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Compactified Jacobians
Let C be a possibly singular complete algebraic curve.

Definition
The Jacobian JC of C consists of the locally free sheaves of rank 1
and degree 0 on C.

Definition
The compactified Jacobian JC of C consists of the torsion free
sheaves of rank 1 and degree 0 on C, i.e. χ(F ) = 1− ga(C).

Theorem (Beauville)
For a rational unibranched curve C its compactified Jacobian is
homeomorphic to the direct product of compact spaces, the Jacobi
factors JCp, p ∈ Sing(C), which depend uncover on the analytic type
of the singularities (C,p).
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Jacobi Factors

Let x ∈ C ⊂ C2 be a unibranched plane curve singularity, t be a
normalizing parameter on C at x , and R ⊂ C[[t ]] be the complete local
ring at x .

Let δ = dim(C[[t ]]/R). Since x ∈ C is a plane curve singularity, it
follows that t2δC[[t ]] ⊂ R.

Let V = C[[t ]]/t2δC[[t ]].

Definition
The Jacobi factor JCx is the space of R-submodules M ⊂ C[[t ]], such
that M ⊃ t2δC[[t ]] and dim(C[[t ]]/M) = δ.
In other words, JCx is isomorphic to the subvariety of the
Grassmannian Gr(V , δ), consisting of subspaces invariant under
R-action.
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Example

Consider the curve
{x3 = y2} ⊂ C2.

One can parametrize it by

t 7→ (t2, t3).

Easy to see that δ = 1. Therefore, Jacobi factor is the collection of
1-dimensional subspaces in V =< 1, t >, invariant under multiplication
by t2 and t3. So,

JCx = P1.

Remark
Compactified Jacobian of a cuspidal elliptic curve C is the curve C
itself. It is homeomorphic, but not isomorphic to P1.
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Cell Decompositions
J. Piontkowski proved that in some cases the Jacobi factors admit
algebraic cell decompositions.

In particular, for a quasi-homogeneous singularity {xm = yn} he
proved that these cells can be described in the following way:

Definition
Let Γm,n ⊂ Z≥0 be the semigroup generated by m and n. A subset
∆ ⊂ Z≥0 is called a 0-normalized Γm,n–semi-module iff 0 ∈ ∆ and
∆ + Γm,n ⊂ ∆.

The cells C∆ are parametrised by all possible 0-normalized
Γm,n–semi-modules ∆, and the dimension of C∆ can be computed as
follows:

dim C∆ =
m−1∑
j=0

|([aj ,aj + n) \∆)|.

where (0 = a0 < a1 < . . . < am−1) is the m–basis of ∆.
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Example for the Piontkowski’s Formula

Consider a Γ3,7-semimodule ∆ = {0,1,3,4,6,7,8, . . . }.

The 3-generators are 0, 1, and 8.

There are two integers not in ∆ on the interval [0,7) : 2 and 5. Both of
them are also on the interval [1,8). All integers greater than 8 are in ∆.

Therefore,
dim C∆ = 2 + 2 + 0 = 4.
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Young Diagrams

We gave a combinatorial description of this cell decomposition.

Let Rm,n be a (m,n)-rectangle. Let Rm,n
+ ⊂ Rm,n be the subset

consisting of boxes which lie below the left-top to right-bottom
diagonal.
We construct a natural bijection D between the set of 0-normalized
Γm,n–semimodules and the set of Young diagrams contained in Rm,n

+ .

Example: Consider a Γ3,4-semimodule ∆ = {0,1,3,4,5,6, . . . }. We
construct the corresponding diagram as follows:

−3

−4

0

5 2 −1 −4

1 −2

0 −3

5

1
D(∆) =
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Hilbert Scheme of Points in C2

Definition
The Hilbert scheme Hilbd (C2) of d points in C2 is the space of ideals of
codimension d in C[x , y ].

There is a natural (C∗)2-action on Hilbd (C2).

Fixed points↔ monomial ideals↔ Young diagrams.
Given a diagram D one can describe a basis of the tangent space
of Hilbd (C2) at the corresponding fixed point combinatorially:

c
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Cell Decomposition of Hilbd(C2)

One-dimensional subgroups T m,n = {tm, tn} ⊂ (C∗)2 → cell
decompositions of Hilbd (C2).

