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Definition
The compactified Jacobian JC of C consists of the torsion free
sheaves of rank 1 and degree 0 on C, i.e. x(F) =1 — ga(C).
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Compactified Jacobians
Let C be a possibly singular complete algebraic curve.
Definition

The Jacobian JC of C consists of the locally free sheaves of rank 1
and degree 0 on C.

Definition
The compactified Jacobian JC of C consists of the torsion free
sheaves of rank 1 and degree 0 on C, i.e. x(F) =1 — ga(C).

Theorem (Beauville)

For a rational unibranched curve C its compactified Jacobian is
homeomorphic to the direct product of compact spaces, the Jacobi
factors ﬁp, p € Sing(C), which depend uncover on the analytic type
of the singularities (C, p).

v
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Jacobi Factors

Let x € C c C? be a unibranched plane curve singularity, t be a
normalizing parameter on C at x, and R C C[[t]] be the complete local
ring at x.
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Jacobi Factors

Let x € C c C? be a unibranched plane curve singularity, t be a
normalizing parameter on C at x, and R C C[[{]] be the complete local
ring at x.

Let 0 = dim(C[[t]]/R). Since x € C is a plane curve singularity, it
follows that t2°C[[t]] c R.

Let V = C[[#]]/t2°C[[{]].
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Jacobi Factors

Let x € C c C? be a unibranched plane curve singularity, t be a
normalizing parameter on C at x, and R C C[[{]] be the complete local
ring at x.

Let 6 = dim(C[[t]]/R). Since x € C is a plane curve singularity, it
follows that t2°C[[t]] c R.

Let V = C[[#]]/t2°C[[{]].

Definition

The Jacobi factor JCy is the space of R-submodules M c CJ[[t]], such
that M > t2°C[[t]] and dim(C[[t]]/M) = 6.

In other words, JC is isomorphic to the subvariety of the

Grassmannian Gr(V,d), consisting of subspaces invariant under
R-action.
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Example

Consider the curve
{x®=y? cC?
One can parametrize it by

t— (2, 89).

Easy to see that 6 = 1. Therefore, Jacobi factor is the collection of

1-dimensional subspaces in V =< 1,t >, invariant under multiplication
by t? and 3. So,
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Example

Consider the curve
{(x®=y? cC?

One can parametrize it by

t (£2,19).

Easy to see that 6 = 1. Therefore, Jacobi factor is the collection of
1-dimensional subspaces in V =< 1,t >, invariant under multiplication
by t? and 3. So,

ﬁX:P‘I.

Remark

Compactified Jacobian of a cuspidal elliptic curve C is the curve C
itself. It is homeomorphic, but not isomorphic to P
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Cell Decompositions

J. Piontkowski proved that in some cases the Jacobi factors admit
algebraic cell decompositions.
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Cell Decompositions

J. Piontkowski proved that in some cases the Jacobi factors admit
algebraic cell decompositions.

In particular, for a quasi-homogeneous singularity {x™ = y"} he
proved that these cells can be described in the following way:

Definition
Let '™ C Z=o be the semigroup generated by m and n. A subset

A C Z> is called a 0-normalized I'™"—semi-module iff 0 € A and
A+TMNC A
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Definition
Let '™ C Z=o be the semigroup generated by m and n. A subset

A C Z> is called a 0-normalized I'™"—semi-module iff 0 € A and
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The cells Ca are parametrised by all possible 0-normalized
r™N—semi-modules A, and the dimension of Ca can be computed as
follows:
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Cell Decompositions

J. Piontkowski proved that in some cases the Jacobi factors admit
algebraic cell decompositions.

In particular, for a quasi-homogeneous singularity {x™ = y"} he
proved that these cells can be described in the following way:

Definition
Let '™ C Z=o be the semigroup generated by m and n. A subset

A C Z> is called a 0-normalized I'™"—semi-module iff 0 € A and
A+TMNC A

The cells Ca are parametrised by all possible 0-normalized
r™N—semi-modules A, and the dimension of Ca can be computed as

follows:
m—1

dimCa = |([a;, 8+ n) \ A)|.
j=0

where (0 =ag < a1 < ... < am_1) is the m-basis of A.
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Example for the Piontkowski's Formula

Consider a */-semimodule A = {0,1,3,4,6,7,8,...}.
The 3-generators are 0, 1, and 8.

