The combinatorial commutative algebra of conformal blocks

$$
\begin{aligned}
& {\left[{ }_{\lambda_{3}}^{\lambda_{1}} \cdot \cdot_{\lambda_{4}}^{\lambda_{2}}\right]=} \\
& n_{1}=\sum_{n} \operatorname{pa}^{n} \\
& =\sum_{\alpha \in \Delta_{L}}^{[} \overbrace{\lambda_{3}}^{\lambda_{1}}, \alpha^{*}] \otimes[\underbrace{\rho_{2}}_{\lambda_{4}}]
\end{aligned}
$$

Objects we want to study

$$
V_{C, \vec{p}}(\vec{\lambda}, L)
$$

Vector spaces of conformal blocks.

$$
\mathcal{M}_{C, \vec{p}}(G)
$$

Moduli of quasi-parabolic principal bundles on a curve C with parabolic structure at marked points \vec{p}.

The combinatorics behind the dimensions of these vector spaces allow us to prove:

For (C, \vec{p}) generic,

The projective coordinate ring of $\mathcal{M}_{C, \bar{p}}\left(S L_{2}(\mathbb{C})\right)$ associated to the square \mathcal{L}^{2} of an effective line bundle is Koszul.

The combinatorics behind the dimensions of these vector spaces allow us to prove:

For (C, \vec{p}) generic,

The Cox ring of $\mathcal{M}_{C, \bar{p}}\left(S L_{2}(\mathbb{C})\right)$ is generated in degree ≤ 2 with relations generated in degree ≤ 4.

The Cox ring of $\mathcal{M}_{\mathbb{P}^{1}, \bar{p}}\left(S L_{3}(\mathbb{C})\right)$ is generated in degree 1 with relations generated in degree ≤ 3.
... with these objects:

... with these objects:

you may recognize conformal blocks from:

Mathematical Physics: Partition functions for the WZW model of conformal field theory, TQFT, Modular functors.
Geometry: Moduli of (vector/principal) bundles, Moduli of flat connections, Gromov-Witten invariants, (non-abelian) theta functions, birational geometry of $\bar{M}_{0, n}$.

Representation Theory: Quantum Horn problem, Saturation conjectures, Kac-Moody algebras, Quantum groups at roots of unity.

Conformal Blocks: notation

G a simply connected, simple group over \mathbb{C}.
$\operatorname{Lie}(G)=\mathfrak{g}$, a simple Lie algebra over $\mathbb{C}\left(\right.$ e.g. $\left.s l_{m}(\mathbb{C}), s p_{2 n}(\mathbb{C})\right)$.
Δ - a Weyl chamber for \mathfrak{g}.
$\lambda \in \Delta$ - dominant weights for \mathfrak{g}.
Δ_{L} - the L-restricted Weyl chamber.

Conformal Blocks

C a stable curve of genus g over \mathbb{C}, with n specified " marked" points, $p_{1}, \ldots, p_{n} \in C$.

This defines a point in the Deligne-Mumford stack $\overline{\mathcal{M}}_{g, n}$.

Example: $\overline{\mathcal{M}}_{2,0}$

Conformal Blocks

For any n dominant weights $\lambda_{i} \in \Delta_{L}$, there is a vector space $V_{C, \vec{p}}(\vec{\lambda}, L)$ called the Space of Conformal Blocks.

$$
(C, \vec{p}), \vec{\lambda}, L \Rightarrow V_{C, \vec{p}}(\vec{\lambda}, L)
$$

This is built from the representation theory of the affine KacMoody algebra \mathfrak{g} associated to \mathfrak{g}.

Properties of Conformal Blocks

1. Each space $V_{C, \vec{p}}(\vec{\lambda}, L)$ is finite dimensional
2. The dimension of $V_{C, \vec{p}}(\vec{\lambda}, L)$ depends only on the data $(\vec{\lambda}, L)$, the genus g, and the number of points n.

