Mutations of Laurent Polynomials and Flat Families with Toric Fibers

Nathan Owen Ilten

UC Berkeley

October 20, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the following Laurent polynomials $f_i : (\mathbb{C}^*)^2 \to \mathbb{C}$:

Consider the following Laurent polynomials $f_i : (\mathbb{C}^*)^2 \to \mathbb{C}$:

•
$$f_1 = x^{-1}y + 2y + xy + y^{-1}$$

Consider the following Laurent polynomials $f_i : (\mathbb{C}^*)^2 \to \mathbb{C}$:

Consider the following Laurent polynomials $f_i : (\mathbb{C}^*)^2 \to \mathbb{C}$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What do f_1 and f_2 have in common?

Consider the following Laurent polynomials $f_i : (\mathbb{C}^*)^2 \to \mathbb{C}$:

What do f_1 and f_2 have in common?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Answer #1: f_1 and f_2 have the same constant terms series!

Answer #1: f_1 and f_2 have the same constant terms series!

Definition

The constant terms series of a Laurent polynomial $f \in \mathbb{C}[\mathbb{Z}^n]$ is the power series

$$C_f(t) = \sum_{k=0}^{\infty} (f^k)_0 t^k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $(f^k)_0$ denotes the constant term of f^k .

Answer #1: f_1 and f_2 have the same constant terms series!

Definition

The constant terms series of a Laurent polynomial $f \in \mathbb{C}[\mathbb{Z}^n]$ is the power series

$$C_f(t) = \sum_{k=0}^{\infty} (f^k)_0 t^k$$

where $(f^k)_0$ denotes the constant term of f^k .

Example

For
$$f = f_1 = x^{-1}y + 2y + xy + y^{-1}$$
 or
 $f = f_2 = x^{-1}y + y + y^{-1} + y^{-1}x$,

$$C_f(t) = 1 + 4t^2 + 36t^4 + 400t^6 + 4900t^8 + \dots$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Answer #2: f_1 and f_2 are related via mutation!

Answer #2: f_1 and f_2 are related via mutation!

Definition

Let g be a nonzero Laurent polynomial in z_1, \ldots, z_{n-1} . The birational transformation

$$\phi_g \in \operatorname{Aut}(\mathbb{C}(z_1,\ldots,z_n)) \qquad \phi_g(z_i) = \begin{cases} z_i & \text{if } 1 \leq i < n \\ z_n/g & \text{if } i = n \end{cases}$$

is called a *simple mutation* with respect to g.

Answer #2: f_1 and f_2 are related via mutation!

Definition

Let g be a nonzero Laurent polynomial in z_1, \ldots, z_{n-1} . The birational transformation

$$\phi_g \in \operatorname{Aut}(\mathbb{C}(z_1,\ldots,z_n)) \qquad \phi_g(z_i) = \begin{cases} z_i & \text{if } 1 \leq i < n \\ z_n/g & \text{if } i = n \end{cases}$$

is called a *simple mutation* with respect to g.

Example

Take n = 2, $x = z_1$, $y = z_2$, and g = x + 1.

$$\phi_g(f_1) = \phi_g(x^{-1}y(x+1)^2 + y^{-1})$$

= $x^{-1}y(x+1) + y^{-1}(x+1) = f_2.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mutations continued

< ロ > < 唇 > < 言 > < 言 > 、 言 > のへで

Mutations continued

Remark

Let ϕ_g be a simple mutation as above, and f a Laurent polynomial such that $\phi_g(f)$ is also a Laurent polynomial. Then $C_f(t) = C_{\phi(f)}(t)$.

Answer #3: Toric varieties associated to f_1 and f_2 are related via deformation!

Answer #3: Toric varieties associated to f_1 and f_2 are related via deformation!

• Let Δ be a lattice polytope containing the origin in its interior.

・ロト・日本・モート モー うへぐ

Answer #3: Toric varieties associated to f_1 and f_2 are related via deformation!

- Let Δ be a lattice polytope containing the origin in its interior.
- Let Σ(Δ) denote the *face fan* of Δ, and TV(Δ) the projective toric variety associated to the fan Σ(Δ).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Answer #3: Toric varieties associated to f_1 and f_2 are related via deformation!

- Let Δ be a lattice polytope containing the origin in its interior.
- Let Σ(Δ) denote the *face fan* of Δ, and TV(Δ) the projective toric variety associated to the fan Σ(Δ).

Answer #3: Toric varieties associated to f_1 and f_2 are related via deformation!

- Let Δ be a lattice polytope containing the origin in its interior.
- Let Σ(Δ) denote the *face fan* of Δ, and TV(Δ) the projective toric variety associated to the fan Σ(Δ).

