Lattice-point generating functions for free sums of polytopes

Tyrrell B. McAllister ${ }^{1}$
Joint work with
Matthias Beck ${ }^{2}$ and Pallavi Jayawant ${ }^{3}$
${ }^{1}$ University of Wyoming
${ }^{2}$ San Francisco State University
${ }^{3}$ Bates College

The University of Akron
20 October 2012

Introduction - Free Sums

Notation: For $S \subseteq \mathbb{R}^{n}$, let $S_{\mathbb{Z}}=S \cap \mathbb{Z}^{n}$.

Definition

Let $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{R}^{n}$ be polytopes. $\mathcal{P} \oplus \mathcal{Q}:=\operatorname{conv}(\mathcal{P} \cup \mathcal{Q})$ is a free sum if

- $\mathbf{0} \in \mathcal{P} \cap \mathcal{Q}$,
- span $\mathcal{P} \oplus \operatorname{span} \mathcal{Q}=\mathbb{R}^{n}$ as a direct sum of vector spaces, and - $(\operatorname{span} \mathcal{P})_{\mathbb{Z}} \oplus(\operatorname{span} \mathcal{Q})_{\mathbb{Z}}=\mathbb{Z}^{n}$ as a direct sum of lattices.

Example

Introduction - Free Sums

$\mathcal{P} \oplus \mathcal{Q}$ is related to familiar operations:

- Dual to cartesian product: Let \mathcal{P}^{\vee} be the polar dual of \mathcal{P} (with respect to $\operatorname{span}(\mathcal{P}))$. Then

$$
(\mathcal{P} \oplus \mathcal{Q})^{\vee}=\mathcal{P}^{\vee} \times \mathcal{Q}^{\vee}
$$

- Homogenizes as Minkowski sum: Let cone (\mathcal{P}) be the positive span of $\mathcal{P} \times\{1\} \subseteq \mathbb{R}^{n+1}$. Then

$$
\operatorname{cone}(\mathcal{P} \oplus \mathcal{Q})=\operatorname{cone}(\mathcal{P})+\operatorname{cone}(\mathcal{Q})
$$

Introduction - Ehrhart Theory

Definition

$\mathcal{P} \subseteq \mathbb{R}^{n}$ is rational (resp., lattice) if all vertices are in \mathbb{Q}^{n} (resp., \mathbb{Z}^{n}). The denominator of \mathcal{P} is $\operatorname{den}(\mathcal{P}):=\min \left\{k \in \mathbb{Z}_{\geq 1}: k \mathcal{P}\right.$ is lattice $\}$. The Ehrhart series of \mathcal{P} is the formal power series

$$
\operatorname{Ehr}_{\mathcal{P}}(t):=\sum_{k=0}^{\infty}\left|(k \mathcal{P})_{\mathbb{Z}}\right| t^{k}
$$

Theorem (E. Ehrhart 1962)
$\operatorname{Ehr}_{\mathcal{P}}(t)$ is a rational function of the form

$$
\operatorname{Ehr}_{\mathcal{P}}(t)=\frac{\delta_{\mathcal{P}}(t)}{\left(1-t^{\operatorname{den}(\mathcal{P})}\right)^{\operatorname{dim}(\mathcal{P})+1}},
$$

where $\delta_{\mathcal{P}}(t)$ is the δ-polynomial of \mathcal{P}.

Introduction - Braun's Theorem

Definition

Let V^{*} be the dual space of $V:=\operatorname{span}(\mathcal{P})$. The polar dual of \mathcal{P} is

$$
\mathcal{P}^{\vee}:=\left\{\varphi \in V^{*}: \varphi(\mathcal{P}) \subseteq \mathbb{R}_{\leq 1}\right\} .
$$

Definition

Let $V_{\mathbb{Z}}^{*}:=\left\{\varphi \in V^{*}: \varphi\left(V_{\mathbb{Z}}\right) \subseteq \mathbb{Z}\right\}$ be the dual lattice of $V_{\mathbb{Z}}$.
\mathcal{P}^{\vee} is a lattice polyhedron in V^{*} if the vertices of \mathcal{P}^{\vee} are in $V_{\mathbb{Z}}^{*}$.

Definition

A polytope \mathcal{P} is reflexive if \mathcal{P} and \mathcal{P}^{\vee} are both lattice polytopes.

Braun's Theorem

Recall the δ-polynomial:

$$
\operatorname{Ehr}_{\mathcal{P}}(t)=\sum_{k=0}^{\infty}\left|(k \mathcal{P})_{\mathbb{Z}}\right| t^{k}=\frac{\delta_{\mathcal{P}}(t)}{\left(1-t^{\operatorname{den}(\mathcal{P})}\right)^{\operatorname{dim}(\mathcal{P})+1}}
$$

Theorem (B. Braun 2006)

Let $\mathcal{P} \oplus \mathcal{Q}$ be a free sum. If \mathcal{P} is a reflexive polytope and \mathcal{Q} is a lattice polytope with $\mathbf{0} \in \mathcal{Q}^{\circ}$, then

$$
\delta_{\mathcal{P} \oplus \mathcal{Q}}(t)=\delta_{\mathcal{P}}(t) \delta_{\mathcal{Q}}(t)
$$

In terms of Ehrhart series, Braun's formula says
$\operatorname{Ehr}_{\mathcal{P} \oplus \mathcal{Q}}(t)=(1-t) \operatorname{Ehr}_{\mathcal{P}}(t) \operatorname{Ehr}_{\mathcal{Q}}(t)$.