The dimension is given by the Verlinde formula:

$$
\mathbb{V}_{g, n}(\vec{\lambda}, L)=\left|T_{L}\right|^{g-1} \sum_{\mu \in \Delta_{L}} \operatorname{Tr}_{\vec{\lambda}}\left(\exp \left(2 \pi i \frac{(\mu+\rho)}{L+h^{\vee}}\right)\right) \prod_{\alpha}\left|2 \sin \left(\pi \frac{(\alpha \mid \mu+\rho)}{L+h^{\vee}}\right)\right|^{2-2 g}
$$

Moduli of bundles

Proposition [Kumar, Narisimhan, Ramanathan, Faltings, Beauville, Lazlo, Sorger] :
For every $\vec{\lambda}, L$ there is a line bundle $\mathcal{L}(\vec{\lambda}, L)$ on $\mathcal{M}_{C, \vec{p}}(G)$ such that

$$
H^{0}\left(\mathcal{M}_{C, \vec{p}}(G), \mathcal{L}(\vec{\lambda}, L)\right)=V_{C, \vec{p}}(\vec{\lambda}, L)
$$

For a line bundle $\mathcal{L}(\vec{\lambda}, L)$ we let $R_{C, \vec{p}}(\vec{\lambda}, L)$ denote the corresponding graded projective coordinate ring.

The sum of all the spaces of global sections over all these line bundles is the Cox ring, $\operatorname{Cox}\left(\mathcal{M}_{C, \vec{p}}(G)\right)$.

Innocent questions

What generates $\operatorname{Cox}\left(\mathcal{M}_{C, \vec{p}}(G)\right)$?

What relations hold between these generators?

What is the multigraded Hilbert function of $\operatorname{Cox}\left(\mathcal{M}_{C, \vec{p}}(G)\right) ?$

Conformal Blocks: vector bundle property

Theorem [Tsuchiya, Ueno, Yamada]:
For every $\vec{\lambda}, L$ there is a vector bundle $V(\vec{\lambda}, L)$ on $\overline{\mathcal{M}}_{g, n}$, with fiber over (C, \vec{p}) equal to $V_{C, \vec{p}}(\vec{\lambda}, L)$.

Tsuchiya, Ueno, and Yamada; Faltings also established the Factorization Rules:

Conformal Blocks: Factorization

For (C, \vec{p}) a stable curve with a doubled point $q \in C$, there is a normalized stable marked curve ($C^{\prime}, q_{1}, q_{2}, \vec{p}$).

©

Conformal Blocks: Factorization

For a marked curve (C, \vec{p}) with a doubled point q,

$$
V_{C, \vec{p}}(\vec{\lambda}, L) \cong \bigoplus_{\alpha \in \Delta_{L}} V_{C^{\prime}, q_{1}, q_{2}, \vec{p}}\left(\alpha, \alpha^{*}, \vec{\lambda}, L\right)
$$

$$
\sum_{n a} a_{k}^{+\infty}
$$

Conformal Blocks: Factorization

The fusion rules allow us to express $\operatorname{dim}\left(V_{C, \vec{p}}(\vec{\lambda}, L)\right)$ purely in terms of the spaces $V_{0,3}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, L\right)$.

$$
\left[\begin{array}{lll}
\lambda_{1} & \vdots \\
\vdots & \lambda_{3} \lambda_{\lambda_{4}} \\
\lambda_{1}
\end{array}\right]=
$$

$$
\left[\stackrel{\lambda_{1}}{\lambda_{3}} \underset{\lambda_{4} \cdot \dot{\lambda}_{2}^{\lambda_{2}}}{ }\right]=\sum_{\alpha \in \Delta_{L}} \stackrel{\lambda_{1}}{\overbrace{3}} \overbrace{\alpha \underset{\lambda_{4}}{\lambda_{2}}}^{\alpha^{*}}]
$$

$$
=\sum_{\alpha \in \Delta_{L}}[\overbrace{\lambda_{3}}^{\lambda_{1}} \cdot \alpha^{*}] \otimes[\overbrace{\lambda_{4}}^{\lambda_{2}}]
$$

$S L_{2}(\mathbb{C})$ case

In the case $G=S L_{2}(\mathbb{C})$, the spaces $V_{0,3}\left(r_{1}, r_{2}, r_{3}, L\right)$ are dimension 1 or 0 .

