Extensions of Toric Varieties

Mesut Saahin

ÇANKIRI KARATEKIN UNIVERSITY
Toric Algebraic Geometry and Beyond
Oct 20-21, 2012, AKRON

Notation

Let S be a subsemigroup of \mathbb{N}^{d} generated minimally by $\mathbf{m}_{1}, \ldots, \mathbf{m}_{n}$.
When $\mathbf{m} \in S$, we define $\delta(\mathbf{m})$ to be the minimum of all the sums $s_{1}+\cdots+s_{n}$ where $s_{1}, \ldots, s_{n} \in \mathbb{N}$ and $\mathbf{m}=s_{1} \mathbf{m}_{1}+\cdots+s_{n} \mathbf{m}_{n}$. I_{S} and V_{S} denotes the toric ideal and toric variety of S.

Extension

Denote by $S_{\ell, \mathbf{m}}$ the affine semigroup generated by $\ell \mathbf{m}_{1}, \ldots, \ell \mathbf{m}_{n}$ and \mathbf{m}, where ℓ is a positive integer. We say that the affine toric variety
$V_{\ell, \mathbf{m}} \subset \mathbb{A}^{n+1}$ is an extension of $V_{S} \subset \mathbb{A}^{n}$, if $\mathbf{m} \in S$, and ℓ is a positive integer relatively prime to a component of \mathbf{m}. A projective toric variety $\bar{E} \subset \mathbb{P}^{n+1}$ will be called an extension of another one $\bar{X} \subset \mathbb{P}^{n}$ if its affine part E is an extension of an affine part X of \bar{X}.

Remarks

(1) Notice that $I_{S} \subset I_{\ell, \mathbf{m}}$ and $I_{\bar{S}} \subset I_{\bar{S}_{\ell, \mathbf{m}}}$.
(2) The question of whether or not $I_{\ell, \mathrm{m}}\left(\right.$ resp. $\left.I_{\bar{S}_{\ell, \mathbf{m}}}\right)$ has a minimal generating set containing a minimal generating set of $I_{S}\left(\right.$ resp. $\left.I_{\bar{S}}\right)$ is not trivial.
(3) This definition generalizes the one given for monomial curves by Arslan-Mete (2007) and Sahin (2009).
(9) Thoma (1996) studied special extensions where $\ell=k \delta(\mathbf{m})$.
(5) Morales (1991) used this idea to produce Noetherian symbolic blow-ups.

Extensions of a toric curve

Take $S=\mathbb{N}\{1,4,5\}$ and $V_{S}=\left\{\left(v, v^{4}, v^{5}\right) \mid v \in K\right\}$. If $\ell=1$ and $\mathbf{m}=10$ we have $V_{S_{1,10}}=\left\{\left(v, v^{4}, v^{5}, v^{10}\right) \mid v \in K\right\}$ where $S_{1,10}=\mathbb{N}\{1,4,5,10\}$.

Thus the projective closure of $V_{S_{1,10}}$ is a projective extension of the projective closure of V_{S}. But the relation between the semigroups is changed, as the new ones are just $\bar{S}=\mathbb{N}\{(5,0),(4,1),(1,4),(0,5)\}$ and

$$
\bar{S}_{1,10}=\mathbb{N}\{(10,0),(9,1),(6,4),(5,5),(0,10)\}
$$

Although $I_{S_{1,10}}=I_{S}+\left\langle x_{3}^{2}-x_{4}\right\rangle$, no minimal generating set of $I_{\bar{S}}$ extends to a minimal generating set of ${I_{\bar{S}_{1,10}}}$, since $\mu\left(\digamma_{\bar{s}}\right)=\mu\left(\boldsymbol{I}_{\bar{S}_{1,10}}\right)(=5)$.

Proposition

If the toric variety $V_{S_{\ell, \mathbf{m}}} \subset \mathbb{A}^{n+1}$ is an extension of $V_{S} \subset \mathbb{A}^{n}$, then $I_{S_{\ell, \mathbf{m}}}=I_{S}+\langle F\rangle$, where $F=x_{n+1}^{\ell}-x_{1}^{s_{1}} \cdots x_{n}^{s_{n}}$. Moreover, if \mathcal{G} is a reduced Gröbner basis for I_{S} with respect to a term order \succ, then $\mathcal{G} \cup\{F\}$ is a reduced Gröbner basis for $I_{\ell, \mathrm{m}}$ with respect to a term order refining \succ and making x_{n+1} the biggest variable.

Corollary

If $V_{S} \subset \mathbb{A}^{n}$ is a set theoretic complete intersection, arithmetically Cohen-Macaulay (Gorenstein), so are its extensions $V_{S_{\ell, \mathbf{m}}} \subset \mathbb{A}^{n+1}$.

BAD extensions are nicer globally!

