Triples of lattice polytopes with a given mixed volume

Ideals, Varieties, Applications

Ivan Soprunov (with G. Averkov and C. Borger)

Cleveland State University

June 13, 2019

Sparse Polynomial Systems and BKK theorem

CLO Using Algebraic Geometry, Section 7.5 Sparse Polynomial $f \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$:

$$f = \sum_{a \in \mathcal{A}} c_a x^a$$
, where $x^a = x_1^{a_1} \cdots x_n^{a_n}$, $c_a \in \mathbb{C}^*$.

The set of exponents $\mathcal{A} \subset \mathbb{Z}^n$ is the support of f. The convex hull of the support $P = \operatorname{conv}(\mathcal{A})$ is the Newton Polytope of f.

Sparse Polynomial Systems and BKK theorem

CLO Using Algebraic Geometry, Section 7.5 Sparse Polynomial $f \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$:

$$f = \sum_{a \in \mathcal{A}} c_a x^a$$
, where $x^a = x_1^{a_1} \cdots x_n^{a_n}$, $c_a \in \mathbb{C}^*$.

The set of exponents $\mathcal{A} \subset \mathbb{Z}^n$ is the support of f. The convex hull of the support $P = \operatorname{conv}(\mathcal{A})$ is the Newton Polytope of f.

Theorem (Kushnirenko 1975)

Let $f_1 = \cdots = f_n = 0$ be a generic sparse system with the same Newton polytope P. Then it has exactly $Vol_n(P)$ isolated solutions in $(\mathbb{C}^*)^n$.

Here $\operatorname{Vol}_n(P)$ is the lattice volume of P, that is Euclidean *n*-dimensional volume normalized such that $\operatorname{Vol}_n(\Delta) = 1$ for a unimodular simplex Δ .

Sparse Polynomial Systems and BKK theorem

CLO Using Algebraic Geometry, Section 7.5 Sparse Polynomial $f \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$:

$$f = \sum_{a \in \mathcal{A}} c_a x^a$$
, where $x^a = x_1^{a_1} \cdots x_n^{a_n}$, $c_a \in \mathbb{C}^*$.

The set of exponents $\mathcal{A} \subset \mathbb{Z}^n$ is the support of f. The convex hull of the support $P = \operatorname{conv}(\mathcal{A})$ is the Newton Polytope of f.

Theorem (Bernstein–Khovanskii–Kushnirenko 1976) Let $f_1 = \cdots = f_n = 0$ be a generic sparse system with Newton polytopes P_1, \ldots, P_n . Then it has exactly $V(P_1, \ldots, P_n)$ isolated solutions in $(\mathbb{C}^*)^n$. Here $V(P_1, \ldots, P_n)$ is the (lattice) mixed volume of the polytopes P_1, \ldots, P_n .

Mixed Volume: Definition and Properties

Recall the Minkowski sum $P + Q = \{p + q \in \mathbb{R}^n \mid p \in P, q \in Q\}$ for any $P, Q \subset \mathbb{R}^n$.

Mixed Volume is the coefficient of $t_1 \cdots t_n$ in the polynomial

 $\operatorname{Vol}_n(t_1P_1+\cdots+t_nP_n)=\operatorname{Vol}_n(P_1)t_1^n+\cdots+V(P_1,\ldots,P_n)t_1\cdots t_n+\ldots$

Properties:

symmetric, multilinear w.r.t. Minkowski addition

$$\blacktriangleright V(P,\ldots,P) = \operatorname{Vol}_n(P)$$

- $V(P_1, \ldots, P_n) \ge 0$ (non-negativity)
- $V(P_1, \ldots, P_n) \leq V(Q_1, \ldots, Q_n)$ for $P_i \subseteq Q_i$ (monotonicity)

Mixed Volume: Example

Example: Consider P_1, P_2 in \mathbb{R}^2

We have $V(P_1, P_2) = \frac{1}{2} (Vol_2(P_1 + P_2) - Vol_2(P_1) - Vol_2(P_2)) = 4.$

Esterov's Question

Question: Given $m \in \mathbb{N}$ can one describe all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) such that a generic sparse system $f_1 = \cdots = f_n = 0$ with Newton polytopes P_1, \ldots, P_n has exactly *m* solutions in $(\mathbb{C}^*)^n$?

Esterov's Question

Question: Given $m \in \mathbb{N}$ can one describe all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) such that a generic sparse system $f_1 = \cdots = f_n = 0$ with Newton polytopes P_1, \ldots, P_n has exactly *m* solutions in $(\mathbb{C}^*)^n$?

