Lattice-point generating functions for free sums of polytopes

Tyrrell B. McAllister¹

Joint work with

Matthias Beck² and Pallavi Jayawant³

¹University of Wyoming

²San Francisco State University

³Bates College

The University of Akron 20 October 2012

Introduction — Free Sums

Notation: For $S \subseteq \mathbb{R}^n$, let $S_{\mathbb{Z}} = S \cap \mathbb{Z}^n$.

Definition

Let $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{R}^n$ be polytopes. $\mathcal{P} \oplus \mathcal{Q} \coloneqq \mathsf{conv}(\mathcal{P} \cup \mathcal{Q})$ is a free sum if

- $\mathbf{0} \in \mathcal{P} \cap \mathcal{Q}$,
- ullet span $\mathcal{P} \oplus$ span $\mathcal{Q} = \mathbb{R}^n$ as a direct sum of vector spaces, and
- $(\operatorname{span} \mathcal{P})_{\mathbb{Z}} \oplus (\operatorname{span} \mathcal{Q})_{\mathbb{Z}} = \mathbb{Z}^n$ as a direct sum of lattices.

Example

Introduction — Free Sums

 $\mathcal{P} \oplus \mathcal{Q}$ is related to familiar operations:

• Dual to cartesian product: Let \mathcal{P}^{\vee} be the polar dual of \mathcal{P} (with respect to span(\mathcal{P})). Then

$$(\mathcal{P}\oplus\mathcal{Q})^\vee=\mathcal{P}^\vee\times\mathcal{Q}^\vee.$$

• Homogenizes as Minkowski sum: Let cone(\mathcal{P}) be the positive span of $\mathcal{P} \times \{1\} \subseteq \mathbb{R}^{n+1}$. Then

$$cone(\mathcal{P} \oplus \mathcal{Q}) = cone(\mathcal{P}) + cone(\mathcal{Q}).$$

Introduction — Ehrhart Theory

Definition

 $\mathcal{P} \subseteq \mathbb{R}^n$ is rational (resp., lattice) if all vertices are in \mathbb{Q}^n (resp., \mathbb{Z}^n).

The denominator of \mathcal{P} is den $(\mathcal{P}) := \min \{ k \in \mathbb{Z}_{\geq 1} : k \mathcal{P} \text{ is lattice} \}.$

The Ehrhart series of \mathcal{P} is the formal power series

$$\mathsf{Ehr}_{\mathcal{P}}(t) \coloneqq \sum_{k=0}^{\infty} |(k\mathcal{P})_{\mathbb{Z}}| \ t^k.$$

Theorem (E. Ehrhart 1962)

 $\mathsf{Ehr}_{\mathcal{P}}(t)$ is a rational function of the form

$$\mathsf{Ehr}_{\mathcal{P}}(t) = rac{\delta_{\mathcal{P}}(t)}{(1-t^{\mathsf{den}(\mathcal{P})})^{\mathsf{dim}(\mathcal{P})+1}},$$

where $\delta_{\mathcal{P}}(t)$ is the δ -polynomial of \mathcal{P} .

Introduction — Braun's Theorem

Definition

Let V^* be the dual space of $V := \operatorname{span}(\mathcal{P})$. The polar dual of \mathcal{P} is

$$\mathcal{P}^{\vee} := \{ \varphi \in V^* : \varphi(\mathcal{P}) \subseteq \mathbb{R}_{\leq 1} \}.$$

Definition

Let $V_{\mathbb{Z}}^* \coloneqq \{ \varphi \in V^* : \varphi(V_{\mathbb{Z}}) \subseteq \mathbb{Z} \}$ be the dual lattice of $V_{\mathbb{Z}}$.

 \mathcal{P}^ee is a lattice polyhedron in V^* if the vertices of \mathcal{P}^ee are in $V^*_\mathbb{Z}$.

Definition

A polytope $\mathcal P$ is reflexive if $\mathcal P$ and $\mathcal P^\vee$ are both lattice polytopes.

Braun's Theorem

Recall the δ -polynomial:

$$\mathsf{Ehr}_{\mathcal{P}}(t) = \sum_{k=0}^{\infty} |(k\mathcal{P})_{\mathbb{Z}}| \ t^k = \frac{\delta_{\mathcal{P}}(t)}{(1-t^{\mathsf{den}(\mathcal{P})})^{\mathsf{dim}(\mathcal{P})+1}}.$$

Theorem (B. Braun 2006)

Let $\mathcal{P}\oplus\mathcal{Q}$ be a free sum. If \mathcal{P} is a reflexive polytope and \mathcal{Q} is a lattice polytope with $\mathbf{0}\in\mathcal{Q}^\circ$, then

$$\delta_{\mathcal{P}\oplus\mathcal{Q}}(t) = \delta_{\mathcal{P}}(t)\,\delta_{\mathcal{Q}}(t).$$

In terms of Ehrhart series, Braun's formula says

$$\mathsf{Ehr}_{\mathcal{P}\oplus\mathcal{Q}}(t) = (1-t)\,\mathsf{Ehr}_{\mathcal{P}}(t)\,\mathsf{Ehr}_{\mathcal{Q}}(t).$$

Introduction — cone(P)

Definition

Given polytope $\mathcal{P} \subseteq \mathbb{R}^n$, let $cone(\mathcal{P}) \subseteq \mathbb{R}^{n+1}$ be the union of rays through $\mathcal{P} \times \{1\}$.

