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Introduction — Free Sums
Notation: For S ⊆ Rn, let SZ = S ∩ Zn.

Definition

Let P,Q ⊆ Rn be polytopes. P ⊕Q := conv(P ∪Q) is a free sum if

0 ∈ P ∩Q,

spanP ⊕ spanQ = Rn as a direct sum of vector spaces, and

(spanP)Z ⊕ (spanQ)Z = Zn as a direct sum of lattices.

Example

0
⊕

0
=

0
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Introduction — Free Sums

P ⊕Q is related to familiar operations:

Dual to cartesian product: Let P∨ be the polar dual of P (with
respect to span(P)). Then

(P ⊕Q)∨ = P∨ ×Q∨.

Homogenizes as Minkowski sum: Let cone(P) be the positive span of
P × {1} ⊆ Rn+1. Then

cone(P ⊕Q) = cone(P) + cone(Q).
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Introduction — Ehrhart Theory

Definition

P ⊆ Rn is rational (resp., lattice) if all vertices are in Qn (resp., Zn).
The denominator of P is den(P) := min {k ∈ Z≥1 : kP is lattice}.
The Ehrhart series of P is the formal power series

EhrP(t) :=
∞∑
k=0

|(kP)Z| tk .

Theorem (E. Ehrhart 1962)

EhrP(t) is a rational function of the form

EhrP(t) =
δP(t)

(1− tden(P))dim(P)+1
,

where δP(t) is the δ-polynomial of P.
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Introduction — Braun’s Theorem

Definition

Let V ∗ be the dual space of V := span(P). The polar dual of P is

P∨ := {ϕ ∈ V ∗ : ϕ(P) ⊆ R≤1} .

Definition

Let V ∗Z := {ϕ ∈ V ∗ : ϕ(VZ) ⊆ Z} be the dual lattice of VZ.

P∨ is a lattice polyhedron in V ∗ if the vertices of P∨ are in V ∗Z .

Definition

A polytope P is reflexive if P and P∨ are both lattice polytopes.
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Braun’s Theorem

Recall the δ-polynomial:

EhrP(t) =
∞∑
k=0

|(kP)Z| tk =
δP(t)

(1− tden(P))dim(P)+1
.

Theorem (B. Braun 2006)

Let P ⊕Q be a free sum. If P is a reflexive polytope and Q is a lattice
polytope with 0 ∈ Q◦, then

δP⊕Q(t) = δP(t) δQ(t).

In terms of Ehrhart series, Braun’s formula says

EhrP⊕Q(t) = (1− t) EhrP(t) EhrQ(t).
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Introduction — cone(P)

Definition

Given polytope P ⊆ Rn, let cone(P) ⊆ Rn+1 be the union of rays through
P × {1}.

P × {1}

P
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Introduction — Lattice-point Generating Functions

Definition

Let σcone(P)(x) be the lattice-point generating function of cone(P):

σcone(P)(x) = σcone(P)(x1, . . . , xn+1) =
∑

m∈cone(P)Z

xm,

where xm := xm1
1 · · · x

mn+1

n+1 .

The Ehrhart series is a specialization of the lattice-point generating
function:

EhrP(t) = σconeP(1, . . . , 1, t).
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First Main Result
Recall Braun’s formula: If P ⊕Q is a free sum with P reflexive and Q a
lattice polytope such that 0 ∈ Q◦, then

EhrP⊕Q(t) = (1− t) EhrP(t) EhrQ(t).

Theorem (Beck, M, Pallavi)

Let P ⊕Q ⊆ Rn be a free sum of rational polytopes. Then

σcone(P⊕Q)(x) = (1− xn+1)σconeP(x)σconeQ(x)

if and only if either P∨ or Q∨ is a lattice polyhedron.

Implies Braun’s theorem.

Condition is necessary and sufficient.

Doesn’t require P or Q to be lattice. 0 can be on boundary of P or
Q.
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Second Main Result
What if P and Q are rational, but neither P∨ nor Q∨ is a lattice
polyhedron?

Definition

For integers i ≥ 0, define the shifted cones

conei P := coneP +
i

den(P∨)
en+1,

conei Q := coneQ− i

den(P∨)
en+1.

Theorem (Beck, M, Pallavi)

Let P ⊕Q be a free sum of rational polytopes. Then

σcone(P⊕Q) =

den(P∨)−1∑
i=0

(σconei P − σconei+1 P)σconei Q.
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Affine Free Sums
What if P ∩Q isn’t the origin? Suppose now that P,Q ⊆ Rn are
polytopes such that

P ∩Q = aff(P) ∩ aff(Q) = {p} , p ∈ Qn.

Previously, P ⊕Q was a free sum if

Zn = (spanP)Z ⊕ (spanQ)Z (lattice direct sum).

Definition

Let Λp ⊆ Rn be the lattice generated by Zn ∪ {p}.
For S ⊆ Rn, let SΛp := S ∩ Λp.

P ⊕Q := conv(P ∪Q) is an affine free sum of P and Q if

Λp = span(P − p)Λp ⊕ span(Q− p)Λp .
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Third Main Result — Gorenstein polytopes

Definition

A lattice polytope P is Gorenstein of index k if there exists a (unique)
point m ∈ (kP)Z such that kP −m is reflexive.

Theorem (Beck, M., Pallavi)

Let polytope P be Gorenstein of index k with kP −m reflexive. Let
Q ⊆ Rn be a polytope containing 1

km ∈ P such that P ⊕Q is an affine
free sum. Then

σcone(P⊕Q)(x) =
(

1− x(m,k)
)
σconeP(x)σconeQ(x),

where x(m,k) := xm1
1 · · · xmn

n xk
n+1.
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Methods — Lattice-theory Lemmas
Recall: cone(P ⊕Q) = cone(P) + cone(Q)

Equivalently,

cone(P ⊕Q) =
⋃

x∈coneP
(x + coneQ) .

Definition

The lower envelope of ∂ cone(P) is the subset of ∂ cone(P) that is
vertically minimal.
The lower lattice envelope ∂Z cone(P) is the subset of points in ∂ cone(P)
that are directly beneath lattice points.

P

P × {1}
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Methods — Lattice-theory Lemmas

Proposition

Let P ⊕Q be a free sum of polytopes. Then

cone(P ⊕Q)Z =
⊔

m∈∂Z coneP
(m + coneQ)Z,

where
⊔

denotes disjoint union.

P

Q
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Methods — Lattice-theory Lemmas

Proposition

Let P ⊆ Rn be a rational polytope containing the origin. Then the
following are equivalent:

P∨ is a lattice polyhedron,

∂Z coneP = (∂ coneP)Z,

(∂ coneP)Z = (coneP)Z \ (coneP + en+1)Z,

σ∂ coneP(x) = (1− xn+1)σconeP(x).
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Open Questions

1 Is it possible to have ∂Z coneP = (∂ coneP)Z when P is a convex set
other than a rational polytope?

2 “Dual to lattice” was the right generalization of “reflexive”. What is
the right generalization of “Gorenstein”? (Natural guess doesn’t
work.)
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