Introduction - cone (\mathcal{P})

Definition

Given polytope $\mathcal{P} \subseteq \mathbb{R}^{n}$, let cone $(\mathcal{P}) \subseteq \mathbb{R}^{n+1}$ be the union of rays through $\mathcal{P} \times\{1\}$.

Introduction - Lattice-point Generating Functions

Definition

Let $\sigma_{\text {cone }(\mathcal{P})}(\mathbf{x})$ be the lattice-point generating function of $\operatorname{cone}(\mathcal{P})$:

$$
\sigma_{\operatorname{cone}(\mathcal{P})}(\mathbf{x})=\sigma_{\operatorname{cone}(\mathcal{P})}\left(x_{1}, \ldots, x_{n+1}\right)=\sum_{\mathbf{m} \in \operatorname{cone}(\mathcal{P})_{\mathbb{Z}}} \mathbf{x}^{\mathbf{m}}
$$

where $\mathbf{x}^{\mathbf{m}}:=x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}}$.
The Ehrhart series is a specialization of the lattice-point generating function:

$$
\operatorname{Ehr}_{\mathcal{P}}(t)=\sigma_{\text {cone } \mathcal{P}}(1, \ldots, 1, t)
$$

First Main Result

Recall Braun's formula: If $\mathcal{P} \oplus \mathcal{Q}$ is a free sum with \mathcal{P} reflexive and \mathcal{Q} a lattice polytope such that $\mathbf{0} \in Q^{\circ}$, then

$$
\operatorname{Ehr}_{\mathcal{P}_{\mathcal{Q}} \mathcal{Q}}(t)=(1-t) \operatorname{Ehr}_{\mathcal{P}}(t) \operatorname{Ehr}_{\mathcal{Q}}(t) .
$$

Theorem (Beck, M, Pallavi)

Let $\mathcal{P} \oplus \mathcal{Q} \subseteq \mathbb{R}^{n}$ be a free sum of rational polytopes. Then

$$
\sigma_{\text {cone }(\mathcal{P} \oplus \mathcal{Q})}(\mathbf{x})=\left(1-x_{n+1}\right) \sigma_{\text {cone } \mathcal{P}}(\mathbf{x}) \sigma_{\text {cone } \mathcal{Q}}(\mathbf{x})
$$

if and only if either \mathcal{P}^{\vee} or \mathcal{Q}^{\vee} is a lattice polyhedron.

- Implies Braun's theorem.
- Condition is necessary and sufficient.
- Doesn't require \mathcal{P} or \mathcal{Q} to be lattice. $\mathbf{0}$ can be on boundary of \mathcal{P} or \mathcal{Q}.

Second Main Result

What if \mathcal{P} and \mathcal{Q} are rational, but neither \mathcal{P}^{\vee} nor \mathcal{Q}^{\vee} is a lattice polyhedron?

Definition

For integers $i \geq 0$, define the shifted cones

$$
\begin{aligned}
& \operatorname{cone}^{i} \mathcal{P}:=\operatorname{cone} \mathcal{P}+\frac{i}{\operatorname{den}\left(\mathcal{P}^{\vee}\right)} \mathbf{e}_{n+1} \\
& \operatorname{cone}_{i} \mathcal{Q}:=\operatorname{cone} \mathcal{Q}-\frac{i}{\operatorname{den}\left(\mathcal{P}^{\vee}\right)} \mathbf{e}_{n+1}
\end{aligned}
$$

Theorem (Beck, M, Pallavi)
Let $\mathcal{P} \oplus \mathcal{Q}$ be a free sum of rational polytopes. Then

$$
\sigma_{\mathrm{cone}(\mathcal{P} \oplus \mathcal{Q})}=\sum_{i=0}^{\operatorname{den}\left(P^{\vee}\right)-1}\left(\sigma_{\text {cone }^{i} \mathcal{P}}-\sigma_{\text {cone }^{i+1} \mathcal{P}}\right) \sigma_{\text {cone }_{i} \mathcal{Q}}
$$

Affine Free Sums

What if $\mathcal{P} \cap \mathcal{Q}$ isn't the origin? Suppose now that $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{R}^{n}$ are polytopes such that

$$
\mathcal{P} \cap \mathcal{Q}=\operatorname{aff}(\mathcal{P}) \cap \operatorname{aff}(\mathcal{Q})=\{\mathbf{p}\}, \quad \mathbf{p} \in \mathbb{Q}^{n} .
$$

Previously, $\mathcal{P} \oplus \mathcal{Q}$ was a free sum if

$$
\mathbb{Z}^{n}=(\operatorname{span} \mathcal{P})_{\mathbb{Z}} \oplus(\operatorname{span} \mathcal{Q})_{\mathbb{Z}} \quad(\text { lattice direct sum }) .
$$