Introduction — Lattice-point Generating Functions

Definition

Let $\sigma_{cone(\mathcal{P})}(\mathbf{x})$ be the lattice-point generating function of $cone(\mathcal{P})$:

$$\sigma_{\mathsf{cone}(\mathcal{P})}(\mathbf{x}) = \sigma_{\mathsf{cone}(\mathcal{P})}(x_1, \dots, x_{n+1}) = \sum_{\mathbf{m} \in \mathsf{cone}(\mathcal{P})_{\mathbb{Z}}} \mathbf{x}^{\mathbf{m}},$$

where $\mathbf{x}^{\mathbf{m}} := x_1^{m_1} \cdots x_{n+1}^{m_{n+1}}$.

The Ehrhart series is a specialization of the lattice-point generating function:

$$\mathsf{Ehr}_{\mathcal{P}}(t) = \sigma_{\mathsf{cone}\,\mathcal{P}}(1,\ldots,1,t).$$

First Main Result

Recall Braun's formula: If $\mathcal{P}\oplus\mathcal{Q}$ is a free sum with \mathcal{P} reflexive and \mathcal{Q} a lattice polytope such that $\mathbf{0}\in\mathcal{Q}^{\circ}$, then

$$\mathsf{Ehr}_{\mathcal{P}\oplus\mathcal{Q}}(t) = (1-t)\,\mathsf{Ehr}_{\mathcal{P}}(t)\,\mathsf{Ehr}_{\mathcal{Q}}(t).$$

Theorem (Beck, M, Pallavi)

Let $\mathcal{P} \oplus \mathcal{Q} \subseteq \mathbb{R}^n$ be a free sum of rational polytopes. Then

$$\sigma_{\mathsf{cone}(\mathcal{P} \oplus \mathcal{Q})}(\mathbf{x}) = (1 - x_{n+1}) \, \sigma_{\mathsf{cone}\,\mathcal{P}}(\mathbf{x}) \, \sigma_{\mathsf{cone}\,\mathcal{Q}}(\mathbf{x})$$

if and only if either \mathcal{P}^{\vee} or \mathcal{Q}^{\vee} is a lattice polyhedron.

- Implies Braun's theorem.
- Condition is necessary and sufficient.
- Doesn't require $\mathcal P$ or $\mathcal Q$ to be lattice. $\mathbf 0$ can be on boundary of $\mathcal P$ or $\mathcal Q$.

Second Main Result

What if $\mathcal P$ and $\mathcal Q$ are rational, but neither $\mathcal P^\vee$ nor $\mathcal Q^\vee$ is a lattice polyhedron?

Definition

For integers $i \ge 0$, define the shifted cones

$$\mathsf{cone}^{i} \mathcal{P} \coloneqq \mathsf{cone} \, \mathcal{P} + \frac{i}{\mathsf{den}(\mathcal{P}^{\vee})} \mathbf{e}_{n+1},$$
 $\mathsf{cone}_{i} \, \mathcal{Q} \coloneqq \mathsf{cone} \, \mathcal{Q} - \frac{i}{\mathsf{den}(\mathcal{P}^{\vee})} \mathbf{e}_{n+1}.$

Theorem (Beck, M, Pallavi)

Let $\mathcal{P} \oplus \mathcal{Q}$ be a free sum of rational polytopes. Then

$$\sigma_{\mathsf{cone}(\mathcal{P} \oplus \mathcal{Q})} = \sum_{i=0}^{\mathsf{den}(P^{\vee})-1} (\sigma_{\mathsf{cone}^{i}\,\mathcal{P}} - \sigma_{\mathsf{cone}^{i+1}\,\mathcal{P}}) \, \sigma_{\mathsf{cone}_{i}\,\mathcal{Q}}.$$

Affine Free Sums

What if $\mathcal{P}\cap\mathcal{Q}$ isn't the origin? Suppose now that $\mathcal{P},\mathcal{Q}\subseteq\mathbb{R}^n$ are polytopes such that

$$\mathcal{P} \cap \mathcal{Q} = \mathsf{aff}(\mathcal{P}) \cap \mathsf{aff}(\mathcal{Q}) = \{\mathbf{p}\}, \quad \mathbf{p} \in \mathbb{Q}^n.$$

Previously, $\mathcal{P}\oplus\mathcal{Q}$ was a free sum if

$$\mathbb{Z}^n = (\operatorname{span} \mathcal{P})_{\mathbb{Z}} \oplus (\operatorname{span} \mathcal{Q})_{\mathbb{Z}}$$
 (lattice direct sum).

