Mutations of Laurent Polynomials and Flat Families with Toric Fibers

Nathan Owen Ilten

UC Berkeley

October 20, 2012

An Example

Consider the following Laurent polynomials $f_{i}:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{C}$:

An Example

Consider the following Laurent polynomials $f_{i}:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{C}$:

- $f_{1}=x^{-1} y+2 y+x y+y^{-1}$

An Example

Consider the following Laurent polynomials $f_{i}:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{C}$:

- $f_{1}=x^{-1} y+2 y+x y+y^{-1}$
- $f_{2}=x^{-1} y+y+y^{-1}+y^{-1} x$

An Example

Consider the following Laurent polynomials $f_{i}:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{C}$:

- $f_{1}=x^{-1} y+2 y+x y+y^{-1}$
- $f_{2}=x^{-1} y+y+y^{-1}+y^{-1} x$

What do f_{1} and f_{2} have in common?

An Example

Consider the following Laurent polynomials $f_{i}:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{C}$:

- $f_{1}=x^{-1} y+2 y+x y+y^{-1}$
- $f_{2}=x^{-1} y+y+y^{-1}+y^{-1} x$

What do f_{1} and f_{2} have in common?
$\Delta\left(f_{1}\right)=$ • •

Constant Terms Series

Constant Terms Series

Answer $\# 1: f_{1}$ and f_{2} have the same constant terms series!

Constant Terms Series

Answer $\# 1: f_{1}$ and f_{2} have the same constant terms series! Definition
The constant terms series of a Laurent polynomial $f \in \mathbb{C}\left[\mathbb{Z}^{n}\right]$ is the power series

$$
C_{f}(t)=\sum_{k=0}^{\infty}\left(f^{k}\right)_{0} t^{k}
$$

where $\left(f^{k}\right)_{0}$ denotes the constant term of f^{k}.

Constant Terms Series

Answer $\# 1: f_{1}$ and f_{2} have the same constant terms series!
Definition
The constant terms series of a Laurent polynomial $f \in \mathbb{C}\left[\mathbb{Z}^{n}\right]$ is the power series

$$
C_{f}(t)=\sum_{k=0}^{\infty}\left(f^{k}\right)_{0} t^{k}
$$

where $\left(f^{k}\right)_{0}$ denotes the constant term of f^{k}.
Example
For $f=f_{1}=x^{-1} y+2 y+x y+y^{-1}$ or
$f=f_{2}=x^{-1} y+y+y^{-1}+y^{-1} x$,

$$
C_{f}(t)=1+4 t^{2}+36 t^{4}+400 t^{6}+4900 t^{8}+\ldots
$$

Mutations

Mutations

Answer \#2: f_{1} and f_{2} are related via mutation!

Mutations

Answer \#2: f_{1} and f_{2} are related via mutation!

Definition

Let g be a nonzero Laurent polynomial in z_{1}, \ldots, z_{n-1}. The birational transformation

$$
\phi_{g} \in \operatorname{Aut}\left(\mathbb{C}\left(z_{1}, \ldots, z_{n}\right)\right) \quad \phi_{g}\left(z_{i}\right)= \begin{cases}z_{i} & \text { if } 1 \leq i<n \\ z_{n} / g & \text { if } i=n\end{cases}
$$

is called a simple mutation with respect to g.

Mutations

Answer \#2: f_{1} and f_{2} are related via mutation!

