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Sparse Polynomial Systems and BKK theorem

CLO Using Algebraic Geometry, Section 7.5

Sparse Polynomial f ∈ C[x±11 , . . . , x±1n ]:

f =
∑
a∈A

cax
a, where xa = xa11 · · · x

an
n , ca ∈ C∗.

The set of exponents A ⊂ Zn is the support of f . The convex hull of the
support P = conv(A) is the Newton Polytope of f .

Theorem (Kushnirenko 1975)
Let f1 = · · · = fn = 0 be a generic sparse system with the same Newton
polytope P. Then it has exactly Voln(P) isolated solutions in (C∗)n.

Here Voln(P) is the lattice volume of P, that is Euclidean n-dimensional
volume normalized such that Voln(∆) = 1 for a unimodular simplex ∆.

Theorem (Bernstein–Khovanskii–Kushnirenko 1976)
Let f1 = · · · = fn = 0 be a generic sparse system with Newton polytopes
P1, . . . ,Pn. Then it has exactly V (P1, . . . ,Pn) isolated solutions in (C∗)n.

Here V (P1, . . . ,Pn) is the (lattice) mixed volume of the polytopes
P1, . . . ,Pn.
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Mixed Volume: Definition and Properties

Recall the Minkowski sum P + Q = {p + q ∈ Rn | p ∈ P, q ∈ Q}
for any P,Q ⊂ Rn.

Mixed Volume is the coefficient of t1 · · · tn in the polynomial

Voln(t1P1+· · ·+tnPn) = Voln(P1)tn1+· · ·+V (P1, . . . ,Pn)t1 · · · tn+. . .

Properties:

I symmetric, multilinear w.r.t. Minkowski addition

I V (P, . . . ,P) = Voln(P)

I V (P1, . . . ,Pn) ≥ 0 (non-negativity)

I V (P1, . . . ,Pn) ≤ V (Q1, . . . ,Qn) for Pi ⊆ Qi (monotonicity)
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Mixed Volume: Example

Example: Consider P1,P2 in R2

We have
V (P1,P2) = 1

2 (Vol2(P1 + P2)− Vol2(P1)− Vol2(P2)) = 4.
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Esterov’s Question

Question: Given m ∈ N can one describe all n-tuples of lattice polytopes
(P1, . . . ,Pn) such that a generic sparse system f1 = · · · = fn = 0 with
Newton polytopes P1, . . . ,Pn has exactly m solutions in (C∗)n?

State of the art:

I (Esterov–Gusev ’15) m = 1 and any n ≥ 1

I (Esterov–Gusev ’16) m ≤ 4 and n = 2

I (Esterov–Gusev ’16) m ≤ 4, any n ≥ 1, unmixed and spanning

I (Hibi–Tsuchiya ’19) m ≤ 4, any n ≥ 1, unmixed

I (Averkov–Borger–S ’19) m ≤ 4 and n = 3

(Esterov, ’19) The problem of describing all n-variate sparse systems that
are solvable in radicals reduces to describing all k-variate sparse systems
with up to 4 solutions, for k ≤ n.
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Combinatorial Problem

Problem: Given m ∈ N classify all n-tuples of lattice polytopes
(P1, . . . ,Pn) with V (P1, . . . ,Pn) = m.

Unmixed case: (P1 = · · · = Pn = P) Classify all lattice polytopes P of
lattice volume m.

Theorem (Lagarias–Ziegler ’91) There are finitely many lattice polytopes
P with a given volume, up to AGL(n,Z).

Warning: This is no longer true for n-tuples of polytopes!

Example:

V (P1,P2) = 1

Indeed, the system f1 = ax + c = 0, f2 = y + h(x) = 0 has 1 solution
regardless of deg h.
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Irreducible n-tuples

Reduction: If P1, . . . ,Pk ⊂ L for some k-subspace L

V (P1, . . . ,Pk , . . . ,Pn) = VL(P1, . . . ,Pk)VRn/L(π(Pk+1), . . . , π(Pn)),

where π : Rn → Rn/L is the projection along L.

Definition: A tuple (P1, . . . ,Pn) is irreducible if the sum of any k of the
Pi has dimension greater than k, for 1 ≤ k < n.

