Jacobi Factors of Quasi-Homogeneous Plane Curve Singularities

Mikhail Mazin
(joint work with Eugene Gorsky)

Stony Brook University
21 October 2012

Compactified Jacobians

Let C be a possibly singular complete algebraic curve.

Compactified Jacobians

Let C be a possibly singular complete algebraic curve.

Definition

The Jacobian JC of C consists of the locally free sheaves of rank 1 and degree 0 on C.

Compactified Jacobians

Let C be a possibly singular complete algebraic curve.

Definition

The Jacobian JC of C consists of the locally free sheaves of rank 1 and degree 0 on C.

Definition

The compactified Jacobian $\overline{J C}$ of C consists of the torsion free sheaves of rank 1 and degree 0 on C, i.e. $\chi(F)=1-g_{a}(C)$.

Compactified Jacobians

Let C be a possibly singular complete algebraic curve.

Definition

The Jacobian JC of C consists of the locally free sheaves of rank 1 and degree 0 on C.

Definition

The compactified Jacobian $\overline{J C}$ of C consists of the torsion free sheaves of rank 1 and degree 0 on C, i.e. $\chi(F)=1-g_{a}(C)$.

Theorem (Beauville)

For a rational unibranched curve C its compactified Jacobian is homeomorphic to the direct product of compact spaces, the Jacobi factors $\overline{J C}_{p}, p \in \operatorname{Sing}(C)$, which depend uncover on the analytic type of the singularities (C, p).

Jacobi Factors

Let $x \in C \subset \mathbb{C}^{2}$ be a unibranched plane curve singularity, t be a normalizing parameter on C at x, and $R \subset \mathbb{C}[[t]]$ be the complete local ring at x.

Jacobi Factors

Let $x \in C \subset \mathbb{C}^{2}$ be a unibranched plane curve singularity, t be a normalizing parameter on C at x, and $R \subset \mathbb{C}[[t]]$ be the complete local ring at x.

Let $\delta=\operatorname{dim}(\mathbb{C}[[t]] / R)$. Since $x \in C$ is a plane curve singularity, it follows that $t^{2 \delta} \mathbb{C}[[t]] \subset R$.

Let $V=\mathbb{C}[[t]] / t^{2 \delta} \mathbb{C}[[t]]$.

Jacobi Factors

Let $x \in C \subset \mathbb{C}^{2}$ be a unibranched plane curve singularity, t be a normalizing parameter on C at x, and $R \subset \mathbb{C}[[t]]$ be the complete local ring at x.

Let $\delta=\operatorname{dim}(\mathbb{C}[[t]] / R)$. Since $x \in C$ is a plane curve singularity, it follows that $t^{2 \delta} \mathbb{C}[[t]] \subset R$.

Let $V=\mathbb{C}[[t]] / t^{2 \delta} \mathbb{C}[[t]]$.

Definition

The Jacobi factor $\overline{J C}_{x}$ is the space of R-submodules $M \subset \mathbb{C}[t t]$, such that $M \supset t^{2 \delta} \mathbb{C}[[t]]$ and $\operatorname{dim}(\mathbb{C}[[t]] / M)=\delta$.
In other words, $J C_{x}$ is isomorphic to the subvariety of the
Grassmannian $\operatorname{Gr}(V, \delta)$, consisting of subspaces invariant under R-action.

Example

Consider the curve

$$
\left\{x^{3}=y^{2}\right\} \subset \mathbb{C}^{2} .
$$

Example

Consider the curve

$$
\left\{x^{3}=y^{2}\right\} \subset \mathbb{C}^{2}
$$

One can parametrize it by

$$
t \mapsto\left(t^{2}, t^{3}\right)
$$

Example

Consider the curve

$$
\left\{x^{3}=y^{2}\right\} \subset \mathbb{C}^{2}
$$

One can parametrize it by

$$
t \mapsto\left(t^{2}, t^{3}\right)
$$

Easy to see that $\delta=1$. Therefore, Jacobi factor is the collection of 1-dimensional subspaces in $V=<1, t>$, invariant under multiplication by t^{2} and t^{3}. So,