There are two integers not in A on the interval [0,7) : 2 and 5. Both of
them are also on the interval [1,8). All integers greater than 8 are in A.
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Example for the Piontkowski's Formula

Consider a */-semimodule A = {0,1,3,4,6,7,8,...}.
The 3-generators are 0, 1, and 8.

There are two integers not in A on the interval [0,7) : 2 and 5. Both of
them are also on the interval [1,8). All integers greater than 8 are in A.

Therefore,
dmCp =2+2+0=4.
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Young Diagrams

We gave a combinatorial description of this cell decomposition.
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Let R™" be a (m, n)-rectangle. Let R}"" ¢ R™" be the subset
consisting of boxes which lie below the left-top to right-bottom
diagonal.
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Young Diagrams

We gave a combinatorial description of this cell decomposition.

Let R™" be a (m, n)-rectangle. Let R}"" ¢ R™" be the subset

consisting of boxes which lie below the left-top to right-bottom
diagonal.

We construct a natural bijection D between the set of 0-normalized
r™n—semimodules and the set of Young diagrams contained in R{"".
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Young Diagrams

We gave a combinatorial description of this cell decomposition.

Let R™" be a (m, n)-rectangle. Let R}"" ¢ R™" be the subset
consisting of boxes which lie below the left-top to right-bottom
diagonal.

We construct a natural bijection D between the set of 0-normalized
r™n—semimodules and the set of Young diagrams contained in R{"".
Example: Consider a **-semimodule A = {0,1,3,4,5,6,...}. We
construct the corresponding diagram as follows:
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Young Diagrams

We gave a combinatorial description of this cell decomposition.

Let R™" be a (m, n)-rectangle. Let R}"" ¢ R™" be the subset
consisting of boxes which lie below the left-top to right-bottom
diagonal.

We construct a natural bijection D between the set of 0-normalized
r™n—semimodules and the set of Young diagrams contained in R{"".
Example: Consider a **-semimodule A = {0,1,3,4,5,6,...}. We
construct the corresponding diagram as follows:

o[-87 |
1|2

-4l |52 1-1.-4
=3 0
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Young Diagrams

We gave a combinatorial description of this cell decomposition.

Let R™" be a (m, n)-rectangle. Let R}"" ¢ R™" be the subset
consisting of boxes which lie below the left-top to right-bottom
diagonal.

We construct a natural bijection D between the set of 0-normalized
r™n—semimodules and the set of Young diagrams contained in R{"".
Example: Consider a **-semimodule A = {0,1,3,4,5,6,...}. We
construct the corresponding diagram as follows:

o[

1|2

e —— - ——rF—-— D(A):
—4] |52 .-1,-4

=3 0
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Hilbert Scheme of Points in C2
Definition

The Hilbert scheme Hilb®(C?) of d points in C2 is the space of ideals of
codimension d in C[x, y].
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codimension d in C[x, y].
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The Hilbert scheme Hilb®(C?) of d points in C2 is the space of ideals of
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@ There is a natural (C*)2-action on Hilb?(C?).
@ Fixed points «+» monomial ideals +» Young diagrams.
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@ Given a diagram D one can describe a basis of the tangent space
of Hilb?(C?) at the corresponding fixed point combinatorially:
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Cell Decomposition of Hilb?(C?)

One-dimensional subgroups T™" = {t™ t"} c (C*)?> — cell
decompositions of Hilb(C?).
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Cell Decomposition of Hilb?(C?)