State of the art:

- (Esterov–Gusev '15) m = 1 and any $n \ge 1$
- (Esterov–Gusev '16) $m \le 4$ and n = 2
- (Esterov–Gusev '16) $m \le 4$, any $n \ge 1$, unmixed and spanning
- (Hibi–Tsuchiya '19) $m \le 4$, any $n \ge 1$, unmixed
- (Averkov–Borger–S '19) $m \le 4$ and n = 3

Esterov's Question

Question: Given $m \in \mathbb{N}$ can one describe all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) such that a generic sparse system $f_1 = \cdots = f_n = 0$ with Newton polytopes P_1, \ldots, P_n has exactly *m* solutions in $(\mathbb{C}^*)^n$?

State of the art:

- (Esterov–Gusev '15) m = 1 and any $n \ge 1$
- (Esterov–Gusev '16) $m \le 4$ and n = 2
- (Esterov–Gusev '16) $m \le 4$, any $n \ge 1$, unmixed and spanning
- (Hibi–Tsuchiya '19) $m \leq 4$, any $n \geq 1$, unmixed
- (Averkov–Borger–S '19) $m \le 4$ and n = 3

(Esterov, '19) The problem of describing all *n*-variate sparse systems that are solvable in radicals reduces to describing all *k*-variate sparse systems with up to 4 solutions, for $k \le n$.

Combinatorial Problem

Problem: Given $m \in \mathbb{N}$ classify all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with $V(P_1, \ldots, P_n) = m$.

Combinatorial Problem

Problem: Given $m \in \mathbb{N}$ classify all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with $V(P_1, \ldots, P_n) = m$.

Unmixed case: $(P_1 = \cdots = P_n = P)$ Classify all lattice polytopes P of lattice volume m.

Theorem (Lagarias–Ziegler '91) There are finitely many lattice polytopes P with a given volume, up to $AGL(n, \mathbb{Z})$.

Combinatorial Problem

Problem: Given $m \in \mathbb{N}$ classify all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with $V(P_1, \ldots, P_n) = m$.

Unmixed case: $(P_1 = \cdots = P_n = P)$ Classify all lattice polytopes P of lattice volume m.

Theorem (Lagarias–Ziegler '91) There are finitely many lattice polytopes P with a given volume, up to $AGL(n, \mathbb{Z})$.

Warning: This is no longer true for *n*-tuples of polytopes!

Example:

Reduction: If $P_1, \ldots, P_k \subset L$ for some k-subspace L $V(P_1, \ldots, P_k, \ldots, P_n) = V_L(P_1, \ldots, P_k)V_{\mathbb{R}^n/L}(\pi(P_{k+1}), \ldots, \pi(P_n)),$ where $\pi : \mathbb{R}^n \to \mathbb{R}^n/L$ is the projection along L.

Reduction: If $P_1, \ldots, P_k \subset L$ for some k-subspace L $V(P_1, \ldots, P_k, \ldots, P_n) = V_L(P_1, \ldots, P_k) V_{\mathbb{R}^n/L}(\pi(P_{k+1}), \ldots, \pi(P_n)),$ where $\pi : \mathbb{R}^n \to \mathbb{R}^n/L$ is the projection along L.

Definition: A tuple (P_1, \ldots, P_n) is irreducible if the sum of any k of the P_i has dimension greater than k, for $1 \le k < n$.

Theorem (Esterov-Gusev '18) There are finitely many irreducible *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with a given mixed volume, up to lattice equivalence (i.e. $GL(n,\mathbb{Z})$ and independent translations).

Reduction: If $P_1, \ldots, P_k \subset L$ for some k-subspace L $V(P_1, \ldots, P_k, \ldots, P_n) = V_L(P_1, \ldots, P_k)V_{\mathbb{R}^n/L}(\pi(P_{k+1}), \ldots, \pi(P_n)),$ where $\pi : \mathbb{R}^n \to \mathbb{R}^n/L$ is the projection along L.

Definition: A tuple (P_1, \ldots, P_n) is irreducible if the sum of any k of the P_i has dimension greater than k, for $1 \le k < n$.

Theorem (Esterov-Gusev '18) There are finitely many irreducible *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with a given mixed volume, up to lattice equivalence (i.e. $GL(n,\mathbb{Z})$ and independent translations).

Idea: $Vol_n(P_1 + \cdots + P_n) < n^n m^{2^n}$, where $m = V(P_1, \dots, P_n)$.

Reduction: If $P_1, \ldots, P_k \subset L$ for some k-subspace L $V(P_1, \ldots, P_k, \ldots, P_n) = V_L(P_1, \ldots, P_k)V_{\mathbb{R}^n/L}(\pi(P_{k+1}), \ldots, \pi(P_n)),$ where $\pi : \mathbb{R}^n \to \mathbb{R}^n/L$ is the projection along L.