Example

Consider the curve

$$
\left\{x^{3}=y^{2}\right\} \subset \mathbb{C}^{2}
$$

One can parametrize it by

$$
t \mapsto\left(t^{2}, t^{3}\right)
$$

Easy to see that $\delta=1$. Therefore, Jacobi factor is the collection of 1-dimensional subspaces in $V=<1, t>$, invariant under multiplication by t^{2} and t^{3}. So,

$$
\overline{J C}_{x}=\mathbb{P}^{1}
$$

Example

Consider the curve

$$
\left\{x^{3}=y^{2}\right\} \subset \mathbb{C}^{2}
$$

One can parametrize it by

$$
t \mapsto\left(t^{2}, t^{3}\right)
$$

Easy to see that $\delta=1$. Therefore, Jacobi factor is the collection of 1-dimensional subspaces in $V=<1, t>$, invariant under multiplication by t^{2} and t^{3}. So,

$$
\overline{J C}_{x}=\mathbb{P}^{1}
$$

Remark

Compactified Jacobian of a cuspidal elliptic curve C is the curve C itself. It is homeomorphic, but not isomorphic to \mathbb{P}^{1}.

Cell Decompositions

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions.

Cell Decompositions

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions.
In particular, for a quasi-homogeneous singularity $\left\{x^{m}=y^{n}\right\}$ he proved that these cells can be described in the following way:

Cell Decompositions

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions. In particular, for a quasi-homogeneous singularity $\left\{x^{m}=y^{n}\right\}$ he proved that these cells can be described in the following way:

Definition

Let $\Gamma^{m, n} \subset \mathbb{Z}_{\geq 0}$ be the semigroup generated by m and n. A subset $\Delta \subset \mathbb{Z}_{\geq 0}$ is called a 0 -normalized $\Gamma^{m, n}$-semi-module iff $0 \in \Delta$ and $\Delta+\Gamma^{\bar{m}, n} \subset \Delta$.

Cell Decompositions

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions. In particular, for a quasi-homogeneous singularity $\left\{x^{m}=y^{n}\right\}$ he proved that these cells can be described in the following way:

Definition

Let $\Gamma^{m, n} \subset \mathbb{Z}_{\geq 0}$ be the semigroup generated by m and n. A subset $\Delta \subset \mathbb{Z}_{\geq 0}$ is called a 0 -normalized $\Gamma^{m, n}$-semi-module iff $0 \in \Delta$ and $\Delta+\Gamma^{\bar{m}, n} \subset \Delta$.

The cells C_{Δ} are parametrised by all possible 0-normalized $\Gamma^{m, n}$-semi-modules Δ, and the dimension of C_{Δ} can be computed as follows:

Cell Decompositions

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions.
In particular, for a quasi-homogeneous singularity $\left\{x^{m}=y^{n}\right\}$ he proved that these cells can be described in the following way:

Definition

Let $\Gamma^{m, n} \subset \mathbb{Z}_{\geq 0}$ be the semigroup generated by m and n. A subset $\Delta \subset \mathbb{Z}_{\geq 0}$ is called a 0 -normalized $\Gamma^{m, n}$-semi-module iff $0 \in \Delta$ and $\Delta+\Gamma^{\bar{m}, n} \subset \Delta$.

The cells C_{Δ} are parametrised by all possible 0-normalized $\Gamma^{m, n}$-semi-modules Δ, and the dimension of C_{Δ} can be computed as follows:

$$
\operatorname{dim} C_{\Delta}=\sum_{j=0}^{m-1}\left|\left(\left[a_{j}, a_{j}+n\right) \backslash \Delta\right)\right|
$$

where $\left(0=a_{0}<a_{1}<\ldots<a_{m-1}\right)$ is the m-basis of Δ.

