Jacobi Factors of Quasi-Homogeneous Plane Curve Singularities

(joint work with Eugene Gorsky)

Stony Brook University

21 October 2012

The Sec. 74

< 6 b

Let *C* be a possibly singular complete algebraic curve.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let *C* be a possibly singular complete algebraic curve.

Definition

The Jacobian JC of C consists of the locally free sheaves of rank 1 and degree 0 on C.

不同 トイモトイモ

Let *C* be a possibly singular complete algebraic curve.

Definition

The Jacobian JC of C consists of the locally free sheaves of rank 1 and degree 0 on C.

Definition

The compactified Jacobian \overline{JC} of *C* consists of the torsion free sheaves of rank 1 and degree 0 on *C*, i.e. $\chi(F) = 1 - g_a(C)$.

< 回 > < 三 > < 三 >

Let *C* be a possibly singular complete algebraic curve.

Definition

The Jacobian JC of C consists of the locally free sheaves of rank 1 and degree 0 on C.

Definition

The compactified Jacobian \overline{JC} of *C* consists of the torsion free sheaves of rank 1 and degree 0 on *C*, i.e. $\chi(F) = 1 - g_a(C)$.

Theorem (Beauville)

For a rational unibranched curve *C* its compactified Jacobian is homeomorphic to the direct product of compact spaces, the Jacobi factors \overline{JC}_p , $p \in Sing(C)$, which depend uncover on the analytic type of the singularities (C, p).

3

Jacobi Factors

Let $x \in C \subset \mathbb{C}^2$ be a unibranched plane curve singularity, t be a normalizing parameter on C at x, and $R \subset \mathbb{C}[[t]]$ be the complete local ring at x.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Jacobi Factors

Let $x \in C \subset \mathbb{C}^2$ be a unibranched plane curve singularity, t be a normalizing parameter on C at x, and $R \subset \mathbb{C}[[t]]$ be the complete local ring at x.

Let $\delta = \dim(\mathbb{C}[[t]]/R)$. Since $x \in C$ is a plane curve singularity, it follows that $t^{2\delta}\mathbb{C}[[t]] \subset R$.

Let $V = \mathbb{C}[[t]]/t^{2\delta}\mathbb{C}[[t]].$

Jacobi Factors

Let $x \in C \subset \mathbb{C}^2$ be a unibranched plane curve singularity, t be a normalizing parameter on C at x, and $R \subset \mathbb{C}[[t]]$ be the complete local ring at x.

Let $\delta = \dim(\mathbb{C}[[t]]/R)$. Since $x \in C$ is a plane curve singularity, it follows that $t^{2\delta}\mathbb{C}[[t]] \subset R$.

Let $V = \mathbb{C}[[t]]/t^{2\delta}\mathbb{C}[[t]].$

Definition

The Jacobi factor \overline{JC}_x is the space of *R*-submodules $M \subset \mathbb{C}[[t]]$, such that $M \supset t^{2\delta}\mathbb{C}[[t]]$ and dim $(\mathbb{C}[[t]]/M) = \delta$. In other words, \overline{JC}_x is isomorphic to the subvariety of the Grassmannian $Gr(V, \delta)$, consisting of subspaces invariant under *R*-action.

Consider the curve

$$\{x^3=y^2\}\subset\mathbb{C}^2.$$

2

イロト イヨト イヨト イヨト

Consider the curve

$$\{x^3=y^2\}\subset \mathbb{C}^2.$$

One can parametrize it by

$$t\mapsto (t^2,t^3).$$

э

Consider the curve

$$\{x^3=y^2\}\subset\mathbb{C}^2.$$

One can parametrize it by

$$t\mapsto (t^2,t^3).$$

Easy to see that $\delta = 1$. Therefore, Jacobi factor is the collection of 1-dimensional subspaces in V = <1, t>, invariant under multiplication by t^2 and t^3 . So,

