra C[Pr] is generated by elements of degree
< 2 and has relations generated by forms of degree < 4.

For any g¢g,n, there is a special choice of [' such that the
semigroup algebra C[Pr(27,2L)] is generated by elements of
degree 1, and its defining ideal of relations has a quadratic
square-free Grobner basis.




The SL>(C) case

For generic (C,p), the algebra Cox(Mcz(SL2(C))) is gener-
ated in degree < 2 and has relations generated in degree < 4

For generic (C,p), the projective coordinate ring of L(#, L)%®?
IS generated in degree 1 and is Koszul.




The special graph I'(g,n)




The SL>(C) case

Buscynska, Buscynski, Kubjas, and Michalek showed that
C[Pr] is always generated in degree < g+ 1.

The lift of these relations to the algebra Cox(M¢cz(SL2(C)))
was studied by Sturmfels and Xu, and also by Sturmfels and
Velasco.

In particular, Sturmfels and Velasco have given a realization
of Cox(M¢c5(SL2(C))) as a quotient of the coordinate ring of
an even spinor variety in the genus O case.



the SL3(C) case

e Ao
Ao

Joyeve!

Toric degenerations also exist in the SL3(C) case, along with
similar presentation results for Cox(Mp;(SL3(C))).




The SL3(C) case

Using valuations built out of representation theory data, it
possible to find a presentation of Cox(Mp3(SL3(C))).

ClZ, X,Y, P12, Po3, P31, Po1, P3o, P13]/ < ZXY — P12Po3P31 + P21 P3o P13 >



The algebra Cox(Mg 3(SL3(C)))

ISUNSY
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The algebra Cox(Mg 3(SL3(C)))
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The SL3(C) case
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The SL3(C) case

For any C' of genus g with n marked points, and [ a trivalent
graph with with first Betti number g and n leaves, there are
3Vl toric degenerations of Cox(Mcz(SL3(C))).

(1,0)

(0,1) (1,0)

(0,0 (0,0)

(0,1)



The SL3(C) case

For (IP,p) generic, the algebra Cox(Mp: 5(SL3(C))) is gener-
ated in degree 1 with relations generated in degrees < 3.




Polyhedral counting rules: SL3(C)

Vo s\, p,m, L) = L — max{A1 + A2, p1 + p2,m1 + n2, L1, Lo} + 1
1 .
L, = 5(2()\1 + p1+m1) + Ao+ po + m2) — min{ A, w1, m1}

1
Ly = 5(20\2 + p2 +n2) + A1+ p1 +m1) — min{ Az, p2, 2}

originally stated by Kirrilov, Mathieu, Senechal, Walton.



Thankyou!