Definition

Let g be a nonzero Laurent polynomial in z_{1}, \ldots, z_{n-1}. The birational transformation

$$
\phi_{g} \in \operatorname{Aut}\left(\mathbb{C}\left(z_{1}, \ldots, z_{n}\right)\right) \quad \phi_{g}\left(z_{i}\right)= \begin{cases}z_{i} & \text { if } 1 \leq i<n \\ z_{n} / g & \text { if } i=n\end{cases}
$$

is called a simple mutation with respect to g.
Example
Take $n=2, x=z_{1}, y=z_{2}$, and $g=x+1$.

$$
\begin{aligned}
\phi_{g}\left(f_{1}\right) & =\phi_{g}\left(x^{-1} y(x+1)^{2}+y^{-1}\right) \\
& =x^{-1} y(x+1)+y^{-1}(x+1)=f_{2}
\end{aligned}
$$

Mutations continued

Mutations continued

Remark

Let ϕ_{g} be a simple mutation as above, and f a Laurent polynomial such that $\phi_{g}(f)$ is also a Laurent polynomial. Then $C_{f}(t)=C_{\phi(f)}(t)$.

Toric Varieties and Deformations

Toric Varieties and Deformations

Answer \#3: Toric varieties associated to f_{1} and f_{2} are related via deformation!

Toric Varieties and Deformations

Answer \#3: Toric varieties associated to f_{1} and f_{2} are related via deformation!

- Let Δ be a lattice polytope containing the origin in its interior.

Toric Varieties and Deformations

Answer \#3: Toric varieties associated to f_{1} and f_{2} are related via deformation!

- Let Δ be a lattice polytope containing the origin in its interior.
- Let $\Sigma(\Delta)$ denote the face fan of Δ, and $\mathbb{T V}(\Delta)$ the projective toric variety associated to the fan $\Sigma(\Delta)$.

Toric Varieties and Deformations

Answer \#3: Toric varieties associated to f_{1} and f_{2} are related via deformation!

- Let Δ be a lattice polytope containing the origin in its interior.
- Let $\Sigma(\Delta)$ denote the face fan of Δ, and $\mathbb{T V}(\Delta)$ the projective toric variety associated to the fan $\Sigma(\Delta)$.

Example
$\mathbb{P}(1,1,2) \leftrightarrow$

Toric Varieties and Deformations

Answer \#3: Toric varieties associated to f_{1} and f_{2} are related via deformation!

- Let Δ be a lattice polytope containing the origin in its interior.
- Let $\Sigma(\Delta)$ denote the face fan of Δ, and $\mathbb{T V}(\Delta)$ the projective toric variety associated to the fan $\Sigma(\Delta)$.

Example
$\mathbb{P}(1,1,2) \leftrightarrow$

Note that $\mathbb{P}(1,1,2)$ deforms to $\mathbb{P}^{1} \times \mathbb{P}^{1}$!

Mutations and Deformations

Mutations and Deformations

Theorem (- '12)
Let ϕ be a simple mutation, and f be a Laurent polynomial such that $\Delta(f)$ contains the origin in its interior and $\phi(f)$ is a Laurent polynomial.

Mutations and Deformations

Theorem (- '12)
Let ϕ be a simple mutation, and f be a Laurent polynomial such that $\Delta(f)$ contains the origin in its interior and $\phi(f)$ is a Laurent polynomial.
Then there is a flat projective family $\pi: \mathcal{X} \rightarrow \mathbb{P}^{1}$ such that $\pi^{-1}(0)=\mathbb{T V}(\Delta(f))$ and $\pi^{-1}(\infty)=\mathbb{T V}(\Delta(\phi(f)))$.

Mutations and Deformations

Theorem (- '12)
Let ϕ be a simple mutation, and f be a Laurent polynomial such that $\Delta(f)$ contains the origin in its interior and $\phi(f)$ is a Laurent polynomial.
Then there is a flat projective family $\pi: \mathcal{X} \rightarrow \mathbb{P}^{1}$ such that
$\pi^{-1}(0)=\mathbb{T V}(\Delta(f))$ and $\pi^{-1}(\infty)=\mathbb{T V}(\Delta(\phi(f)))$.

- The family π has a natural fiberwise $\left(\mathbb{C}^{*}\right)^{n-1}$ action (where n is the dimension of the fibers of π).