∃ ► < ∃ ►</p>

Consider the curve

$$\{x^3=y^2\}\subset\mathbb{C}^2.$$

One can parametrize it by

$$t\mapsto (t^2,t^3).$$

Easy to see that $\delta = 1$. Therefore, Jacobi factor is the collection of 1-dimensional subspaces in V = <1, t>, invariant under multiplication by t^2 and t^3 . So,

$$\overline{JC}_x = \mathbb{P}^1.$$

4 3 5 4 3 5 5

Consider the curve

$$\{x^3=y^2\}\subset\mathbb{C}^2.$$

One can parametrize it by

$$t\mapsto (t^2,t^3).$$

Easy to see that $\delta = 1$. Therefore, Jacobi factor is the collection of 1-dimensional subspaces in V = <1, t>, invariant under multiplication by t^2 and t^3 . So,

$$\overline{JC}_{X} = \mathbb{P}^{1}.$$

Remark

Compactified Jacobian of a cuspidal elliptic curve C is the curve C itself. It is homeomorphic, but not isomorphic to \mathbb{P}^1 .

B + 4 B +

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions.

In particular, for a quasi-homogeneous singularity $\{x^m = y^n\}$ he proved that these cells can be described in the following way:

- A TE N - A TE N

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions.

In particular, for a quasi-homogeneous singularity $\{x^m = y^n\}$ he proved that these cells can be described in the following way:

Definition

Let $\Gamma^{m,n} \subset \mathbb{Z}_{\geq 0}$ be the semigroup generated by *m* and *n*. A subset $\Delta \subset \mathbb{Z}_{\geq 0}$ is called a 0-*normalized* $\Gamma^{m,n}$ -*semi-module* iff $0 \in \Delta$ and $\Delta + \Gamma^{m,n} \subset \Delta$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions.

In particular, for a quasi-homogeneous singularity $\{x^m = y^n\}$ he proved that these cells can be described in the following way:

Definition

Let $\Gamma^{m,n} \subset \mathbb{Z}_{\geq 0}$ be the semigroup generated by *m* and *n*. A subset $\Delta \subset \mathbb{Z}_{\geq 0}$ is called a 0-*normalized* $\Gamma^{m,n}$ -*semi-module* iff $0 \in \Delta$ and $\Delta + \Gamma^{m,n} \subset \Delta$.

The cells C_{Δ} are parametrised by all possible 0-normalized $\Gamma^{m,n}$ -semi-modules Δ , and the dimension of C_{Δ} can be computed as follows:

J. Piontkowski proved that in some cases the Jacobi factors admit algebraic cell decompositions.

In particular, for a quasi-homogeneous singularity $\{x^m = y^n\}$ he proved that these cells can be described in the following way:

Definition

Let $\Gamma^{m,n} \subset \mathbb{Z}_{\geq 0}$ be the semigroup generated by *m* and *n*. A subset $\Delta \subset \mathbb{Z}_{\geq 0}$ is called a 0-*normalized* $\Gamma^{m,n}$ -*semi-module* iff $0 \in \Delta$ and $\Delta + \Gamma^{m,n} \subset \Delta$.

The cells C_{Δ} are parametrised by all possible 0-normalized $\Gamma^{m,n}$ -semi-modules Δ , and the dimension of C_{Δ} can be computed as follows:

$$\dim C_{\Delta} = \sum_{j=0}^{m-1} |([a_j, a_j + n) \setminus \Delta)|.$$

where $(0 = a_0 < a_1 < ... < a_{m-1})$ is the *m*-basis of Δ .

Consider a $\Gamma^{3,7}$ -semimodule $\Delta = \{0, 1, 3, 4, 6, 7, 8, ... \}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider a $\Gamma^{3,7}$ -semimodule $\Delta = \{0, 1, 3, 4, 6, 7, 8, \dots\}.$ The 3-generators are 0, 1, and 8.