Example for the Piontkowski's Formula

Consider a $\Gamma^{3,7}$-semimodule $\Delta=\{0,1,3,4,6,7,8, \ldots\}$.

Example for the Piontkowski's Formula

Consider a $\Gamma^{3,7}$-semimodule $\Delta=\{0,1,3,4,6,7,8, \ldots\}$.
The 3 -generators are 0,1 , and 8 .

Example for the Piontkowski's Formula

Consider a $\Gamma^{3,7}$-semimodule $\Delta=\{0,1,3,4,6,7,8, \ldots\}$.
The 3 -generators are 0,1 , and 8 .
There are two integers not in Δ on the interval $[0,7): 2$ and 5 . Both of them are also on the interval $[1,8)$. All integers greater than 8 are in Δ.

Example for the Piontkowski's Formula

Consider a $\Gamma^{3,7}$-semimodule $\Delta=\{0,1,3,4,6,7,8, \ldots\}$.
The 3 -generators are 0,1 , and 8 .
There are two integers not in Δ on the interval $[0,7): 2$ and 5 . Both of them are also on the interval $[1,8)$. All integers greater than 8 are in Δ.
Therefore,

$$
\operatorname{dim} C_{\Delta}=2+2+0=4 .
$$

Young Diagrams

We gave a combinatorial description of this cell decomposition.

Young Diagrams

We gave a combinatorial description of this cell decomposition. Let $R^{m, n}$ be a (m, n)-rectangle. Let $R_{+}^{m, n} \subset R^{m, n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

Young Diagrams

We gave a combinatorial description of this cell decomposition. Let $R^{m, n}$ be a (m, n)-rectangle. Let $R_{+}^{m, n} \subset R^{m, n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.
We construct a natural bijection D between the set of 0-normalized $\Gamma^{m, n}$-semimodules and the set of Young diagrams contained in $R_{+}^{m, n}$.

Young Diagrams

We gave a combinatorial description of this cell decomposition. Let $R^{m, n}$ be a (m, n)-rectangle. Let $R_{+}^{m, n} \subset R^{m, n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.
We construct a natural bijection D between the set of 0-normalized $\Gamma^{m, n}$-semimodules and the set of Young diagrams contained in $R_{+}^{m, n}$. Example: Consider a $\Gamma^{3,4}$-semimodule $\Delta=\{0,1,3,4,5,6, \ldots\}$. We construct the corresponding diagram as follows:

Young Diagrams

We gave a combinatorial description of this cell decomposition. Let $R^{m, n}$ be a (m, n)-rectangle. Let $R_{+}^{m, n} \subset R^{m, n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.
We construct a natural bijection D between the set of 0 -normalized $\Gamma^{m, n}-$ semimodules and the set of Young diagrams contained in $R_{+}^{m, n}$. Example: Consider a $\Gamma^{3,4}$-semimodule $\Delta=\{0,1,3,4,5,6, \ldots\}$. We construct the corresponding diagram as follows:

Young Diagrams

We gave a combinatorial description of this cell decomposition. Let $R^{m, n}$ be a (m, n)-rectangle. Let $R_{+}^{m, n} \subset R^{m, n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.
We construct a natural bijection D between the set of 0 -normalized $\Gamma^{m, n}-$ semimodules and the set of Young diagrams contained in $R_{+}^{m, n}$. Example: Consider a $\Gamma^{3,4}$-semimodule $\Delta=\{0,1,3,4,5,6, \ldots\}$. We construct the corresponding diagram as follows:

Young Diagrams

We gave a combinatorial description of this cell decomposition. Let $R^{m, n}$ be a (m, n)-rectangle. Let $R_{+}^{m, n} \subset R^{m, n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.
We construct a natural bijection D between the set of 0 -normalized $\Gamma^{m, n}-$ semimodules and the set of Young diagrams contained in $R_{+}^{m, n}$. Example: Consider a $\Gamma^{3,4}$-semimodule $\Delta=\{0,1,3,4,5,6, \ldots\}$. We construct the corresponding diagram as follows:

