The combinatorial commutative algebra of conformal blocks

Christopher Manon www.math.gmu.edu/~cmanon cmanon@gmu.edu supported by NSF fellowship DMS-0902710

 $V_{C,\vec{p}}(\vec{\lambda},L)$

Vector spaces of conformal blocks.

 $\mathcal{M}_{C,\vec{p}}(G)$

Moduli of quasi-parabolic principal bundles on a curve C with parabolic structure at marked points \vec{p} .

For (C, \vec{p}) generic,

The projective coordinate ring of $\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C}))$ associated to the square \mathcal{L}^2 of an effective line bundle is Koszul.

For (C, \vec{p}) generic,

The Cox ring of $\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C}))$ is generated in degree ≤ 2 with relations generated in degree ≤ 4 .

The Cox ring of $\mathcal{M}_{\mathbb{P}^{1},\vec{p}}(SL_{3}(\mathbb{C}))$ is generated in degree 1 with relations generated in degree ≤ 3 .

... with these objects:

... with these objects:

Mathematical Physics: Partition functions for the WZW model of conformal field theory, TQFT, Modular functors.

Geometry: Moduli of (vector/principal) bundles, Moduli of flat connections, Gromov-Witten invariants, (non-abelian) theta functions, birational geometry of $\overline{M}_{0,n}$.

Representation Theory: Quantum Horn problem, Saturation conjectures, Kac-Moody algebras, Quantum groups at roots of unity.

G a simply connected, simple group over \mathbb{C} .

 $Lie(G) = \mathfrak{g}$, a simple Lie algebra over \mathbb{C} (e.g. $sl_m(\mathbb{C}), sp_{2n}(\mathbb{C})$).

 Δ - a Weyl chamber for \mathfrak{g} .

 $\lambda \in \Delta$ - dominant weights for \mathfrak{g} .

 Δ_L - the *L*-restricted Weyl chamber.

C a stable curve of genus g over \mathbb{C} , with n specified "marked" points, $p_1, \ldots, p_n \in C$.

This defines a point in the Deligne-Mumford stack $\overline{\mathcal{M}}_{g,n}$.

Example: $\bar{\mathcal{M}}_{2,0}$

For any *n* dominant weights $\lambda_i \in \Delta_L$, there is a vector space $V_{C,\vec{p}}(\vec{\lambda}, L)$ called the Space of Conformal Blocks.

$$(C, \vec{p}), \vec{\lambda}, L \Rightarrow V_{C, \vec{p}}(\vec{\lambda}, L)$$

This is built from the representation theory of the affine Kac-Moody algebra $\hat{\mathfrak{g}}$ associated to \mathfrak{g} . 1. Each space $V_{C,\vec{p}}(\vec{\lambda},L)$ is finite dimensional

2. The dimension of $V_{C,\vec{p}}(\vec{\lambda},L)$ depends only on the data $(\vec{\lambda},L)$, the genus g, and the number of points n.

The dimension is given by the Verlinde formula:

$$\mathbb{V}_{g,n}(\vec{\lambda},L) = |T_L|^{g-1} \sum_{\mu \in \Delta_L} Tr_{\vec{\lambda}}(exp(2\pi i \frac{(\mu+\rho)}{L+h^{\vee}})) \prod_{\alpha} |2sin(\pi \frac{(\alpha|\mu+\rho)}{L+h^{\vee}})|^{2-2g}$$

Proposition [Kumar, Narisimhan, Ramanathan, Faltings, Beauville, Lazlo, Sorger] : For every $\vec{\lambda}, L$ there is a line bundle $\mathcal{L}(\vec{\lambda}, L)$ on $\mathcal{M}_{C, \vec{p}}(G)$ such that $H^0(\mathcal{M}_{C, \vec{p}}(G), \mathcal{L}(\vec{\lambda}, L)) = V_{C, \vec{p}}(\vec{\lambda}, L)$

For a line bundle $\mathcal{L}(\vec{\lambda}, L)$ we let $R_{C,\vec{p}}(\vec{\lambda}, L)$ denote the corresponding graded projective coordinate ring.