One-dimensional subgroups T™" = {t™ t"} c (C*)?> — cell
decompositions of Hilb(C?).
(m, n > 0, co-prime, generic)
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Cell Decomposition of Hilb?(C?)

One-dimensional subgroups T™" = {t" "} C (C*)? — cell
decompositions of Hilb?(C?).

(m, n > 0, co-prime, generic)

To compute dimensions of cells, let’s have another look at the picture:

Mikhail Mazin (Stony Brook University) Jacobi Factors 21 October 2012 9/16



Cell Decomposition of Hilb?(C?)

One-dimensional subgroups T™" = {t" "} C (C*)? — cell
decompositions of Hilb?(C?).

(m, n > 0, co-prime, generic)

To compute dimensions of cells, let’s have another look at the picture:
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Cell Decomposition of Hilb?(C?)

One-dimensional subgroups T™" = {t™ t"} c (C*)?> — cell
decompositions of Hilb(C?).
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Dimensions of Cells

Theorem

The dimension of the cell corresponding to the Young diagram D in the
cell decomposition of Hilb“(C?) given by the subgroup T™" is equal to

D| + h7 (D).
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Dimensions of Cells

Theorem

The dimension of the cell corresponding to the Young diagram D in the
cell decomposition of Hilb“(C?) given by the subgroup T™" is equal to

D| + h7 (D).

Theorem (E. Gorsky, M.M)

The dimension of the cell corresponding to the Young diagram D in the
cell decomposition of the Jacobi factor of the singularity {x™ = y"} is
equal to

5 — h? (D).

where § = w is the §-invariant of the singularity.
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Symmetry of Polynomials ¢ (g, 1) 1

Motivated by the work of J. Haglund, we introduce the following

polynomials:
Cmn(q,t) = > " 1Pt (O),
D

where § = w is the classical -invariant of the singularity.
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Symmetry of Polynomials ¢ (g, 1) 1

Motivated by the work of J. Haglund, we introduce the following
polynomials:
cmn(q,t) = Z g ~1PIh+(D),
D

where § = ")(=1) s the classical d-invariant of the singularity.

If m= n+ 1, the polynomial ¢y n(q, t) coincides with the g, t-Catalan
numbers introduced by of A. Garsia and M. Haiman. These
polynomials are known to be symmetric in g and t.
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Symmetry of Polynomials ¢ (g, 1) 1

Motivated by the work of J. Haglund, we introduce the following
polynomials:
cmn(q,t) = Z g ~1PIh+(D),
D

where § = ")(=1) s the classical d-invariant of the singularity.

If m= n+ 1, the polynomial ¢y n(q, t) coincides with the g, t-Catalan
numbers introduced by of A. Garsia and M. Haiman. These
polynomials are known to be symmetric in g and t.

It motivates the following conjecture:
Conjecture (Symmetry of Polynomials ¢, »(q, t))

The function cm n(q, t) satifies the functional equation

cm,n(q,t) = Ccmn(t, q).
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Symmetry of Polynomials ¢y (g, t) 2

This symmetry is known if m = n+ 1. In this case it follows from some
nontrivial relations on g, t-Catalan numbers. For m = kn+ 1 a similar

statement was conjectured by N. Loehr. No bijective proof in any of
these cases is known yet.
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Symmetry of Polynomials ¢y (g, t) 2

This symmetry is known if m = n+ 1. In this case it follows from some
nontrivial relations on g, t-Catalan numbers. For m = kn+ 1 a similar
statement was conjectured by N. Loehr. No bijective proof in any of
these cases is known yet.

Theorem (E. Gorsky, M.M.)
The symmetry conjecture holds for n < 3. J

In the proof we construct an explicit bijection exchanging the area and
h, statistics.
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Symmetry of Polynomials ¢y (g, t) 2

This symmetry is known if m = n+ 1. In this case it follows from some
nontrivial relations on g, t-Catalan numbers. For m = kn+ 1 a similar
statement was conjectured by N. Loehr. No bijective proof in any of
these cases is known yet.