Young Diagrams

We gave a combinatorial description of this cell decomposition. Let $R^{m, n}$ be a (m, n)-rectangle. Let $R_{+}^{m, n} \subset R^{m, n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.
We construct a natural bijection D between the set of 0 -normalized $\Gamma^{m, n}-$ semimodules and the set of Young diagrams contained in $R_{+}^{m, n}$. Example: Consider a $\Gamma^{3,4}$-semimodule $\Delta=\{0,1,3,4,5,6, \ldots\}$. We construct the corresponding diagram as follows:

0	-3		
	1	-2	
-4 \uparrow	5	2	-1:4
	$\overrightarrow{-3}$		0

Young Diagrams

We gave a combinatorial description of this cell decomposition. Let $R^{m, n}$ be a (m, n)-rectangle. Let $R_{+}^{m, n} \subset R^{m, n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.
We construct a natural bijection D between the set of 0 -normalized $\Gamma^{m, n}-$ semimodules and the set of Young diagrams contained in $R_{+}^{m, n}$. Example: Consider a $\Gamma^{3,4}$-semimodule $\Delta=\{0,1,3,4,5,6, \ldots\}$. We construct the corresponding diagram as follows:

$$
D(\Delta)=\square
$$

Hilbert Scheme of Points in \mathbb{C}^{2}

Definition

The Hilbert scheme $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$ of d points in \mathbb{C}^{2} is the space of ideals of codimension d in $\mathbb{C}[x, y]$.

Hilbert Scheme of Points in \mathbb{C}^{2}

Definition

The Hilbert scheme $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$ of d points in \mathbb{C}^{2} is the space of ideals of codimension d in $\mathbb{C}[x, y]$.

- There is a natural $\left(\mathbb{C}^{*}\right)^{2}$-action on $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.

Hilbert Scheme of Points in \mathbb{C}^{2}

Definition

The Hilbert scheme $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$ of d points in \mathbb{C}^{2} is the space of ideals of codimension d in $\mathbb{C}[x, y]$.

- There is a natural $\left(\mathbb{C}^{*}\right)^{2}$-action on $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.

Hilbert Scheme of Points in \mathbb{C}^{2}

Definition

The Hilbert scheme $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$ of d points in \mathbb{C}^{2} is the space of ideals of codimension d in $\mathbb{C}[x, y]$.

- There is a natural $\left(\mathbb{C}^{*}\right)^{2}$-action on $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$ at the corresponding fixed point combinatorially:

Hilbert Scheme of Points in \mathbb{C}^{2}

Definition

The Hilbert scheme Hilb ${ }^{d}\left(\mathbb{C}^{2}\right)$ of d points in \mathbb{C}^{2} is the space of ideals of codimension d in $\mathbb{C}[x, y]$.

- There is a natural $\left(\mathbb{C}^{*}\right)^{2}$-action on $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb $^{d}\left(\mathbb{C}^{2}\right)$ at the corresponding fixed point combinatorially:

Hilbert Scheme of Points in \mathbb{C}^{2}

Definition

The Hilbert scheme Hilb ${ }^{d}\left(\mathbb{C}^{2}\right)$ of d points in \mathbb{C}^{2} is the space of ideals of codimension d in $\mathbb{C}[x, y]$.

- There is a natural $\left(\mathbb{C}^{*}\right)^{2}$-action on $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb $^{d}\left(\mathbb{C}^{2}\right)$ at the corresponding fixed point combinatorially:

Hilbert Scheme of Points in \mathbb{C}^{2}

Definition

The Hilbert scheme Hilb ${ }^{d}\left(\mathbb{C}^{2}\right)$ of d points in \mathbb{C}^{2} is the space of ideals of codimension d in $\mathbb{C}[x, y]$.

