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What are toric codes? (reminder and setup)

I Let T = (F∗q)r = {p1, . . . , pn}, the algebraic torus.

I Let P be a lattice polytope in Rr .
It defines a finite dimensional space of Laurent polynomials:

LP = spanFq
{ta | a ∈ P ∩ Zr}, where ta = ta1

1 · · · t
ar
r .

Evaluation Map:

evT : LP → Fn
q f 7→ (f (p1), . . . , f (pn)).

Toric Code: CP = evT(LP).

Example:

Let Fq = F4 and r = 2. Then |T| = |(F∗q)2| = 9.

LP = {λ1t1 + λ2t2 + λ3t1t2 + λ4t
2
1 t

2
2 | λi ∈ F4}.

In fact, CP is a [9, 4, 3]4-code.
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Parameters and some properties of CP
D. Ruano (2007): The evaluation map evT : LP → Fn

q is injective iff
points in P ∩ Zr are distinct in (Z/(q − 1)Z)r .

In this case CP has parameters:
n = (q − 1)r (length) k = |P ∩ Zr | (dimension) d =? (min distance)

Serre (1989) If P = `4r , where 4r is the standard simplex then

d = (q − 1)r−1(q − 1− `).

Little, Schwarz (2007) If P = [0, `1]× · · · × [0, `r ] then

d = (q − 1− `1) · · · (q − 1− `r ).

J. Soprunova, — (2010) For any lattice polytopes P, Q

d(CP×Q) = d(CP)d(CQ).

d(C`Pyr(Q)) = (q − 1)d(C`Q), for any ` = 1, 2, 3, . . .
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Largest number of zeros on hypersurfaces
Recall that

d(CP) = n − Nq(P),

where

Nq(P) = max
06=f∈LP

|Z (f )| and Z (f ) = {p ∈ T | f (p) = 0},

the zero set of f in T.

Serre (1989): For q > `, among all polynomials of degree `, the
polynomials that factor the most have the most zeroes in T.

Thus we should take f to be the product of linear factors, so

Nq(`4r ) = max
06=f∈L`4r

|Z (f )| = `(q − 1)r−1,

attained at f (t1, . . . , tr ) = (t1 − α1) · · · (t1 − α`) for distinct
α1, . . . , α` ∈ F∗q.

Similar principle holds in general for large q.
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Connecting Lemma
Little-Schenck (2006) (r = 2); J. Whitney (2010) (r = 3)

Theorem
Let P be a lattice polytope in Rr and q > α(P) (large enough). For any
f , g ∈ LP consider factorizations into absolutely irreducible factors:

f = f1 · · · fs and g = g1 · · · gt ,

and assume the gi are distinct. Then s < t implies |Z (f )| < |Z (g)|.

Idea for r = 2: If Y is an irreducible projective curve over Fq then

Hasse-Weil Bound q + 1− 2g
√
q ≤ |Y (Fq)| ≤ q + 1 + 2g

√
q

where g is the genus of Y . On one hand,

|Z (f )| ≤
s∑

i=1

|Z (fi )| ≤ sq + lower order terms
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Theorem
Let P be a lattice polytope in Rr and q > α(P) (large enough). For any
f , g ∈ LP consider factorizations into absolutely irreducible factors:

f = f1 · · · fs and g = g1 · · · gt ,

and assume the gi are distinct. Then s < t implies |Z (f )| < |Z (g)|.

Idea for r = 2: If Y is an irreducible projective curve over Fq then

Hasse-Weil Bound q + 1− 2g
√
q ≤ |Y (Fq)| ≤ q + 1 + 2g

√
q

where g is the genus of Y . On the other hand,

tq + lower order terms ≤
t∑

i=1

|Z (gi )| −
∑
i<j

|Z (gi ) ∩ Z (gj)| ≤ |Z (g)|
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Connecting Lemma
Little-Schenck (2006) (r = 2); J. Whitney (2010) (r = 3)

Theorem
Let P be a lattice polytope in Rr and q > α(P) (large enough). For any
f , g ∈ LP consider factorizations into absolutely irreducible factors:

f = f1 · · · fs and g = g1 · · · gt ,

and assume the gi are distinct. Then s < t implies |Z (f )| < |Z (g)|.

Main Questions:

1. What is the largest number of factors f ∈ LP may have?

2. What do the irreducible factors in this case look like?

3. Can we bound the number of Fq-zeros of irreducible factors?

Ivan Soprunov, Cleveland State University Toric codes and Minkowski length of polytopes 7/19



Connecting Lemma

In fact, the first two questions are about the geometry of P.

1. The largest number of factors f ∈ LP may have is the Minkowski
length of P.

2. The irreducible factors of such f have Newton polytopes that are
strongly indecomposable.

The third question is more algebraic.

3. Bound the maximum number of Fq-zeros Nq(P) where P is strongly
indecomposable.

Once we know that we can bound the minimum distance of CP
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Newton polytopes and Minkowski Sum

Let f be a Laurent polynomial f ∈ Fq[t1, . . . , tr ]. Let P(f ) be its Newton
Polytope: P(f ) = conv.hull { exponents of f } ⊂ Rr

Note: Newton polytope generalizes the notion of degree:

P(fg) = P(f ) + P(g)

The Minkowski sum of polytopes P, Q in Rr is

P + Q = {p + q ∈ Rr | p ∈ P, q ∈ Q}.

Q

++ =

P P 2P P

=

Q P +
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Minkowski length L(P): Definition

Let P be a lattice polytope in Rr .

Definition: The largest number of lattice polytopes of positive dimension
whose Minkowski sum is contained in P is called the Minkowski length:

L(P) = max{L ∈ N | Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0}.