Proposition

If \mathcal{G} is a reduced Gröbner basis for \bar{I}_{S} with respect to a term order \succ making x_{0} the smallest variable and $\ell \geqslant \delta(\mathbf{m})$, then $\mathcal{G} \cup\{F\}$ is a reduced Gröbner basis for ${\overline{S_{\ell, \mathbf{m}}}}$ with respect to a term order refining \succ and making x_{n+1} the biggest variable and thus ${\overline{S_{\ell, \mathbf{m}}}}=I_{\bar{S}}+\langle F\rangle$, where $F=x_{n+1}^{\ell}-x_{0}^{\ell-\delta(\mathbf{m})} x_{1}^{s_{1}} \cdots x_{n}^{s_{n}}$.

Corollary

If $V_{\bar{S}} \subset \mathbb{P}^{n}$ is a set theoretic complete intersection, arithmetically Cohen-Macaulay (Gorenstein), so are its extensions $V_{\bar{S}_{\ell, \mathbf{m}}} \subset \mathbb{P}^{n+1}$ provided that $\ell \geqslant \delta(\mathbf{m})$.

NICE extensions are nicer locally!

Proposition

If \mathcal{G} is a minimal standard basis of I_{S} with respect to a negative degree reverse lexicographic ordering \succ and $\ell \leqslant \delta(\mathbf{m})$, then $\mathcal{G} \cup\{F\}$ is a minimal standard basis of $I_{S_{\ell, \mathbf{m}}}$ with respect to a negative degree reverse lexicographic ordering refining \succ and making x_{n+1} the biggest variable.

Since $I_{\ell, \mathrm{m}}{ }^{*}=I_{S}{ }^{*}+\left\langle F^{*}\right\rangle$ we have

Theorem

If $V_{S} \subset A^{n}$ has a Cohen-Macaulay tangent cone at 0 , then so have its extensions $V_{S_{\ell, \mathbf{m}}} \subset A^{n+1}$, provided that $\ell \leqslant \delta(\mathbf{m})$.

Example

One can produce Cohen-Macaulay tangent cones using arithmetically
Cohen-Macaulay projective toric varieties, since $I_{S}=I_{S}{ }^{*}$. Therefore, all of their affine nice extensions will have Cohen-Macaulay tangent cones and local rings with non-decreasing Hilbert functions. The affine cone $V_{S} \subset \mathbb{A}^{4}$ over the twisted cubic with $S=\{(3,0),(2,1),(1,2),(0,3)\}$ and its nice extensions illustrate this point.

Proposition

If the local ring of $V_{S} \subset A^{n}$ is of homogeneous type, then its extensions will also have local rings of homogeneous type if and only if $\ell \leqslant \delta(\mathbf{m})$.

Example

Similarly, the local ring of the affine cone of a projective toric variety is always of homogeneous type, again by $I_{S}=I_{S}{ }^{*}$ the betti numbers coincide. Thus, its affine nice extensions will have homogeneous type local rings which are not necessarily homogeneous. Take for example $S=\{(3,0),(2,1),(1,2),(0,3)\}, \ell=1$ and $\mathbf{m}=(0,3 s)$ for any $s>1$. Then, although $I_{\ell, \mathbf{m}}=I_{S}+\left\langle x_{4}^{S}-x_{5}\right\rangle$ is not homogeneous, its local ring is of homogeneous type.

Theorem

If $V_{S} \subset A^{n}$ has a local ring with non-decreasing Hilbert function, then so have its extensions $V_{S_{\ell, \mathbf{m}}} \subset A^{n+1}$, provided that $\ell \leqslant \delta(\mathbf{m})$.

Example

If $S=\{(6,0),(0,2),(7,0),(6,4),(15,0)\}$, $I_{S}=\left\langle x_{1} x_{2}^{2}-x_{4}, x_{3}^{3}-x_{1} x_{5}, x_{1}^{5}-x_{5}^{2}\right\rangle$. Since $V_{S} \subset \mathbb{A}^{5}$ is a toric surface of codimension $3, I_{S}$ is a c.i. and thus the local ring of V_{S} is Gorenstein. But, $I_{S}^{*}=\left\langle x_{5}^{2}, x_{4}, x_{3}^{3} x_{5}, x_{3}^{6}, x_{1} x_{5}\right\rangle$ and thus the tangent cone at the origin is not Cohen-Macaulay. Nevertheless, its Hilbert function H_{S} is non-decreasing: $H_{S}(0)=1, H_{S}(1)=4, H_{S}(2)=8, H_{S}(3)=13, H_{S}(r)=6 r-6$, for $r \geqslant 4$. All nice extensions of V_{S} will be toric surfaces with local rings of dimension 2 and embedding codimension 4 whose Hilbert functions are non-decreasing even though their tangent cones are not Cohen-Macaulay.

