
The combinatorial commutative algebra
of conformal blocks
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Objects we want to study

VC,~p(~λ, L)

Vector spaces of conformal blocks.

MC,~p(G)

Moduli of quasi-parabolic principal bundles on a curve C with
parabolic structure at marked points ~p.
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The combinatorics behind the dimensions of these
vector spaces allow us to prove:

For (C, ~p) generic,

The projective coordinate ring ofMC,~p(SL2(C)) associated to
the square L2 of an effective line bundle is Koszul.
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The combinatorics behind the dimensions of these
vector spaces allow us to prove:

For (C, ~p) generic,

The Cox ring of MC,~p(SL2(C)) is generated in degree ≤ 2
with relations generated in degree ≤ 4.

The Cox ring of MP1,~p(SL3(C)) is generated in degree 1 with
relations generated in degree ≤ 3.
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... with these objects:
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... with these objects:

(1,0)

(1,0)(0,1)

(0,1)

(0,0) (0,0)
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you may recognize conformal blocks from:

Mathematical Physics: Partition functions for the WZW model
of conformal field theory, TQFT, Modular functors.

Geometry: Moduli of (vector/principal) bundles, Moduli of
flat connections, Gromov-Witten invariants, (non-abelian)
theta functions, birational geometry of M̄0,n.

Representation Theory: Quantum Horn problem, Saturation
conjectures, Kac-Moody algebras, Quantum groups at roots
of unity.
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Conformal Blocks: notation

G a simply connected, simple group over C.

Lie(G) = g, a simple Lie algebra over C (e.g. slm(C), sp2n(C)).

∆- a Weyl chamber for g.

λ ∈∆- dominant weights for g.

∆L - the L−restricted Weyl chamber.
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Conformal Blocks

C a stable curve of genus g over C, with n

specified ”marked” points, p1, . . . , pn ∈ C.

This defines a point in the Deligne-Mumford stack M̄g,n.
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Example: M̄2,0
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Conformal Blocks

For any n dominant weights λi ∈∆L, there is a vector space
VC,~p(~λ, L) called the Space of Conformal Blocks.

(C, ~p), ~λ, L⇒ VC,~p(~λ, L)

This is built from the representation theory of the affine Kac-
Moody algebra ĝ associated to g.
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Properties of Conformal Blocks

1. Each space VC,~p(~λ, L) is finite dimensional

2. The dimension of VC,~p(~λ, L) depends only on the data
(~λ, L), the genus g, and the number of points n.

The dimension is given by the Verlinde formula:

Vg,n(~λ, L) = |TL|g−1
∑
µ∈∆L

Tr~λ(exp(2πi
(µ+ ρ)

L+ h∨
))
∏
α

|2sin(π
(α|µ+ ρ)

L+ h∨
)|2−2g
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Moduli of bundles

Proposition [Kumar, Narisimhan, Ramanathan, Faltings, Beauville, La-
zlo, Sorger] :
For every ~λ, L there is a line bundle L(~λ, L) on MC,~p(G) such that

H0(MC,~p(G),L(~λ, L)) = VC,~p(~λ, L)

For a line bundle L(~λ, L) we let RC,~p(~λ, L) denote the corre-
sponding graded projective coordinate ring.

The sum of all the spaces of global sections over all these
line bundles is the Cox ring, Cox(MC,~p(G)).
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Innocent questions

What generates Cox(MC,~p(G)) ?

What relations hold between these generators?

What is the multigraded Hilbert function of Cox(MC,~p(G)) ?
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Conformal Blocks: vector bundle property

Theorem [Tsuchiya, Ueno, Yamada]:

For every ~λ, L there is a vector bundle V (~λ, L) on M̄g,n, with fiber over

(C, ~p) equal to VC,~p(~λ, L).

Tsuchiya, Ueno, and Yamada; Faltings also established the
Factorization Rules:
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Conformal Blocks: Factorization

For (C, ~p) a stable curve with a doubled point q ∈ C, there is
a normalized stable marked curve (C ′, q1, q2, ~p).
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Conformal Blocks: Factorization

For a marked curve (C, ~p) with a doubled point q,

VC,~p(~λ, L) ∼=
⊕
α∈∆L

VC′,q1,q2,~p(α, α
∗, ~λ, L)
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Conformal Blocks: Factorization

The fusion rules allow us to express dim(VC,~p(~λ, L)) purely
in terms of the spaces V0,3(λ1, λ2, λ3, L).
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SL2(C) case

In the case G = SL2(C), the spaces V0,3(r1, r2, r3, L) are di-
mension 1 or 0.