The sum of all the spaces of global sections over all these line bundles is the Cox ring, $Cox(\mathcal{M}_{C,\vec{p}}(G))$.

What generates $Cox(\mathcal{M}_{C,\vec{p}}(G))$?

What relations hold between these generators?

What is the multigraded Hilbert function of $Cox(\mathcal{M}_{C,\vec{p}}(G))$?

Theorem [Tsuchiya, Ueno, Yamada]: For every $\vec{\lambda}, L$ there is a vector bundle $V(\vec{\lambda}, L)$ on $\mathcal{M}_{g,n}$, with fiber over (C, \vec{p}) equal to $V_{C,\vec{p}}(\vec{\lambda}, L)$.

Tsuchiya, Ueno, and Yamada; Faltings also established the Factorization Rules:

For (C, \vec{p}) a stable curve with a doubled point $q \in C$, there is a normalized stable marked curve (C', q_1, q_2, \vec{p}) .

For a marked curve (C, \vec{p}) with a doubled point q,

$$V_{C,\vec{p}}(\vec{\lambda},L) \cong \bigoplus_{\alpha \in \Delta_L} V_{C',q_1,q_2,\vec{p}}(\alpha,\alpha^*,\vec{\lambda},L)$$

Conformal Blocks: Factorization

The fusion rules allow us to express $dim(V_{C,\vec{p}}(\vec{\lambda},L))$ purely in terms of the spaces $V_{0,3}(\lambda_1,\lambda_2,\lambda_3,L)$.

In the case $G = SL_2(\mathbb{C})$, the spaces $V_{0,3}(r_1, r_2, r_3, L)$ are dimension 1 or 0.

Proposition [Quantum Clebsch-Gordon rule] :

The dimension of $V_{0,3}(r_1, r_2, r_3, L)$ is either 1 or 0. It is dimension 1 if and only if $r_1 + r_2 + r_3$ is even, $\leq 2L$, and r_1, r_2, r_3 are the side-lengths of a triangle For Γ a trivalent graph of genus g with n marked points we define $P_{\Gamma}(L)$ to be the polytope given by non-negative integer weightings of the edges of Γ which satisfy the Quantum Clebsch-Gordon rules at each trinode with respect to level L.

Example: g= 2, n = 0, L = 2

For Γ as above, we define $P_{\Gamma}(\vec{r}, L)$ to be the polyope given by integer weightings of Γ which satisfy the Clebsch-Gordon rules for L, with leaf weights specified to be r_1, \ldots, r_n .

Corollary [of the factorization rules] : The dimension of $V_{C,\vec{p}}(\vec{r},L)$ is equal to the number of lattice points in $P_{\Gamma}(\vec{r},L)$

Note: it follows that the number of lattice points in $P_{\Gamma}(\vec{r}, L)$ is independent of the graph.

There is a natural multiplication operation:

$$P_{\Gamma}(\vec{r},L) \times P_{\Gamma}(\vec{s},K) \to P_{\Gamma}(\vec{r}+\vec{s},L+K)$$

 $P_{\Gamma}(L) \times P_{\Gamma}(K) \to P_{\Gamma}(L+K)$

This operation defines semigroups:

$$\mathcal{P}_{\Gamma}(\vec{r},L) = \bigoplus_{N \ge 0} P_{\Gamma}(N\vec{r},NL)$$

$$\mathcal{P}_{\Gamma} = \bigoplus_{N \ge 0} P_{\Gamma}(N)$$

with associated semigroup algebras $\mathbb{C}[\mathcal{P}_{\Gamma}(\vec{r},L)], \mathbb{C}[\mathcal{P}_{\Gamma}(L)].$

[M; Sturmfels, Xu] : For any C of genus g with n marked points, and Γ a trivalent graph with with first Betti number g and n leaves, there is a flat degeneration

 $Cox(\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C})) \Rightarrow \mathbb{C}[\mathcal{P}_{\Gamma}]$

 $R_{C,\vec{p}}(\vec{r},L) \Rightarrow \mathbb{C}[\mathcal{P}_{\Gamma}(\vec{r},L)]$