- There is a natural $\left(\mathbb{C}^{*}\right)^{2}$-action on $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb $^{d}\left(\mathbb{C}^{2}\right)$ at the corresponding fixed point combinatorially:

Hilbert Scheme of Points in \mathbb{C}^{2}

Definition

The Hilbert scheme Hilb ${ }^{d}\left(\mathbb{C}^{2}\right)$ of d points in \mathbb{C}^{2} is the space of ideals of codimension d in $\mathbb{C}[x, y]$.

- There is a natural $\left(\mathbb{C}^{*}\right)^{2}$-action on $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb $^{d}\left(\mathbb{C}^{2}\right)$ at the corresponding fixed point combinatorially:

Cell Decomposition of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$

One-dimensional subgroups $T^{m, n}=\left\{t^{m}, t^{n}\right\} \subset\left(\mathbb{C}^{*}\right)^{2} \rightarrow$ cell decompositions of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.

Cell Decomposition of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$

One-dimensional subgroups $T^{m, n}=\left\{t^{m}, t^{n}\right\} \subset\left(\mathbb{C}^{*}\right)^{2} \rightarrow$ cell decompositions of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
($m, n>0$, co-prime, generic)

Cell Decomposition of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$

One-dimensional subgroups $T^{m, n}=\left\{t^{m}, t^{n}\right\} \subset\left(\mathbb{C}^{*}\right)^{2} \rightarrow$ cell decompositions of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
($m, n>0$, co-prime, generic)
To compute dimensions of cells, let's have another look at the picture:

Cell Decomposition of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$

One-dimensional subgroups $T^{m, n}=\left\{t^{m}, t^{n}\right\} \subset\left(\mathbb{C}^{*}\right)^{2} \rightarrow$ cell decompositions of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
($m, n>0$, co-prime, generic)
To compute dimensions of cells, let's have another look at the picture:

Cell Decomposition of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$

One-dimensional subgroups $T^{m, n}=\left\{t^{m}, t^{n}\right\} \subset\left(\mathbb{C}^{*}\right)^{2} \rightarrow$ cell decompositions of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$.
($m, n>0$, co-prime, generic)
To compute dimensions of cells, let's have another look at the picture:

$$
h_{\frac{m}{n}}^{+}(D)=\#\left\{c \in D \left\lvert\, \frac{a(c)}{l(c)+1} \leq \frac{m}{n}<\frac{a(c)+1}{l(c)}\right.\right\}
$$

Dimensions of Cells

Theorem

The dimension of the cell corresponding to the Young diagram D in the cell decomposition of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$ given by the subgroup $T^{m, n}$ is equal to

$$
|D|+h_{+}^{\frac{m}{n}}(D) .
$$

Dimensions of Cells

Theorem

The dimension of the cell corresponding to the Young diagram D in the cell decomposition of $\operatorname{Hilb}^{d}\left(\mathbb{C}^{2}\right)$ given by the subgroup $T^{m, n}$ is equal to

$$
|D|+h_{+}^{\frac{m}{n}}(D) .
$$

Theorem (E. Gorsky, M.M)

The dimension of the cell corresponding to the Young diagram D in the cell decomposition of the Jacobi factor of the singularity $\left\{x^{m}=y^{n}\right\}$ is equal to

$$
\delta-h_{+}^{\frac{m}{n}}(D) .
$$

where $\delta=\frac{(m-1)(n-1)}{2}$ is the δ-invariant of the singularity.

Symmetry of Polynomials $c_{m, n}(q, t) 1$

Motivated by the work of J. Haglund, we introduce the following polynomials:

$$
c_{m, n}(q, t)=\sum_{D} q^{\delta-|D|} t^{h_{+}(D)}
$$

where $\delta=\frac{(m-1)(n-1)}{2}$ is the classical δ-invariant of the singularity.