< ロ > < 同 > < 回 > < 回 >

- Consider a $\Gamma^{3,7}$ -semimodule $\Delta = \{0, 1, 3, 4, 6, 7, 8, ... \}$.
- The 3-generators are 0, 1, and 8.

There are two integers not in Δ on the interval [0,7): 2 and 5. Both of them are also on the interval [1,8). All integers greater than 8 are in Δ .

< 口 > < 同 > < 回 > < 回 > < 回 > <

Consider a $\Gamma^{3,7}$ -semimodule $\Delta = \{0, 1, 3, 4, 6, 7, 8, ... \}$.

The 3-generators are 0, 1, and 8.

There are two integers not in Δ on the interval [0,7): 2 and 5. Both of them are also on the interval [1,8). All integers greater than 8 are in Δ .

Therefore,

dim
$$C_{\Delta} = 2 + 2 + 0 = 4$$
.

イロト イポト イラト イラト

We gave a combinatorial description of this cell decomposition.

< ロ > < 同 > < 回 > < 回 >

We gave a combinatorial description of this cell decomposition. Let $R^{m,n}$ be a (m, n)-rectangle. Let $R^{m,n}_+ \subset R^{m,n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We gave a combinatorial description of this cell decomposition. Let $R^{m,n}$ be a (m, n)-rectangle. Let $R^{m,n}_+ \subset R^{m,n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

We construct a natural bijection *D* between the set of 0-normalized $\Gamma^{m,n}$ -semimodules and the set of Young diagrams contained in $R^{m,n}_+$.

イロト イポト イラト イラト 一日

We gave a combinatorial description of this cell decomposition. Let $R^{m,n}$ be a (m, n)-rectangle. Let $R^{m,n}_+ \subset R^{m,n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

We construct a natural bijection *D* between the set of 0-normalized $\Gamma^{m,n}$ -semimodules and the set of Young diagrams contained in $R^{m,n}_+$. **Example:** Consider a $\Gamma^{3,4}$ -semimodule $\Delta = \{0, 1, 3, 4, 5, 6, ...\}$. We construct the corresponding diagram as follows:

We gave a combinatorial description of this cell decomposition. Let $R^{m,n}$ be a (m, n)-rectangle. Let $R^{m,n}_+ \subset R^{m,n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

We gave a combinatorial description of this cell decomposition. Let $R^{m,n}$ be a (m, n)-rectangle. Let $R^{m,n}_+ \subset R^{m,n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

We gave a combinatorial description of this cell decomposition. Let $R^{m,n}$ be a (m, n)-rectangle. Let $R^{m,n}_+ \subset R^{m,n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

We gave a combinatorial description of this cell decomposition. Let $R^{m,n}$ be a (m, n)-rectangle. Let $R^{m,n}_+ \subset R^{m,n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

We gave a combinatorial description of this cell decomposition. Let $R^{m,n}$ be a (m, n)-rectangle. Let $R^{m,n}_+ \subset R^{m,n}$ be the subset consisting of boxes which lie below the left-top to right-bottom diagonal.

Definition

The Hilbert scheme $\text{Hilb}^{d}(\mathbb{C}^2)$ of *d* points in \mathbb{C}^2 is the space of ideals of codimension *d* in $\mathbb{C}[x, y]$.

4 3 5 4 3 5

< 6 b

Definition

The Hilbert scheme $\text{Hilb}^{d}(\mathbb{C}^2)$ of *d* points in \mathbb{C}^2 is the space of ideals of codimension *d* in $\mathbb{C}[x, y]$.

• There is a natural $(\mathbb{C}^*)^2$ -action on Hilb^d (\mathbb{C}^2) .

Definition

The Hilbert scheme $\text{Hilb}^{d}(\mathbb{C}^2)$ of *d* points in \mathbb{C}^2 is the space of ideals of codimension *d* in $\mathbb{C}[x, y]$.