Proposition [Quantum Clebsch-Gordon rule] :
The dimension of $V_{0,3}\left(r_{1}, r_{2}, r_{3}, L\right)$ is either 1 or 0 . It is dimension 1 if and only if $r_{1}+r_{2}+r_{3}$ is even, $\leq 2 L$, and r_{1}, r_{2}, r_{3} are the side-lengths of a triangle

$S L_{2}(\mathbb{C})$ case

For Γ a trivalent graph of genus g with n marked points we define $P_{\Gamma}(L)$ to be the polytope given by non-negative integer weightings of the edges of Γ which satisfy the Quantum Clebsch-Gordon rules at each trinode with respect to level L.

Example: $\mathrm{g}=2, \mathrm{n}=0, \mathrm{~L}=2$

$S L_{2}(\mathbb{C})$ case

For Γ as above, we define $P_{\Gamma}(\vec{r}, L)$ to be the polyope given by integer weightings of Γ which satisfy the Clebsch-Gordon rules for L, with leaf weights specified to be r_{1}, \ldots, r_{n}.

Corollary [of the factorization rules] :
The dimension of $V_{C, \vec{p}}(\vec{r}, L)$ is equal to the number of lattice points in $P_{\Gamma}(\vec{r}, L)$

Note: it follows that the number of lattice points in $P_{\ulcorner }(\vec{r}, L)$ is independent of the graph.

There is a natural multiplication operation:

$$
P_{\ulcorner }(\vec{r}, L) \times P_{\ulcorner }(\vec{s}, K) \rightarrow P_{\ulcorner }(\vec{r}+\vec{s}, L+K)
$$

$$
P_{\ulcorner }(L) \times P_{\ulcorner }(K) \rightarrow P_{\ulcorner }(L+K)
$$

Multiplying conformal blocks

This operation defines semigroups:

$$
\begin{aligned}
\mathcal{P}_{\ulcorner }(\vec{r}, L) & =\bigoplus_{N \geq 0} P_{\ulcorner }(N \vec{r}, N L) \\
\mathcal{P}_{\ulcorner } & =\bigoplus_{N \geq 0} P_{\ulcorner }(N)
\end{aligned}
$$

with associated semigroup algebras $\mathbb{C}\left[\mathcal{P}_{\ulcorner }(\vec{r}, L)\right], \mathbb{C}\left[\mathcal{P}_{\Gamma}(L)\right]$.

Factorization in terms of commutative algebra

[M; Sturmfels, Xu] : For any C of genus g with n marked points, and Γ a trivalent graph with with first Betti number g and n leaves, there is a flat degeneration

$$
\begin{gathered}
\operatorname{Cox}\left(\mathcal{M}_{C, \vec{p}}\left(S L_{2}(\mathbb{C})\right) \Rightarrow \mathbb{C}\left[\mathcal{P}_{\Gamma}\right]\right. \\
R_{C, \vec{p}}(\vec{r}, L) \Rightarrow \mathbb{C}\left[\mathcal{P}_{\Gamma}(\vec{r}, L)\right]
\end{gathered}
$$

Factorization in terms of commutative algebra

For any C of genus g with n marked points, and Γ a trivalent graph with with first Betti number g and n leaves, there is a flat degeneration

$$
\operatorname{Cox}\left(\mathcal{M}_{C, \bar{p}}(G)\right) \Rightarrow\left[\bigotimes_{v \in V(\Gamma)} \operatorname{Cox}\left(\mathcal{M}_{0,3}(G)\right)\right]^{T_{\Gamma}} .
$$

The $S L_{2}(\mathbb{C})$ case

$$
\operatorname{Cox}\left(\mathcal{M}_{0,3}\left(S L_{2}(\mathbb{C})\right)\right)=\mathbb{C}\left[P_{3}(1)\right]
$$

For any g, n, there is a special choice of Γ such that the semigroup algebra $\mathbb{C}\left[\mathcal{P}_{\Gamma}\right]$ is generated by elements of degree ≤ 2 and has relations generated by forms of degree ≤ 4.

For any g, n, there is a special choice of Γ such that the semigroup algebra $\mathbb{C}\left[\mathcal{P}_{\Gamma}(2 \vec{r}, 2 L)\right]$ is generated by elements of degree 1, and its defining ideal of relations has a quadratic square-free Gröbner basis.