Proposition [Quantum Clebsch-Gordon rule] :

The dimension of V0,3(r1, r2, r3, L) is either 1 or 0. It is dimension 1 if and

only if r1 + r2 + r3 is even, ≤ 2L, and r1, r2, r3 are the side-lengths of a

triangle
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SL2(C) case

For Γ a trivalent graph of genus g with n marked points we
define PΓ(L) to be the polytope given by non-negative inte-
ger weightings of the edges of Γ which satisfy the Quantum
Clebsch-Gordon rules at each trinode with respect to level L.
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Example: g= 2, n =0, L = 2

2Z

Y X

Y
X

Z

21



SL2(C) case

For Γ as above, we define PΓ(~r, L) to be the polyope given
by integer weightings of Γ which satisfy the Clebsch-Gordon
rules for L, with leaf weights specified to be r1, . . . , rn.

Corollary [of the factorization rules] :

The dimension of VC,~p(~r, L) is equal to the number of lattice points in

PΓ(~r, L)

Note: it follows that the number of lattice points in PΓ(~r, L)
is independent of the graph.
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Multiplying conformal blocks

There is a natural multiplication operation:

PΓ(~r, L)× PΓ(~s,K)→ PΓ(~r + ~s, L+K)

PΓ(L)× PΓ(K)→ PΓ(L+K)
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Multiplying conformal blocks

This operation defines semigroups:

PΓ(~r, L) =
⊕
N≥0

PΓ(N~r,NL)

PΓ =
⊕
N≥0

PΓ(N)

with associated semigroup algebras C[PΓ(~r, L)], C[PΓ(L)].
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Factorization in terms of commutative algebra

[M; Sturmfels, Xu] : For any C of genus g with n marked points, and Γ
a trivalent graph with with first Betti number g and n leaves, there is a
flat degeneration

Cox(MC,~p(SL2(C))⇒ C[PΓ]

RC,~p(~r, L)⇒ C[PΓ(~r, L)]
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Factorization in terms of commutative algebra

For any C of genus g with n marked points, and Γ a trivalent
graph with with first Betti number g and n leaves, there is a
flat degeneration

Cox(MC,~p(G))⇒ [
⊗

v∈V (Γ)

Cox(M0,3(G))]TΓ.
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The SL2(C) case

Cox(M0,3(SL2(C))) = C[P3(1)]

(L,0,0)

(0,0,L)

(0,L,0)

(0,L,L)

(L,0,L)

(L,L,0)

1
2
_
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The SL2(C) case

For any g, n, there is a special choice of Γ such that the
semigroup algebra C[PΓ] is generated by elements of degree
≤ 2 and has relations generated by forms of degree ≤ 4.

For any g, n, there is a special choice of Γ such that the
semigroup algebra C[PΓ(2~r,2L)] is generated by elements of
degree 1, and its defining ideal of relations has a quadratic
square-free Gröbner basis.
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The SL2(C) case

For generic (C, ~p), the algebra Cox(MC,~p(SL2(C))) is gener-
ated in degree ≤ 2 and has relations generated in degree ≤ 4

For generic (C, ~p), the projective coordinate ring of L(~r, L)⊗2

is generated in degree 1 and is Koszul.
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The special graph Γ(g, n)

...

...
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The SL2(C) case

Buscynska, Buscynski, Kubjas, and Michalek showed that
C[PΓ] is always generated in degree ≤ g + 1.

The lift of these relations to the algebra Cox(MC,~p(SL2(C)))
was studied by Sturmfels and Xu, and also by Sturmfels and
Velasco.

In particular, Sturmfels and Velasco have given a realization
of Cox(MC,~p(SL2(C))) as a quotient of the coordinate ring of
an even spinor variety in the genus 0 case.
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the SL3(C) case

Toric degenerations also exist in the SL3(C) case, along with
similar presentation results for Cox(MP,~p(SL3(C))).
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The SL3(C) case

Using valuations built out of representation theory data, it
possible to find a presentation of Cox(M0,3(SL3(C))).

C[Z,X, Y, P12, P23, P31, P21, P32, P13]/ < ZXY − P12P23P31 + P21P32P13 >
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The algebra Cox(M0,3(SL3(C)))
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The algebra Cox(M0,3(SL3(C)))
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The SL3(C) case
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-
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The SL3(C) case

For any C of genus g with n marked points, and Γ a trivalent
graph with with first Betti number g and n leaves, there are
3|V (Γ)| toric degenerations of Cox(MC,~p(SL3(C))).

(1,0)

(1,0)(0,1)

(0,1)

(0,0) (0,0)

37



The SL3(C) case

For (P, ~p) generic, the algebra Cox(MP1,~p(SL3(C))) is gener-
ated in degree 1 with relations generated in degrees ≤ 3.
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Polyhedral counting rules: SL3(C)

V0,3(λ, µ, η, L) = L−max{λ1 + λ2, µ1 + µ2, η1 + η2, L1, L2}+ 1

L1 =
1

3
(2(λ1 + µ1 + η1) + λ2 + µ2 + η2)−min{λ1, µ1, η1}

L2 =
1

3
(2(λ2 + µ2 + η2) + λ1 + µ1 + η1)−min{λ2, µ2, η2}.

originally stated by Kirrilov, Mathieu, Senechal, Walton.
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Thankyou!
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