- There is a natural $(\mathbb{C}^*)^2$ -action on Hilb^{*d*} (\mathbb{C}^2) .
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.

Definition

The Hilbert scheme $\text{Hilb}^{d}(\mathbb{C}^2)$ of *d* points in \mathbb{C}^2 is the space of ideals of codimension *d* in $\mathbb{C}[x, y]$.

- There is a natural $(\mathbb{C}^*)^2$ -action on Hilb^{*d*} (\mathbb{C}^2) .
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb^d(C²) at the corresponding fixed point combinatorially:

Definition

The Hilbert scheme $\text{Hilb}^{d}(\mathbb{C}^2)$ of *d* points in \mathbb{C}^2 is the space of ideals of codimension *d* in $\mathbb{C}[x, y]$.

- There is a natural $(\mathbb{C}^*)^2$ -action on Hilb^d (\mathbb{C}^2) .
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb^d(C²) at the corresponding fixed point combinatorially:

Hilbert Scheme of Points in \mathbb{C}^2

Definition

The Hilbert scheme $\text{Hilb}^{d}(\mathbb{C}^2)$ of *d* points in \mathbb{C}^2 is the space of ideals of codimension *d* in $\mathbb{C}[x, y]$.

- There is a natural $(\mathbb{C}^*)^2$ -action on Hilb^d (\mathbb{C}^2) .
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb^d(C²) at the corresponding fixed point combinatorially:

Hilbert Scheme of Points in \mathbb{C}^2

Definition

The Hilbert scheme $\text{Hilb}^{d}(\mathbb{C}^2)$ of *d* points in \mathbb{C}^2 is the space of ideals of codimension *d* in $\mathbb{C}[x, y]$.

- There is a natural $(\mathbb{C}^*)^2$ -action on Hilb^d (\mathbb{C}^2) .
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb^d(C²) at the corresponding fixed point combinatorially:

Hilbert Scheme of Points in \mathbb{C}^2

Definition

The Hilbert scheme $\text{Hilb}^{d}(\mathbb{C}^2)$ of *d* points in \mathbb{C}^2 is the space of ideals of codimension *d* in $\mathbb{C}[x, y]$.

- There is a natural $(\mathbb{C}^*)^2$ -action on Hilb^d (\mathbb{C}^2) .
- Fixed points \leftrightarrow monomial ideals \leftrightarrow Young diagrams.
- Given a diagram D one can describe a basis of the tangent space of Hilb^d(C²) at the corresponding fixed point combinatorially:

One-dimensional subgroups $T^{m,n} = \{t^m, t^n\} \subset (\mathbb{C}^*)^2 \to \text{cell}$ decompositions of $\text{Hilb}^d(\mathbb{C}^2)$.

B N A B N

One-dimensional subgroups $T^{m,n} = \{t^m, t^n\} \subset (\mathbb{C}^*)^2 \rightarrow \text{cell}$ decompositions of $\text{Hilb}^d(\mathbb{C}^2)$. (*m*, *n* > 0, co-prime, generic)

4 A N

One-dimensional subgroups $T^{m,n} = \{t^m, t^n\} \subset (\mathbb{C}^*)^2 \to \text{cell}$ decompositions of $\text{Hilb}^d(\mathbb{C}^2)$.

(m, n > 0, co-prime, generic)

To compute dimensions of cells, let's have another look at the picture:

One-dimensional subgroups $T^{m,n} = \{t^m, t^n\} \subset (\mathbb{C}^*)^2 \to \text{cell}$ decompositions of $\text{Hilb}^d(\mathbb{C}^2)$.

(m, n > 0, co-prime, generic)

To compute dimensions of cells, let's have another look at the picture:

One-dimensional subgroups $T^{m,n} = \{t^m, t^n\} \subset (\mathbb{C}^*)^2 \to \text{cell}$ decompositions of $\text{Hilb}^d(\mathbb{C}^2)$.