Symmetry of Polynomials $c_{m, n}(q, t) 1$

Motivated by the work of J. Haglund, we introduce the following polynomials:

$$
c_{m, n}(q, t)=\sum_{D} q^{\delta-|D|} t^{h_{+}(D)}
$$

where $\delta=\frac{(m-1)(n-1)}{2}$ is the classical δ-invariant of the singularity.
If $m=n+1$, the polynomial $c_{m, n}(q, t)$ coincides with the q, t-Catalan numbers introduced by of A. Garsia and M. Haiman. These polynomials are known to be symmetric in q and t.

Symmetry of Polynomials $c_{m, n}(q, t) 1$

Motivated by the work of J. Haglund, we introduce the following polynomials:

$$
c_{m, n}(q, t)=\sum_{D} q^{\delta-|D|} t^{h_{+}(D)},
$$

where $\delta=\frac{(m-1)(n-1)}{2}$ is the classical δ-invariant of the singularity.
If $m=n+1$, the polynomial $c_{m, n}(q, t)$ coincides with the q, t-Catalan numbers introduced by of A. Garsia and M. Haiman. These polynomials are known to be symmetric in q and t.

It motivates the following conjecture:

Conjecture (Symmetry of Polynomials $c_{m, n}(q, t)$)

The function $c_{m, n}(q, t)$ satifies the functional equation

$$
c_{m, n}(q, t)=c_{m, n}(t, q) .
$$

Symmetry of Polynomials $c_{m, n}(q, t) 2$

This symmetry is known if $m=n+1$. In this case it follows from some nontrivial relations on q, t-Catalan numbers. For $m=k n+1$ a similar statement was conjectured by N. Loehr. No bijective proof in any of these cases is known yet.

Symmetry of Polynomials $c_{m, n}(q, t) 2$

This symmetry is known if $m=n+1$. In this case it follows from some nontrivial relations on q, t-Catalan numbers. For $m=k n+1$ a similar statement was conjectured by N. Loehr. No bijective proof in any of these cases is known yet.

Theorem (E. Gorsky, M.M.)

The symmetry conjecture holds for $n \leq 3$.
In the proof we construct an explicit bijection exchanging the area and h_{+}statistics.

Symmetry of Polynomials $c_{m, n}(q, t) 2$

This symmetry is known if $m=n+1$. In this case it follows from some nontrivial relations on q, t-Catalan numbers. For $m=k n+1$ a similar statement was conjectured by N. Loehr. No bijective proof in any of these cases is known yet.

Theorem (E. Gorsky, M.M.)

The symmetry conjecture holds for $n \leq 3$.
In the proof we construct an explicit bijection exchanging the area and h_{+}statistics.

We also formulate the following weaker version of the symmetry conjecture:

Conjecture (Weak Symmetry)

The function $c_{m, n}(q, t)$ satifies the functional equation

$$
c_{m, n}(q, 1)=c_{m, n}(1, q)
$$

Symmetry of Polynomials $c_{m, n}(q, t) 3$

Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)
The weak symmetry conjecture holds for $m=k n \pm 1$.
All these cases are proved by an explicit bijective construction.

Symmetry of Polynomials $c_{m, n}(q, t) 3$

Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)
The weak symmetry conjecture holds for $m=k n \pm 1$.
All these cases are proved by an explicit bijective construction. As a corollary, we get the following simple formula for the Poincaré polynomial of the Jacobi factor:

Corollary

For $m=k n \pm 1$ the Poincaré polynomial of the Jacobi factor is given by

$$
P(t)=\sum_{D \subset R_{+}^{m, n}} t^{|D|} .
$$

Symmetry of Polynomials $c_{m, n}(q, t) 3$

Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)
The weak symmetry conjecture holds for $m=k n \pm 1$.
All these cases are proved by an explicit bijective construction. As a corollary, we get the following simple formula for the Poincaré polynomial of the Jacobi factor:

Corollary

For $m=k n \pm 1$ the Poincaré polynomial of the Jacobi factor is given by

$$
P(t)=\sum_{D \subset R_{+}^{m, n}} t^{|D|}
$$

Proof.

$$
P(t)=\sum t^{\delta-h_{+}(D)}=t^{\delta} c_{m, n}\left(1, t^{-1}\right)=t^{\delta} c_{m, n}\left(t^{-1}, 1\right)=\sum t^{|D|}
$$

Maps G_{m} and G_{n}

I will discuss the weak symmetry in few more details.