Definition

Let $\Lambda^{\mathbf{p}} \subseteq \mathbb{R}^{n}$ be the lattice generated by $\mathbb{Z}^{n} \cup\{\mathbf{p}\}$. For $S \subseteq \mathbb{R}^{n}$, let $S_{\Lambda^{p}}:=S \cap \Lambda^{p}$.
$\mathcal{P} \oplus \mathcal{Q}:=\operatorname{conv}(\mathcal{P} \cup \mathcal{Q})$ is an affine free sum of \mathcal{P} and \mathcal{Q} if

$$
\Lambda^{\mathbf{p}}=\operatorname{span}(\mathcal{P}-\mathbf{p})_{\Lambda^{\mathfrak{p}}} \oplus \operatorname{span}(\mathcal{Q}-\mathbf{p})_{\Lambda^{\boldsymbol{p}}} .
$$

Third Main Result - Gorenstein polytopes

Definition

A lattice polytope \mathcal{P} is Gorenstein of index k if there exists a (unique) point $\mathbf{m} \in(k \mathcal{P})_{\mathbb{Z}}$ such that $k \mathcal{P}-\mathbf{m}$ is reflexive.

Theorem (Beck, M., Pallavi)

Let polytope \mathcal{P} be Gorenstein of index k with $k \mathcal{P}-\mathbf{m}$ reflexive. Let $\mathcal{Q} \subseteq \mathbb{R}^{n}$ be a polytope containing $\frac{1}{k} \mathbf{m} \in \mathcal{P}$ such that $\mathcal{P} \oplus \mathcal{Q}$ is an affine free sum. Then

$$
\sigma_{\text {cone }(\mathcal{P} \oplus \mathcal{Q})}(\mathbf{x})=\left(1-\mathbf{x}^{(\mathbf{m}, k)}\right) \sigma_{\text {cone } \mathcal{P}}(\mathbf{x}) \sigma_{\text {cone } \mathcal{Q}}(\mathbf{x})
$$

where $\mathbf{x}^{(\mathbf{m}, k)}:=x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} x_{n+1}^{k}$.

Methods - Lattice-theory Lemmas

Recall: $\operatorname{cone}(\mathcal{P} \oplus \mathcal{Q})=\operatorname{cone}(\mathcal{P})+\operatorname{cone}(\mathcal{Q})$
Equivalently,

$$
\operatorname{cone}(\mathcal{P} \oplus \mathcal{Q})=\bigcup_{\mathbf{x} \in \operatorname{cone} \mathcal{P}}(\mathbf{x}+\operatorname{cone} \mathcal{Q})
$$

Definition

The lower envelope of $\underline{\partial}$ cone (\mathcal{P}) is the subset of $\partial \operatorname{cone}(\mathcal{P})$ that is vertically minimal.
The lower lattice envelope $\underline{\partial}_{\mathbb{Z}} \operatorname{cone}(\mathcal{P})$ is the subset of points in $\underline{\partial} \operatorname{cone}(\mathcal{P})$ that are directly beneath lattice points.

Methods - Lattice-theory Lemmas

Proposition

Let $\mathcal{P} \oplus \mathcal{Q}$ be a free sum of polytopes. Then

$$
\operatorname{cone}(\mathcal{P} \oplus \mathcal{Q})_{\mathbb{Z}}=\bigsqcup_{\mathbf{m} \in \underline{\partial}_{\mathbb{Z}} \operatorname{cone} \mathcal{P}}(\mathbf{m}+\operatorname{cone} \mathcal{Q})_{\mathbb{Z}}
$$

where \downarrow denotes disjoint union.

Methods - Lattice-theory Lemmas

Proposition

Let $\mathcal{P} \subseteq \mathbb{R}^{n}$ be a rational polytope containing the origin. Then the following are equivalent:

- \mathcal{P}^{\vee} is a lattice polyhedron,
- $\underline{\partial}_{\mathbb{Z}}$ cone $\mathcal{P}=(\underline{\partial} \text { cone } \mathcal{P})_{\mathbb{Z}}$,
- $(\underline{\partial} \text { cone } \mathcal{P})_{\mathbb{Z}}=(\text { cone } \mathcal{P})_{\mathbb{Z}} \backslash\left(\text { cone } \mathcal{P}+\mathbf{e}_{n+1}\right)_{\mathbb{Z}}$,
- $\sigma_{\underline{\partial} \text { cone } \mathcal{P}}(\mathbf{x})=\left(1-x_{n+1}\right) \sigma_{\text {cone } \mathcal{P}}(\mathbf{x})$.

Open Questions

(1) Is it possible to have $\underline{\partial}_{\mathbb{Z}}$ cone $\mathcal{P}=(\underline{\partial} \text { cone } \mathcal{P})_{\mathbb{Z}}$ when \mathcal{P} is a convex set other than a rational polytope?
(2) "Dual to lattice" was the right generalization of "reflexive". What is the right generalization of "Gorenstein"? (Natural guess doesn't work.)