(m, n > 0, co-prime, generic)

To compute dimensions of cells, let's have another look at the picture:

Dimensions of Cells

Theorem

The dimension of the cell corresponding to the Young diagram D in the cell decomposition of $\operatorname{Hilb}^{d}(\mathbb{C}^2)$ given by the subgroup $T^{m,n}$ is equal to

 $|D|+h_+^{\frac{m}{n}}(D).$

Dimensions of Cells

Theorem

The dimension of the cell corresponding to the Young diagram D in the cell decomposition of $\operatorname{Hilb}^{d}(\mathbb{C}^2)$ given by the subgroup $T^{m,n}$ is equal to

$$|D|+h_+^{\frac{m}{n}}(D).$$

Theorem (E. Gorsky, M.M)

The dimension of the cell corresponding to the Young diagram D in the cell decomposition of the Jacobi factor of the singularity $\{x^m = y^n\}$ is equal to

$$\delta - h_+^{\frac{m}{n}}(D).$$

where $\delta = \frac{(m-1)(n-1)}{2}$ is the δ -invariant of the singularity.

Motivated by the work of J. Haglund, we introduce the following polynomials:

$$c_{m,n}(q,t)=\sum_{D}q^{\delta-|D|}t^{h_+(D)},$$

where $\delta = \frac{(m-1)(n-1)}{2}$ is the classical δ -invariant of the singularity.

Motivated by the work of J. Haglund, we introduce the following polynomials:

$$c_{m,n}(q,t)=\sum_{D}q^{\delta-|D|}t^{h_+(D)},$$

where $\delta = \frac{(m-1)(n-1)}{2}$ is the classical δ -invariant of the singularity.

If m = n + 1, the polynomial $c_{m,n}(q, t)$ coincides with the q, t-Catalan numbers introduced by of A. Garsia and M. Haiman. These polynomials are known to be symmetric in q and t.

Motivated by the work of J. Haglund, we introduce the following polynomials:

$$c_{m,n}(q,t)=\sum_{D}q^{\delta-|D|}t^{h_+(D)},$$

where $\delta = \frac{(m-1)(n-1)}{2}$ is the classical δ -invariant of the singularity.

If m = n + 1, the polynomial $c_{m,n}(q, t)$ coincides with the q, t-Catalan numbers introduced by of A. Garsia and M. Haiman. These polynomials are known to be symmetric in q and t.

It motivates the following conjecture:

Conjecture (Symmetry of Polynomials $c_{m,n}(q, t)$) The function $c_{m,n}(q, t)$ satifies the functional equation

$$c_{m,n}(q,t) = c_{m,n}(t,q).$$

3

イロト 不得 トイヨト イヨト

This symmetry is known if m = n + 1. In this case it follows from some nontrivial relations on q, *t*-Catalan numbers. For m = kn + 1 a similar statement was conjectured by N. Loehr. No bijective proof in any of these cases is known yet.

< 口 > < 同 > < 回 > < 回 > < 回 > <

This symmetry is known if m = n + 1. In this case it follows from some nontrivial relations on q, *t*-Catalan numbers. For m = kn + 1 a similar statement was conjectured by N. Loehr. No bijective proof in any of these cases is known yet.

Theorem (E. Gorsky, M.M.)

The symmetry conjecture holds for $n \leq 3$.

In the proof we construct an explicit bijection exchanging the area and h_+ statistics.

A B > A B >

This symmetry is known if m = n + 1. In this case it follows from some nontrivial relations on q, t-Catalan numbers. For m = kn + 1 a similar statement was conjectured by N. Loehr. No bijective proof in any of these cases is known yet.

Theorem (E. Gorsky, M.M.)

The symmetry conjecture holds for $n \leq 3$.

In the proof we construct an explicit bijection exchanging the area and h_+ statistics.