Definition

Let $\Lambda^{\mathbf{p}} \subseteq \mathbb{R}^n$ be the lattice generated by $\mathbb{Z}^n \cup \{\mathbf{p}\}$.

For $S \subseteq \mathbb{R}^n$, let $S_{\Lambda^p} := S \cap \Lambda^p$.

 $\mathcal{P}\oplus\mathcal{Q}\coloneqq\mathsf{conv}(\mathcal{P}\cup\mathcal{Q})$ is an affine free sum of \mathcal{P} and \mathcal{Q} if

$$\Lambda^{\mathbf{p}} = \operatorname{span}(\mathcal{P} - \mathbf{p})_{\Lambda^{\mathbf{p}}} \oplus \operatorname{span}(\mathcal{Q} - \mathbf{p})_{\Lambda^{\mathbf{p}}}.$$

Third Main Result — Gorenstein polytopes

Definition

A lattice polytope \mathcal{P} is Gorenstein of index k if there exists a (unique) point $\mathbf{m} \in (k\mathcal{P})_{\mathbb{Z}}$ such that $k\mathcal{P} - \mathbf{m}$ is reflexive.

Theorem (Beck, M., Pallavi)

Let polytope $\mathcal P$ be Gorenstein of index k with $k\mathcal P-\mathbf m$ reflexive. Let $\mathcal Q\subseteq\mathbb R^n$ be a polytope containing $\frac1k\mathbf m\in\mathcal P$ such that $\mathcal P\oplus\mathcal Q$ is an affine free sum. Then

$$\sigma_{\mathsf{cone}(\mathcal{P} \oplus \mathcal{Q})}(\mathbf{x}) = \left(1 - \mathbf{x}^{(\mathbf{m},k)}\right) \sigma_{\mathsf{cone}\,\mathcal{P}}(\mathbf{x}) \, \sigma_{\mathsf{cone}\,\mathcal{Q}}(\mathbf{x}),$$

where $\mathbf{x}^{(\mathbf{m},k)} := x_1^{m_1} \cdots x_n^{m_n} x_{n+1}^k$.

Methods — Lattice-theory Lemmas

Recall: $cone(\mathcal{P} \oplus \mathcal{Q}) = cone(\mathcal{P}) + cone(\mathcal{Q})$

Equivalently,

$$\mathsf{cone}(\mathcal{P} \oplus \mathcal{Q}) = \bigcup_{\mathbf{x} \in \mathsf{cone}\,\mathcal{P}} (\mathbf{x} + \mathsf{cone}\,\mathcal{Q}).$$

Definition

The lower envelope of $\underline{\partial}$ cone(\mathcal{P}) is the subset of ∂ cone(\mathcal{P}) that is vertically minimal.

The lower lattice envelope $\underline{\partial}_{\mathbb{Z}} \operatorname{cone}(\mathcal{P})$ is the subset of points in $\underline{\partial} \operatorname{cone}(\mathcal{P})$ that are directly beneath lattice points.

Methods — Lattice-theory Lemmas

Proposition

Let $\mathcal{P} \oplus \mathcal{Q}$ be a free sum of polytopes. Then

$$\mathsf{cone}(\mathcal{P} \oplus \mathcal{Q})_{\mathbb{Z}} = \bigsqcup_{\mathbf{m} \in \underline{\partial}_{\mathbb{Z}} \, \mathsf{cone} \, \mathcal{P}} (\mathbf{m} + \mathsf{cone} \, \mathcal{Q})_{\mathbb{Z}},$$

where \(\) denotes disjoint union.

Methods — Lattice-theory Lemmas

Proposition

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a rational polytope containing the origin. Then the following are equivalent:

- $ullet \mathcal{P}^{\vee}$ is a lattice polyhedron,
- $\underline{\partial}_{\mathbb{Z}}$ cone $\mathcal{P}=(\underline{\partial}\operatorname{cone}\mathcal{P})_{\mathbb{Z}}$,
- $\bullet \ \ (\underline{\partial}\,\mathsf{cone}\,\mathcal{P})_{\mathbb{Z}} = (\mathsf{cone}\,\mathcal{P})_{\mathbb{Z}} \setminus (\mathsf{cone}\,\mathcal{P} + \mathbf{e}_{n+1})_{\mathbb{Z}},$
- $\sigma_{\underline{\partial} \operatorname{cone} \mathcal{P}}(\mathbf{x}) = (1 x_{n+1}) \, \sigma_{\operatorname{cone} \mathcal{P}}(\mathbf{x}).$

Open Questions

- Is it possible to have $\underline{\partial}_{\mathbb{Z}} \operatorname{cone} \mathcal{P} = (\underline{\partial} \operatorname{cone} \mathcal{P})_{\mathbb{Z}}$ when \mathcal{P} is a convex set other than a rational polytope?
- "Dual to lattice" was the right generalization of "reflexive". What is the right generalization of "Gorenstein"? (Natural guess doesn't work.)