Theorem (Esterov-Gusev ’18) There are finitely many irreducible n-tuples
of lattice polytopes (P1, . . . ,Pn) with a given mixed volume, up to lattice
equivalence (i.e. GL(n,Z) and independent translations).

Idea: Voln(P1 + · · ·+ Pn) < nnm2n , where m = V (P1, . . . ,Pn).

Challenge: For n = 3, m = 4 this bound is huge.
Moreover, the sharp upper bound must be at least (n − 1 + m)n, since
V (∆, . . . ,∆,m∆) = m for a unimodular simplex ∆.

For n = 3,m = 4 we get 216. There are ∼ 6, 000, 000 polytopes of

volume at most 36 (Balletti’18).
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Our approach

I Enough to classify maximal triples (P1,P2,P3)

I For this, employ relations between all possible mixed volumes
V (Pi ,Pj ,Pk), for 1 ≤ i ≤ j ≤ k ≤ 3
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Maximal n-tuples

Definition: A tuple (P1, . . . ,Pn) is maximal in Pn if for any P ′n ) Pn we
have V (P1, . . . ,Pn) < V (P1, . . . ,P

′
n). A tuple (P1, . . . ,Pn) is maximal if

it is maximal in each Pi .

P1, . . . ,Pn−1 define mixed area measure SP1,...,Pn−1 which is a finite
measure on the set of primitive vectors u such that

SP1,...,Pn−1(u) = V (Pu
1 , . . . ,P

u
n−1), where Pu

i = face of Pi in direction u

Proposition: If (P1, . . . ,Pn) is maximal in Pn then

Pn = conv{x ∈ Zn : 〈x , ui 〉 ≤ hi , ui ∈ suppSP1,...,Pn−1}

where the hi ∈ Z≥0 satisfy∑
hiSP1,...,Pn−1(ui ) = V (P1, . . . ,Pn).

V (P1,P2) = 3
not maximal
V (P1,P2) = 3

maximal
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Aleksandrov–Fenchel relations

Aleksandrov–Fenchel inequality:

V (K , L,M)2 ≥ V (K ,K ,M)V (L, L,M) for convex bodies K , L,M ⊂ R3.

Denote vijk = V (Pi ,Pj ,Pk) for 1 ≤ i ≤ j ≤ k ≤ 3.

v2
123 ≥ v122v233
v2
123 ≥ v122v233

v2
233 ≥ v223v333

v2
123 ≥ v122v233

v2
233 ≥ v223v333

v2
112 ≥ v111v122
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Special case: P1,P2,P3 are 3-dimensional

The middle value v123 = m.

Either at least one of the green values is less than m ...

Recursively we can find (P1,P1,P2).
Then find maximal P3 as before.

... or all of the green values are equal to m, by Aleksandrov–Fenchel.

Then we can show P1 = P2 = P3.
Pick P1 of volume m.
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Output: number of triples with V (P1,P2,P3) = m

m # full-dim’l triples # all maximal triples running time

unmixed

1 1 1 1

2 3 4 7 ∼ 2 hours

3 6 10 21 ∼ 1 day

4 17 30 92 ∼ 3 days

Pictures (and more) are here:
github.com/christopherborger/mixed volume classification
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Further work

I Find a sharp upper bound on Voln(P1 + · · ·+ Pn) in terms of
m = V (P1, . . . ,Pn).

Conjecture: Voln(P1 + · · ·+ Pn) ≤ (n − 1 + m)n attained at
(∆, . . . ,∆,m∆).
(True for n = 2, 3 in full-dim case. Also O(mn) holds for n ≤ 6.)

I Is there a “structural” result across all n? For example,

I (Hofscheier–Katthän–Nill ’19) There are only finitely many
spanning polytopes of given volume up to lattice equivalence
and unit pyramid construction.

I (Balletti–Borger’19) All n-tuples (P1, . . . ,Pn) with
V (P1, . . . ,Pn) = (P1 + · · ·+ Pn)◦ ∩ Zn + 1 are lattice
projections onto (∆n−1, . . . ,∆n−1), except for finitely many
exceptions.

Thank you!
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