Polytopes with L(P) = 1 are called strongly indecomposable.
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Minkowski length L(P): Definition

Let P be a lattice polytope in Rr .

Definition: The largest number of lattice polytopes of positive dimension
whose Minkowski sum is contained in P is called the Minkowski length:

L(P) = max{L ∈ N | Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0}.

Polytopes with L(P) = 1 are called strongly indecomposable.

Example

I L(P) = 3

I Every primitive segment (i.e.
with exactly two lattice
points) is strongly
indecomposable.
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Minkowski length L(P): Connection

Definition: The largest number of lattice polytopes of positive dimension
whose Minkowski sum is contained in P is called the Minkowski length:

L(P) = max{L ∈ N | Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0}.

Polytopes with L(P) = 1 are called strongly indecomposable.

Claim: L(P) equals the largest number of factors of f in LP .

Indeed, let f ∈ LP be a polytope with the largest number of factors

f = f1 · · · fL.

Then P(f ) = P(f1) + · · ·+ P(fL) ⊆ P. Hence L ≤ L(P).
Conversely, let Q = Q1 + · · ·+ QL(P) ⊆ P be a maximal decomposition.
Choose any gi with P(gi ) = Qi . Then the polynomial g = g1 · · · gL(P) is
in LP and, hence, L(P) ≤ L.
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Minkowski length L(P): Properties

Simple Properties:

I Invariance: L(P) is AGL(r ,Z)-invariant,

I Monotonicity: L(Q) ≤ L(P) if Q ⊆ P,

I Superadditivity: L(P) + L(Q) ≤ L(P + Q),

Note: AGL(r ,Z)-equivalent polytopes produce equivalent codes!

Some examples:

I L(`4r ) = ` for the simplex 4r and any ` ∈ N.

I For P = [0, `1]× · · · × [0, `r ] we have L(P) = `1 + · · ·+ `r .

I L(P × Q) = L(P) + L(Q)
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How to compute L(P)?

Let L = L(P). The maximal decompositions Q1 + · · ·+ QL ⊆ P form a
poset with respect to inclusion (up to a lattice translation). Minimal
elements are smallest maximal decompositions.

Proposition
Every smallest maximal decomposition is a sum of primitive segments
with at most 2r − 1 distinct direction vectors.

Reason: The direction vectors v1, . . . , vk are non-zero mod (2Z)r .
If k ≥ 2r then vi + vj = 2v for some i < j .

This produced a simple algorithm for computing L(P) for r = 2, 3.
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Strongly indecomposable lattice polytopes

Claim: If L(P) = 1 then |P ∩ Zr | ≤ 2r .

Reason: If |P ∩ Zr | > 2r then there are two points p, q ∈ P ∩ Zr

congruent mod (2Z)r . Then the segment [p, q] ∈ P is not primitive
(contains an interior lattice point) so L(P) > 1.

Strongly indecomposable lattice polytopes in R2

primitive lattice segments
two classes of triangles

42 T0
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A bound for toric surface codes

Note By observation and Hasse-Weil

I if P(f ) = primitive segment then |Z (f )| = q − 1

I if P(f ) = 42 then |Z (f )| = q − 2

I if P(f ) = T0 then |Z (f )| ≤ q − 1 + 2
√
q − 1

Moreover: Every maximal decomposition contains at most one T0.

Theorem (J. Soprunova, —, 2008)
Let P be lattice polygon in R2, and q > α(P). Then

d(CP) ≥ (q − 1)(q − 1− L(P))− (2
√
q − 1)

(Remove 2
√
q − 1 term if no T0 appears in a maximal decomposition.)
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Strongly indecomposable lattice polytopes in R3

Let L(P) = 1. First observations:

– P has at most 23 = 8 lattice points.
– Every edge of P (in fact, every segment in P) is primitive.
– Every face of P is a triangle (either a 42 or a T0).
– P can have arbitrarily large volume.

Theorem (Whitney, 2010; Santos-Blanco, 2016)
Let L(P) = 1, dimP = 3. Then

I P may have 4, 5, or 6 vertices.

I There are infinite families of such P:

I hollow and clean tetrahedra
I hollow clean and non-clean double pyramids
I hollow clean and non-clean 6 vertex polytopes

I There are 38 + 56 + 13 = 107 classes of non-hollow P.
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Let L(P) = 1. First observations:

– P has at most 23 = 8 lattice points.
– Every edge of P (in fact, every segment in P) is primitive.
– Every face of P is a triangle (either a 42 or a T0).
– P can have arbitrarily large volume.

Theorem (Whitney, 2010; Santos-Blanco, 2016)
Let L(P) = 1, dimP = 3. Then

I P may have 4, 5, or 6 vertices.

I There are infinite families of such P:

I hollow and clean tetrahedra
I hollow clean and non-clean double pyramids
I hollow clean and non-clean 6 vertex polytopes

I There are 38 + 56 + 13 = 107 classes of non-hollow P.
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Strongly indecomposable lattice polytopes in R3

What do maximal decompositions look like?

A lot has been understood recently by Beckwith, Grimm, Meyer,
Soprunova, Weaver. In particular,

Theorem

I Any maximal decomposition contains at most one polytope with
more than 5 lattice points. If it does then the other summands are
primitive segments.

I Any maximal decomposition contains at most two distinct polytopes
with 4 or 5 lattice points.
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A bound for toric 3-fold codes?

What about bounds on Nq(P) for strongly indecomposable P?

Theorem (Whitney, 2010)
If P belongs to a finite family then for q > 41

Nq(P) ≤ 1 + F (P)/2 + (6 Vol(P)− F (P)/2− 2)q + q2

If P belongs to an infinite family then there are bounds involving
parameters of the family.

No simple bound for d(CP) yet, but we are hopeful!
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