Theorem (E. Gorsky, M.M.)
The symmetry conjecture holds for n < 3. }

In the proof we construct an explicit bijection exchanging the area and
h, statistics.

We also formulate the following weaker version of the symmetry
conjecture:

Conjecture (Weak Symmetry)
The function cm n(q, t) satifies the functional equation

Cmn(q,1) = cmn(1, Q).
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Symmetry of Polynomials ¢y (g, t) 3
Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)

The weak symmetry conjecture holds form = kn+ 1.

All these cases are proved by an explicit bijective construction.
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Symmetry of Polynomials ¢ (g, t) 3
Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)
The weak symmetry conjecture holds form = kn+ 1. J

All these cases are proved by an explicit bijective construction.

As a corollary, we get the following simple formula for the Poincaré
polynomial of the Jacobi factor:

Corollary
For m = kn + 1 the Poincaré polynomial of the Jacobi factor is given by

P(ty= > Pl

DcR"
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Symmetry of Polynomials ¢ (g, t) 3
Theorem (J. Haglund; N. Loehr; E.Gorsky, M. M.)
The weak symmetry conjecture holds form = kn+ 1. J

All these cases are proved by an explicit bijective construction.
As a corollary, we get the following simple formula for the Poincaré
polynomial of the Jacobi factor:

Corollary
For m = kn + 1 the Poincaré polynomial of the Jacobi factor is given by

P(ty= > Pl

DcRT"

Proof.
P(t) = Z t9—h+(D) — t‘scm,n(1,t’1) _ t‘scm,n(t’1, 1) = Z #101.

O

Mikhail Mazin (Stony Brook University) Jacobi Factors 21 October 2012 13/16
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| will discuss the weak symmetry in few more details.
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| will discuss the weak symmetry in few more details.

Let us go back to the Piontkowski’s formula for dimensions of cells.
Given a '™"-semimodule M, we can consider its m-generators
ai,...,am and compute

gm(a) :=t([a,a+n)\A).
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Maps G, and G,

| will discuss the weak symmetry in few more details.

Let us go back to the Piontkowski’s formula for dimensions of cells.
Given a '™"-semimodule M, we can consider its m-generators
ai,...,am and compute

gm(a;) ==t (la,a+n)\ Q).

Theorem (E. Gorsky, M. M.)

The numbers gm(a;) are decreasing. Moreover, the Young diagram
with columns gm(a;) is embedded in RY"".
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Maps G, and G,

| will discuss the weak symmetry in few more details.

Let us go back to the Piontkowski’s formula for dimensions of cells.
Given a '™"-semimodule M, we can consider its m-generators
ai,...,am and compute

gm(a;) ==t (la,a+n)\ Q).

Theorem (E. Gorsky, M. M.)

The numbers gm(a;) are decreasing. Moreover, the Young diagram
with columns gm(a;) is embedded in RY"".

This result allows us to consider the map G, from the set of diagrams
below the diagonal to itself, sending D(M) to a diagram with columns

9m(ai)-
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Example for Maps Gz and Gy
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Example for Maps Gz and Gy

G3(M)

oo
= N|O;
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Example for Maps Gz and Gy

G7(M)

2]2]5]5]

(6]
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Example for Maps Gz and Gy

Gs(M) G7(M)

55

2|2 12]2]5]5]
0 1 0134
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Example for Maps Gz and Gy

oo

5
2] [2]2]5]5]
1 0134

Theorem (J. Haglund; N. Loehr; E. Gorsky, M. M.)
The map Gn, is a bijection form = kn+ 1. J
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Example for Maps Gz and Gy

oo

5
2] [2]2]5]5]
1 0134

Theorem (J. Haglund; N. Loehr; E. Gorsky, M. M.)
The map Gn, is a bijection form = kn+ 1. J

The weak symmetry for m = kn + 1 follows from this theorem. Indeed,

dim Ca = [Gm(D(A))|-
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