We also formulate the following weaker version of the symmetry conjecture:

Conjecture (Weak Symmetry)

The function $c_{m,n}(q, t)$ satifies the functional equation

$$c_{m,n}(q,1) = c_{m,n}(1,q).$$

Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)

The weak symmetry conjecture holds for $m = kn \pm 1$.

All these cases are proved by an explicit bijective construction.

Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)

The weak symmetry conjecture holds for $m = kn \pm 1$.

All these cases are proved by an explicit bijective construction. As a corollary, we get the following simple formula for the Poincaré polynomial of the Jacobi factor:

Corollary

For $m = kn \pm 1$ the Poincaré polynomial of the Jacobi factor is given by

$$P(t) = \sum_{D \subset R^{m,n}_+} t^{|D|}.$$

Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)

The weak symmetry conjecture holds for $m = kn \pm 1$.

All these cases are proved by an explicit bijective construction. As a corollary, we get the following simple formula for the Poincaré polynomial of the Jacobi factor:

Corollary

For $m = kn \pm 1$ the Poincaré polynomial of the Jacobi factor is given by

$$P(t) = \sum_{D \subset R^{m,n}_+} t^{|D|}.$$

Proof.

$$P(t) = \sum t^{\delta - h_+(D)} = t^{\delta} c_{m,n}(1, t^{-1}) = t^{\delta} c_{m,n}(t^{-1}, 1) = \sum t^{|D|}$$

I will discuss the weak symmetry in few more details.

э

I will discuss the weak symmetry in few more details. Let us go back to the Piontkowski's formula for dimensions of cells. Given a $\Gamma^{m,n}$ -semimodule M, we can consider its m-generators a_1, \ldots, a_m and compute

$$g_m(a_i) := \sharp \left([a_i, a_i + n) \setminus \Delta
ight).$$

4 3 5 4 3 5 5

< 6 b

I will discuss the weak symmetry in few more details. Let us go back to the Piontkowski's formula for dimensions of cells. Given a $\Gamma^{m,n}$ -semimodule M, we can consider its m-generators a_1, \ldots, a_m and compute

$$g_m(a_i) := \sharp \left([a_i, a_i + n) \setminus \Delta \right).$$

Theorem (E. Gorsky, M. M.)

The numbers $g_m(a_i)$ are decreasing. Moreover, the Young diagram with columns $g_m(a_i)$ is embedded in $R^{m,n}_+$.

4 3 5 4 3 5 5

I will discuss the weak symmetry in few more details. Let us go back to the Piontkowski's formula for dimensions of cells. Given a $\Gamma^{m,n}$ -semimodule M, we can consider its m-generators a_1, \ldots, a_m and compute

$$g_m(a_i) := \sharp \left([a_i, a_i + n) \setminus \Delta \right).$$

Theorem (E. Gorsky, M. M.)

The numbers $g_m(a_i)$ are decreasing. Moreover, the Young diagram with columns $g_m(a_i)$ is embedded in $R^{m,n}_+$.

This result allows us to consider the map G_m from the set of diagrams below the diagonal to itself, sending D(M) to a diagram with columns $g_m(a_i)$.

æ

イロト イポト イヨト イヨト

5	5
2	2
0	1

 $G_3(M)$

æ

5

4

æ

4 3 > 4 3

$$G_3(M)$$
 $G_7(M)$

5

2

0

5 5

3 4

Mikhail Mazin (Stony Brook University)

Jacobi Factors

21 October 2012 15 / 16

æ

Theorem (J. Haglund; N. Loehr; E. Gorsky, M. M.)

The map G_m is a bijection for $m = kn \pm 1$.

< 6 b

Theorem (J. Haglund; N. Loehr; E. Gorsky, M. M.)

The map G_m is a bijection for $m = kn \pm 1$.

The weak symmetry for $m = kn \pm 1$ follows from this theorem. Indeed,

 $\dim C_{\Delta} = |G_m(D(\Delta))|.$

4 A N

Thank you!

2

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A