The $S L_{2}(\mathbb{C})$ case

For generic (C, \vec{p}), the algebra $\operatorname{Cox}\left(\mathcal{M}_{C, \vec{p}}\left(S L_{2}(\mathbb{C})\right)\right)$ is generated in degree ≤ 2 and has relations generated in degree ≤ 4

For generic (C, \vec{p}), the projective coordinate ring of $\mathcal{L}(\vec{r}, L)^{\otimes 2}$ is generated in degree 1 and is Koszul.

The special graph $\Gamma(g, n)$

The $S L_{2}(\mathbb{C})$ case

Buscynska, Buscynski, Kubjas, and Michalek showed that $\mathbb{C}\left[\mathcal{P}_{\Gamma}\right]$ is always generated in degree $\leq g+1$.

The lift of these relations to the algebra $\operatorname{Cox}\left(M_{C, \bar{p}}\left(S L_{2}(\mathbb{C})\right)\right)$ was studied by Sturmfels and Xu , and also by Sturmfels and Velasco.

In particular, Sturmfels and Velasco have given a realization of $\operatorname{Cox}\left(M_{C, \bar{p}}\left(S L_{2}(\mathbb{C})\right)\right.$) as a quotient of the coordinate ring of an even spinor variety in the genus 0 case.

the $S L_{3}(\mathbb{C})$ case

Toric degenerations also exist in the $S L_{3}(\mathbb{C})$ case, along with similar presentation results for $\operatorname{Cox}\left(\mathcal{M}_{\mathbb{P}, \vec{p}}\left(S L_{3}(\mathbb{C})\right)\right)$.

The $S L_{3}(\mathbb{C})$ case

Using valuations built out of representation theory data, it possible to find a presentation of $\operatorname{Cox}\left(\mathcal{M}_{0,3}\left(S L_{3}(\mathbb{C})\right)\right.$).
$\mathbb{C}\left[Z, X, Y, P_{12}, P_{23}, P_{31}, P_{21}, P_{32}, P_{13}\right] /<Z X Y-P_{12} P_{23} P_{31}+P_{21} P_{32} P_{13}>$

The algebra $\operatorname{Cox}\left(\mathcal{M}_{0,3}\left(S L_{3}(\mathbb{C})\right)\right)$

The algebra $\operatorname{Cox}\left(\mathcal{M}_{0,3}\left(S L_{3}(\mathbb{C})\right)\right)$

The $S L_{3}(\mathbb{C})$ case

The $S L_{3}(\mathbb{C})$ case

For any C of genus g with n marked points, and Γ a trivalent graph with with first Betti number g and n leaves, there are $3^{|V(\Gamma)|}$ toric degenerations of $\operatorname{Cox}\left(\mathcal{M}_{C, \bar{p}}\left(S L_{3}(\mathbb{C})\right)\right)$.

The $S L_{3}(\mathbb{C})$ case

For (\mathbb{P}, \vec{p}) generic, the algebra $\operatorname{Cox}\left(\mathcal{M}_{\mathbb{P}^{1}, \bar{p}}\left(S L_{3}(\mathbb{C})\right)\right.$) is generated in degree 1 with relations generated in degrees ≤ 3.

Polyhedral counting rules: $S L_{3}(\mathbb{C})$

$$
\mathbb{V}_{0,3}(\lambda, \mu, \eta, L)=L-\max \left\{\lambda_{1}+\lambda_{2}, \mu_{1}+\mu_{2}, \eta_{1}+\eta_{2}, L_{1}, L_{2}\right\}+1
$$

$$
\begin{aligned}
L_{1} & =\frac{1}{3}\left(2\left(\lambda_{1}+\mu_{1}+\eta_{1}\right)+\lambda_{2}+\mu_{2}+\eta_{2}\right)-\min \left\{\lambda_{1}, \mu_{1}, \eta_{1}\right\} \\
L_{2} & =\frac{1}{3}\left(2\left(\lambda_{2}+\mu_{2}+\eta_{2}\right)+\lambda_{1}+\mu_{1}+\eta_{1}\right)-\min \left\{\lambda_{2}, \mu_{2}, \eta_{2}\right\}
\end{aligned}
$$ originally stated by Kirrilov, Mathieu, Senechal, Walton.

Thankyou!