Definition: A tuple (P_1, \ldots, P_n) is irreducible if the sum of any k of the P_i has dimension greater than k, for $1 \le k < n$.

Theorem (Esterov-Gusev '18) There are finitely many irreducible *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with a given mixed volume, up to lattice equivalence (i.e. $GL(n,\mathbb{Z})$ and independent translations).

Idea: $\operatorname{Vol}_n(P_1 + \dots + P_n) < n^n m^{2^n}$, where $m = V(P_1, \dots, P_n)$. Challenge: For n = 3, m = 4 this bound is huge. Moreover, the sharp upper bound must be at least $(n - 1 + m)^n$, since $V(\Delta, \dots, \Delta, m\Delta) = m$ for a unimodular simplex Δ . For n = 3, m = 4 we get 216. There are $\sim 6,000,000$ polytopes of volume at most 36 (Balletti'18).

Our approach

- Enough to classify maximal triples (P₁, P₂, P₃)
- For this, employ relations between all possible mixed volumes V(P_i, P_j, P_k), for 1 ≤ i ≤ j ≤ k ≤ 3

Definition: A tuple (P_1, \ldots, P_n) is maximal in P_n if for any $P'_n \supseteq P_n$ we have $V(P_1, \ldots, P_n) < V(P_1, \ldots, P'_n)$. A tuple (P_1, \ldots, P_n) is maximal if it is maximal in each P_i .

Definition: A tuple (P_1, \ldots, P_n) is maximal in P_n if for any $P'_n \supseteq P_n$ we have $V(P_1, \ldots, P_n) < V(P_1, \ldots, P'_n)$. A tuple (P_1, \ldots, P_n) is maximal if it is maximal in each P_i .

 P_1, \ldots, P_{n-1} define mixed area measure $S_{P_1, \ldots, P_{n-1}}$ which is a finite measure on the set of primitive vectors u such that

 $S_{P_1,\ldots,P_{n-1}}(u) = V(P_1^u,\ldots,P_{n-1}^u)$, where P_i^u = face of P_i in direction u

Definition: A tuple (P_1, \ldots, P_n) is maximal in P_n if for any $P'_n \supseteq P_n$ we have $V(P_1, \ldots, P_n) < V(P_1, \ldots, P'_n)$. A tuple (P_1, \ldots, P_n) is maximal if it is maximal in each P_i .

 P_1, \ldots, P_{n-1} define mixed area measure $S_{P_1, \ldots, P_{n-1}}$ which is a finite measure on the set of primitive vectors u such that

 $S_{P_1,\ldots,P_{n-1}}(u) = V(P_1^u,\ldots,P_{n-1}^u)$, where $P_i^u =$ face of P_i in direction u

Proposition: If (P_1, \ldots, P_n) is maximal in P_n then

 $P_n = \operatorname{conv} \{ x \in \mathbb{Z}^n : \langle x, u_i \rangle \le h_i, u_i \in \operatorname{supp} S_{P_1, \dots, P_{n-1}} \}$

where the $h_i \in \mathbb{Z}_{\geq 0}$ satisfy

$$\sum h_i S_{P_1,\ldots,P_{n-1}}(u_i) = V(P_1,\ldots,P_n).$$

Definition: A tuple (P_1, \ldots, P_n) is maximal in P_n if for any $P'_n \supseteq P_n$ we have $V(P_1, \ldots, P_n) < V(P_1, \ldots, P'_n)$. A tuple (P_1, \ldots, P_n) is maximal if it is maximal in each P_i .

 P_1, \ldots, P_{n-1} define mixed area measure $S_{P_1, \ldots, P_{n-1}}$ which is a finite measure on the set of primitive vectors u such that

 $S_{P_1,\ldots,P_{n-1}}(u) = V(P_1^u,\ldots,P_{n-1}^u)$, where $P_i^u = \text{face of } P_i$ in direction u

Definition: A tuple (P_1, \ldots, P_n) is maximal in P_n if for any $P'_n \supseteq P_n$ we have $V(P_1, \ldots, P_n) < V(P_1, \ldots, P'_n)$. A tuple (P_1, \ldots, P_n) is maximal if it is maximal in each P_i .

 P_1, \ldots, P_{n-1} define mixed area measure $S_{P_1, \ldots, P_{n-1}}$ which is a finite measure on the set of primitive vectors u such that

 $S_{P_1,\ldots,P_{n-1}}(u) = V(P_1^u,\ldots,P_{n-1}^u)$, where P_i^u = face of P_i in direction u

Aleksandrov–Fenchel inequality:

 $V(K, L, M)^2 \ge V(K, K, M)V(L, L, M)$ for convex bodies $K, L, M \subset \mathbb{R}^3$.