(m, n > 0, co-prime, generic)
To compute dimensions of cells, let’s have another look at the picture:

c

(m,n)
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l(c)

a(c)

h+
m
n

(D) = #

{
c ∈ D| a(c)

l(c) + 1
≤ m

n
<

a(c) + 1
l(c)

}

Mikhail Mazin (Stony Brook University) Jacobi Factors 21 October 2012 9 / 16



Dimensions of Cells

Theorem
The dimension of the cell corresponding to the Young diagram D in the
cell decomposition of Hilbd (C2) given by the subgroup T m,n is equal to

|D|+ h
m
n

+ (D).

Theorem (E. Gorsky, M.M)
The dimension of the cell corresponding to the Young diagram D in the
cell decomposition of the Jacobi factor of the singularity {xm = yn} is
equal to

δ − h
m
n

+ (D).

where δ = (m−1)(n−1)
2 is the δ-invariant of the singularity.
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Symmetry of Polynomials cm,n(q, t) 1
Motivated by the work of J. Haglund, we introduce the following
polynomials:

cm,n(q, t) =
∑

D

qδ−|D|th+(D),

where δ = (m−1)(n−1)
2 is the classical δ-invariant of the singularity.

If m = n + 1, the polynomial cm,n(q, t) coincides with the q, t-Catalan
numbers introduced by of A. Garsia and M. Haiman. These
polynomials are known to be symmetric in q and t .

It motivates the following conjecture:

Conjecture (Symmetry of Polynomials cm,n(q, t))
The function cm,n(q, t) satifies the functional equation

cm,n(q, t) = cm,n(t ,q).
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Symmetry of Polynomials cm,n(q, t) 2
This symmetry is known if m = n + 1. In this case it follows from some
nontrivial relations on q, t-Catalan numbers. For m = kn + 1 a similar
statement was conjectured by N. Loehr. No bijective proof in any of
these cases is known yet.

Theorem (E. Gorsky, M.M.)
The symmetry conjecture holds for n ≤ 3.

In the proof we construct an explicit bijection exchanging the area and
h+ statistics.

We also formulate the following weaker version of the symmetry
conjecture:

Conjecture (Weak Symmetry)
The function cm,n(q, t) satifies the functional equation

cm,n(q,1) = cm,n(1,q).
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Symmetry of Polynomials cm,n(q, t) 3
Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)

The weak symmetry conjecture holds for m = kn ± 1.

All these cases are proved by an explicit bijective construction.

As a corollary, we get the following simple formula for the Poincaré
polynomial of the Jacobi factor:

Corollary
For m = kn± 1 the Poincaré polynomial of the Jacobi factor is given by

P(t) =
∑

D⊂Rm,n
+

t |D|.

Proof.

P(t) =
∑

tδ−h+(D) = tδcm,n(1, t−1) = tδcm,n(t−1,1) =
∑

t |D|.
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Maps Gm and Gn

I will discuss the weak symmetry in few more details.

Let us go back to the Piontkowski’s formula for dimensions of cells.
Given a Γm,n-semimodule M, we can consider its m-generators
a1, . . . ,am and compute

gm(ai) := ] ([ai ,ai + n) \∆) .

Theorem (E. Gorsky, M. M.)
The numbers gm(ai) are decreasing. Moreover, the Young diagram
with columns gm(ai) is embedded in Rm,n

+ .

This result allows us to consider the map Gm from the set of diagrams
below the diagonal to itself, sending D(M) to a diagram with columns
gm(ai).
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Example for Maps G3 and G7

D(M)

11
4

8
1

5 2

0

11
4

8
1

5 2

0

12 9 6 3 0
11
4

8
1

5 2

0

12 9 6 3 0 0 1
2 2
5 5

G3(M)

0 1 3 4
2 2 5 5

G7(M)

Theorem (J. Haglund; N. Loehr; E. Gorsky, M. M.)
The map Gm is a bijection for m = kn ± 1.

The weak symmetry for m = kn ± 1 follows from this theorem. Indeed,

dim C∆ = |Gm(D(∆))|.
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Thank you!
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