Maps G_{m} and G_{n}

I will discuss the weak symmetry in few more details.
Let us go back to the Piontkowski's formula for dimensions of cells. Given a $\Gamma^{m, n}$-semimodule M, we can consider its m-generators a_{1}, \ldots, a_{m} and compute

$$
g_{m}\left(a_{i}\right):=\sharp\left(\left[a_{i}, a_{i}+n\right) \backslash \Delta\right) .
$$

Maps G_{m} and G_{n}

I will discuss the weak symmetry in few more details.
Let us go back to the Piontkowski's formula for dimensions of cells.
Given a $\Gamma^{m, n}$-semimodule M, we can consider its m-generators a_{1}, \ldots, a_{m} and compute

$$
g_{m}\left(a_{i}\right):=\sharp\left(\left[a_{i}, a_{i}+n\right) \backslash \Delta\right) .
$$

Theorem (E. Gorsky, M. M.)

The numbers $g_{m}\left(a_{i}\right)$ are decreasing. Moreover, the Young diagram with columns $g_{m}\left(a_{i}\right)$ is embedded in $R_{+}^{m, n}$.

Maps G_{m} and G_{n}

I will discuss the weak symmetry in few more details.
Let us go back to the Piontkowski's formula for dimensions of cells.
Given a $\Gamma^{m, n}$-semimodule M, we can consider its m-generators a_{1}, \ldots, a_{m} and compute

$$
g_{m}\left(a_{i}\right):=\sharp\left(\left[a_{i}, a_{i}+n\right) \backslash \Delta\right) .
$$

Theorem (E. Gorsky, M. M.)

The numbers $g_{m}\left(a_{i}\right)$ are decreasing. Moreover, the Young diagram with columns $g_{m}\left(a_{i}\right)$ is embedded in $R_{+}^{m, n}$.

This result allows us to consider the map G_{m} from the set of diagrams below the diagonal to itself, sending $D(M)$ to a diagram with columns $g_{m}\left(a_{i}\right)$.

Example for Maps G_{3} and G_{7}

$D(M)$

Example for Maps G_{3} and G_{7}

$D(M)$
$G_{3}(M)$

Example for Maps G_{3} and G_{7}

$D(M)$

$$
G_{7}(M)
$$

$$
\begin{array}{|l|l|l|l|}
\hline 2 & 2 & 5 & 5 \\
\hline 0 & 1 & 3 & 4 \\
\hline
\end{array}
$$

Example for Maps G_{3} and G_{7}

$D(M)$

$G_{3}(M)$
$G_{7}(M)$

$$
\begin{array}{|l|l|l|l|}
\hline 2 & 2 & 5 & 5 \\
\hline 0 & 1 & 3 & 4
\end{array}
$$

Example for Maps G_{3} and G_{7}

$D(M)$

$$
G_{3}(M) \quad G_{7}(M)
$$

2	2	5	5
0	1	3	4

Theorem (J. Haglund; N. Loehr; E. Gorsky, M. M.)
The map G_{m} is a bijection for $m=k n \pm 1$.

Example for Maps G_{3} and G_{7}

$$
D(M)
$$

$$
G_{3}(M) \quad G_{7}(M)
$$

Theorem (J. Haglund; N. Loehr; E. Gorsky, M. M.)
The map G_{m} is a bijection for $m=k n \pm 1$.
The weak symmetry for $m=k n \pm 1$ follows from this theorem. Indeed,

$$
\operatorname{dim} C_{\Delta}=\left|G_{m}(D(\Delta))\right| .
$$

Thank you!