Denote $v_{ijk} = V(P_i, P_j, P_k)$ for $1 \le i \le j \le k \le 3$.

Aleksandrov-Fenchel inequality:

 $V(K, L, M)^2 \ge V(K, K, M)V(L, L, M)$ for convex bodies $K, L, M \subset \mathbb{R}^3$.

Denote $v_{ijk} = V(P_i, P_j, P_k)$ for $1 \le i \le j \le k \le 3$.

Aleksandrov-Fenchel inequality:

 $V(K, L, M)^2 \ge V(K, K, M)V(L, L, M)$ for convex bodies $K, L, M \subset \mathbb{R}^3$.

Denote $v_{ijk} = V(P_i, P_j, P_k)$ for $1 \le i \le j \le k \le 3$.

Aleksandrov-Fenchel inequality:

 $V(K, L, M)^2 \ge V(K, K, M)V(L, L, M)$ for convex bodies $K, L, M \subset \mathbb{R}^3$.

Denote $v_{ijk} = V(P_i, P_j, P_k)$ for $1 \le i \le j \le k \le 3$.

Aleksandrov-Fenchel inequality:

 $V(K, L, M)^2 \ge V(K, K, M)V(L, L, M)$ for convex bodies $K, L, M \subset \mathbb{R}^3$.

Denote $v_{ijk} = V(P_i, P_j, P_k)$ for $1 \le i \le j \le k \le 3$.

Special case: P_1, P_2, P_3 are 3-dimensional

The middle value $v_{123} = m$.

Special case: P_1, P_2, P_3 are 3-dimensional

Either at least one of the green values is less than $m \dots$

Recursively we can find (P_1, P_1, P_2) . Then find maximal P_3 as before.

Special case: P_1, P_2, P_3 are 3-dimensional

... or all of the green values are equal to m, by Aleksandrov–Fenchel.

Then we can show $P_1 = P_2 = P_3$. Pick P_1 of volume m.

Output: number of triples with $V(P_1, P_2, P_3) = m$

m	<pre># full-dim'l triples</pre>		# all maximal triples	running time
	unmixed			
1	1	1	1	
2	3	4	7	\sim 2 hours
3	6	10	21	~ 1 day
4	17	30	92	\sim 3 days

Pictures (and more) are here: github.com/christopherborger/mixed_volume_classification

Further work

Find a sharp upper bound on Vol_n(P₁ + ··· + P_n) in terms of m = V(P₁,..., P_n).
Conjecture: Vol_n(P₁ + ··· + P_n) ≤ (n − 1 + m)ⁿ attained at (Δ,..., Δ, mΔ).
(True for n = 2, 3 in full-dim case. Also O(mⁿ) holds for n ≤ 6.)

Further work

Find a sharp upper bound on Vol_n(P₁ + · · · + P_n) in terms of m = V(P₁,..., P_n).
Conjecture: Vol_n(P₁ + · · · + P_n) ≤ (n − 1 + m)ⁿ attained at (Δ,..., Δ, mΔ).
(True for n = 2, 3 in full-dim case. Also O(mⁿ) holds for n ≤ 6.)

▶ Is there a "structural" result across all *n*? For example,

- (Hofscheier-Katthän-Nill '19) There are only finitely many spanning polytopes of given volume up to lattice equivalence and unit pyramid construction.
- (Balletti–Borger'19) All *n*-tuples (P_1, \ldots, P_n) with $V(P_1, \ldots, P_n) = (P_1 + \cdots + P_n)^{\circ} \cap \mathbb{Z}^n + 1$ are lattice projections onto $(\Delta_{n-1}, \ldots, \Delta_{n-1})$, except for finitely many exceptions.

Further work

Find a sharp upper bound on Vol_n(P₁ + · · · + P_n) in terms of m = V(P₁,..., P_n).
Conjecture: Vol_n(P₁ + · · · + P_n) ≤ (n − 1 + m)ⁿ attained at (Δ,..., Δ, mΔ).
(True for n = 2, 3 in full-dim case. Also O(mⁿ) holds for n ≤ 6.)

▶ Is there a "structural" result across all n? For example,

- (Hofscheier-Katthän-Nill '19) There are only finitely many spanning polytopes of given volume up to lattice equivalence and unit pyramid construction.
- (Balletti–Borger'19) All *n*-tuples (P_1, \ldots, P_n) with $V(P_1, \ldots, P_n) = (P_1 + \cdots + P_n)^{\circ} \cap \mathbb{Z}^n + 1$ are lattice projections onto $(\Delta_{n-1}, \ldots, \Delta_{n-1})$, except for finitely many exceptions.

Thank you!