Mutations and Deformations

Theorem (- '12)
Let ϕ be a simple mutation, and f be a Laurent polynomial such that $\Delta(f)$ contains the origin in its interior and $\phi(f)$ is a Laurent polynomial.
Then there is a flat projective family $\pi: \mathcal{X} \rightarrow \mathbb{P}^{1}$ such that $\pi^{-1}(0)=\mathbb{T} \mathbb{V}(\Delta(f))$ and $\pi^{-1}(\infty)=\mathbb{T V}(\Delta(\phi(f)))$.

- The family π has a natural fiberwise $\left(\mathbb{C}^{*}\right)^{n-1}$ action (where n is the dimension of the fibers of π).
- The family π is constructed using more general techniques developed by R. Vollmert and me.

A Conjecture in Mirror Symmetry

A Conjecture in Mirror Symmetry

Conjecture (Golyshev, Przyjalkowski, ...)
Let Δ be a reflexive polytope with Δ^{*} normal, and V a smooth Fano variety. Then the following are equivalent:

A Conjecture in Mirror Symmetry

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^{*} normal, and V a smooth Fano variety. Then the following are equivalent:

1. There exists a Laurent polynomial f with positive integral coefficients such that $\Delta(f)=\Delta$ and $C_{f}(t)$ is the generating function of the regularized quantum period sequence of V;

A Conjecture in Mirror Symmetry

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^{*} normal, and V a smooth Fano variety. Then the following are equivalent:

1. There exists a Laurent polynomial f with positive integral coefficients such that $\Delta(f)=\Delta$ and $C_{f}(t)$ is the generating function of the regularized quantum period sequence of V;
2. $-K_{V}$ is very ample and V has an embedded degeneration to $\mathbb{T V}(\Delta)$.

A Conjecture in Mirror Symmetry

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^{*} normal, and V a smooth Fano variety. Then the following are equivalent:

1. There exists a Laurent polynomial f with positive integral coefficients such that $\Delta(f)=\Delta$ and $C_{f}(t)$ is the generating function of the regularized quantum period sequence of V;
2. $-K_{V}$ is very ample and V has an embedded degeneration to $\mathbb{T V}(\Delta)$.

- The conjecture is true in dimension two.

A Conjecture in Mirror Symmetry

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^{*} normal, and V a smooth Fano variety. Then the following are equivalent:

1. There exists a Laurent polynomial f with positive integral coefficients such that $\Delta(f)=\Delta$ and $C_{f}(t)$ is the generating function of the regularized quantum period sequence of V;
2. $-K_{V}$ is very ample and V has an embedded degeneration to $\mathbb{T V}(\Delta)$.

- The conjecture is true in dimension two.
- If true, the above might be used to help classify higher dimensional Fano varieties.

Fano Threefolds

Fano Threefolds

- Smooth Fano threefolds have been completely classified by Iskovskih, Mori, and Mukai.

Fano Threefolds

- Smooth Fano threefolds have been completely classified by Iskovskih, Mori, and Mukai.
- Fano threefolds thus provide a good testing ground for the conjecture.

Fano Threefolds

- Smooth Fano threefolds have been completely classified by Iskovskih, Mori, and Mukai.
- Fano threefolds thus provide a good testing ground for the conjecture.
- Together with J. Christophersen, I have classified embedded degeneration of smooth Fano threefolds to toric Gorenstein Fano varieties for degrees ≤ 12.

References

Rom Coates, Alessio Corti, Sergei Galkin, Vasily Golyshev, and Al Kasprzyk.
Fano varieties and extremal Laurent polynomials. A collaborative research blog.
http://coates.ma.ic.ac.uk/fanosearch/, 2011.
E Jan Arthur Christophersen and Nathan Owen Ilten.
Toric degenerations of low degree Fano threefolds.
arXiv:1202.0510v1 [math.AG], 2012.
圊 Nathan Owen Ilten.
Mutations of Laurent polynomials and flat families with toric fibers.
arXiv:1205.4664v2 [math.AG], 2012.