For any C of genus g with n marked points, and Γ a trivalent graph with with first Betti number g and n leaves, there is a flat degeneration

$$Cox(\mathcal{M}_{C,\vec{p}}(G)) \Rightarrow [\bigotimes_{v \in V(\Gamma)} Cox(\mathcal{M}_{0,3}(G))]^{T_{\Gamma}}.$$

$Cox(\mathcal{M}_{0,3}(SL_2(\mathbb{C}))) = \mathbb{C}[P_3(1)]$

For any g, n, there is a special choice of Γ such that the semigroup algebra $\mathbb{C}[\mathcal{P}_{\Gamma}]$ is generated by elements of degree ≤ 2 and has relations generated by forms of degree ≤ 4 .

For any g, n, there is a special choice of Γ such that the semigroup algebra $\mathbb{C}[\mathcal{P}_{\Gamma}(2\vec{r}, 2L)]$ is generated by elements of degree 1, and its defining ideal of relations has a quadratic square-free Gröbner basis.

For generic (C, \vec{p}) , the algebra $Cox(\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C})))$ is generated in degree ≤ 2 and has relations generated in degree ≤ 4

For generic (C, \vec{p}) , the projective coordinate ring of $\mathcal{L}(\vec{r}, L)^{\otimes 2}$ is generated in degree 1 and is Koszul.

The special graph $\Gamma(g, n)$

Buscynska, Buscynski, Kubjas, and Michalek showed that $\mathbb{C}[\mathcal{P}_{\Gamma}]$ is always generated in degree $\leq g + 1$.

The lift of these relations to the algebra $Cox(M_{C,\vec{p}}(SL_2(\mathbb{C})))$ was studied by Sturmfels and Xu, and also by Sturmfels and Velasco.

In particular, Sturmfels and Velasco have given a realization of $Cox(M_{C,\vec{p}}(SL_2(\mathbb{C})))$ as a quotient of the coordinate ring of an even spinor variety in the genus 0 case.

Toric degenerations also exist in the $SL_3(\mathbb{C})$ case, along with similar presentation results for $Cox(\mathcal{M}_{\mathbb{P},\vec{p}}(SL_3(\mathbb{C})))$.

Using valuations built out of representation theory data, it possible to find a presentation of $Cox(\mathcal{M}_{0,3}(SL_3(\mathbb{C})))$.

 $\mathbb{C}[Z, X, Y, P_{12}, P_{23}, P_{31}, P_{21}, P_{32}, P_{13}] / \langle ZXY - P_{12}P_{23}P_{31} + P_{21}P_{32}P_{13} \rangle$

The algebra $Cox(\mathcal{M}_{0,3}(SL_3(\mathbb{C})))$

The algebra $Cox(\mathcal{M}_{0,3}(SL_3(\mathbb{C})))$

The $SL_3(\mathbb{C})$ case

For any C of genus g with n marked points, and Γ a trivalent graph with with first Betti number g and n leaves, there are $3^{|V(\Gamma)|}$ toric degenerations of $Cox(\mathcal{M}_{C,\vec{p}}(SL_3(\mathbb{C})))$.

For (\mathbb{P}, \vec{p}) generic, the algebra $Cox(\mathcal{M}_{\mathbb{P}^1, \vec{p}}(SL_3(\mathbb{C})))$ is generated in degree 1 with relations generated in degrees ≤ 3 .

$\mathbb{V}_{0,3}(\lambda,\mu,\eta,L) = L - max\{\lambda_1 + \lambda_2, \mu_1 + \mu_2, \eta_1 + \eta_2, L_1, L_2\} + 1$

$$L_1 = \frac{1}{3}(2(\lambda_1 + \mu_1 + \eta_1) + \lambda_2 + \mu_2 + \eta_2) - \min\{\lambda_1, \mu_1, \eta_1\}$$

$$L_2 = \frac{1}{3}(2(\lambda_2 + \mu_2 + \eta_2) + \lambda_1 + \mu_1 + \eta_1) - \min\{\lambda_2, \mu_2, \eta_2\}.$$

originally stated by Kirrilov, Mathieu, Senechal, Walton.

Thankyou!