Theorem (- '12)

Let ϕ be a simple mutation, and f be a Laurent polynomial such that $\Delta(f)$ contains the origin in its interior and $\phi(f)$ is a Laurent polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (- '12)

Let ϕ be a simple mutation, and f be a Laurent polynomial such that $\Delta(f)$ contains the origin in its interior and $\phi(f)$ is a Laurent polynomial.

Then there is a flat projective family $\pi : \mathcal{X} \to \mathbb{P}^1$ such that $\pi^{-1}(0) = \mathbb{TV}(\Delta(f))$ and $\pi^{-1}(\infty) = \mathbb{TV}(\Delta(\phi(f)))$.

Theorem (- '12)

Let ϕ be a simple mutation, and f be a Laurent polynomial such that $\Delta(f)$ contains the origin in its interior and $\phi(f)$ is a Laurent polynomial.

Then there is a flat projective family $\pi : \mathcal{X} \to \mathbb{P}^1$ such that $\pi^{-1}(0) = \mathbb{TV}(\Delta(f))$ and $\pi^{-1}(\infty) = \mathbb{TV}(\Delta(\phi(f)))$.

The family π has a natural fiberwise (C^{*})^{n−1} action (where n is the dimension of the fibers of π).

Theorem (- '12)

Let ϕ be a simple mutation, and f be a Laurent polynomial such that $\Delta(f)$ contains the origin in its interior and $\phi(f)$ is a Laurent polynomial.

Then there is a flat projective family $\pi : \mathcal{X} \to \mathbb{P}^1$ such that $\pi^{-1}(0) = \mathbb{TV}(\Delta(f))$ and $\pi^{-1}(\infty) = \mathbb{TV}(\Delta(\phi(f)))$.

► The family π has a natural fiberwise (C*)ⁿ⁻¹ action (where n is the dimension of the fibers of π).

The family π is constructed using more general techniques developed by R. Vollmert and me.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^* normal, and V a smooth Fano variety. Then the following are equivalent:

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^* normal, and V a smooth Fano variety. Then the following are equivalent:

1. There exists a Laurent polynomial f with positive integral coefficients such that $\Delta(f) = \Delta$ and $C_f(t)$ is the generating function of the regularized quantum period sequence of V;

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^* normal, and V a smooth Fano variety. Then the following are equivalent:

- 1. There exists a Laurent polynomial f with positive integral coefficients such that $\Delta(f) = \Delta$ and $C_f(t)$ is the generating function of the regularized quantum period sequence of V;
- 2. $-K_V$ is very ample and V has an embedded degeneration to $\mathbb{TV}(\Delta)$.

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^* normal, and V a smooth Fano variety. Then the following are equivalent:

- 1. There exists a Laurent polynomial f with positive integral coefficients such that $\Delta(f) = \Delta$ and $C_f(t)$ is the generating function of the regularized quantum period sequence of V;
- 2. $-K_V$ is very ample and V has an embedded degeneration to $\mathbb{TV}(\Delta)$.

• The conjecture is true in dimension two.

Conjecture (Golyshev, Przyjalkowski, ...)

Let Δ be a reflexive polytope with Δ^* normal, and V a smooth Fano variety. Then the following are equivalent:

- 1. There exists a Laurent polynomial f with positive integral coefficients such that $\Delta(f) = \Delta$ and $C_f(t)$ is the generating function of the regularized quantum period sequence of V;
- 2. $-K_V$ is very ample and V has an embedded degeneration to $\mathbb{TV}(\Delta)$.

- The conjecture is true in dimension two.
- If true, the above might be used to help classify higher dimensional Fano varieties.

 Smooth Fano threefolds have been completely classified by Iskovskih, Mori, and Mukai.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Smooth Fano threefolds have been completely classified by Iskovskih, Mori, and Mukai.
- Fano threefolds thus provide a good testing ground for the conjecture.

- Smooth Fano threefolds have been completely classified by Iskovskih, Mori, and Mukai.
- Fano threefolds thus provide a good testing ground for the conjecture.
- ► Together with J. Christophersen, I have classified embedded degeneration of smooth Fano threefolds to toric Gorenstein Fano varieties for degrees ≤ 12.

References

 Tom Coates, Alessio Corti, Sergei Galkin, Vasily Golyshev, and Al Kasprzyk.
 Fano varieties and extremal Laurent polynomials. A collaborative research blog. http://coates.ma.ic.ac.uk/fanosearch/, 2011.

- Jan Arthur Christophersen and Nathan Owen Ilten. Toric degenerations of low degree Fano threefolds. arXiv:1202.0510v1 [math.AG], 2012.
 - Nathan Owen Ilten.

Mutations of Laurent polynomials and flat families with toric fibers.

arXiv:1205.4664v2 [math.AG], 2012.