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Main Problem

Let K1, . . . ,Kn be convex sets in Rn with Vol(Ki ) ≥ 1 and fixed value of
the mixed volume m = V (K1, . . . ,Kn). Find the sharp upper bound for
the volume of the Minkowski sum in terms of m and n:

Vol(K1 + · · ·+ Kn) ≤ f (m, n).

Definitions

I Minkowski addition Given A,B ⊂ Rn

A + B = {a + b ∈ Rn | a ∈ A, b ∈ B}.
I Mixed volume V (K1, . . . ,Kn) is the unique symmetric and

multilinear w.r.t. Minkowski addition function satisfying
V (K , . . . ,K ) = Vol(K ).
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1

2
(Vol(A + B)− Vol(A)− Vol(B))
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Plan

1. Motivation (sparse polynomial systems)

2. Conjecture and Results (convex geometry)

3. Methods (combinatorics)
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Generic polynomial systems

Example

{
f1(x , y) = c1,(0,0) + c1,(2,0)x

2 + c1,(0,1)y = 0

f2(x , y) = c2,(0,0) + c2,(1,0)x + c2,(0,2)y
2 = 0

Generic c1,a, c2,a ∈ C

Friday, May 29, 2020 11:34 AM

Fix finite subsets A1, . . . ,An of Zn and pick generic coefficients

{ci,a ∈ C | a ∈ Ai , 1 ≤ i ≤ n} \ set of measure zero

Generic Polynomial System: f1 = · · · = fn = 0 where

fi (x1, . . . , xn) =
∑

a∈Ai
ci,ax

a1
1 · · · xann , a = (a1, . . . , an) ∈ Ai

We call Ai supports, Pi = conv(Ai ) Newton polytopes of the system.
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Esterov’s result on solvability of polynomial systems

Theorem (Esterov, 2018) Let f1 = · · · = fn = 0 be generic system with
supports A1, . . . ,An and Newton polytopes P1, . . . ,Pn such that

I the Ai cannot be translated to a proper sublattice of Zn

I for any k < n, no k of the Pi can be translated to a k-dim subspace
of Rn

Then the system is solvable in radicals if and only if it has at most 4
solutions.

Note: n = 1 gives the classical Abel-Ruffini theorem

Theorem (Bernstein–Khovanskii–Kushnirenko, 1975) A generic system
with Newton polytopes P1, . . . ,Pn has exactly n!V (P1, . . . ,Pn) solutions
in (C \ {0})n.
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Two Problems of Esterov

Esterov’s Problem 1 Describe all collections of lattice polytopes
(P1, . . . ,Pn) with a given value of their mixed volume V (P1, . . . ,Pn).

Lattice equivalence Apply a simultaneous GL(n,Z)-transformation and
independent lattice translations to (P1, . . . ,Pn).

Finiteness Theorem 1 (Lagarias–Ziegler’91) Given n,m ∈ N there are
finitely many lattice polytopes P in Rn with n! Vol(P) = m, up to lattice
equivalence.

Finiteness Theorem 2 (Esterov–Gusev’18) Given n,m ∈ N there are
finitely many collections of n-dim’l lattice polytopes P1, . . . ,Pn in Rn

with n!V (P1, . . . ,Pn) = m, up to lattice equivalence.

Idea: Apply the Aleksandrov-Fenchel inequality repeatedly to show

Vol(P1 + · · ·+ Pn) ≤ O(m2n

)

Hence, Finiteness Theorem 1 =⇒ Finiteness Theorem 2.

Esterov’s Question 2 What is the sharp bound for Vol(P1 + · · ·+ Pn)?
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Conjecture and Results

Let K1, . . . ,Kn be convex bodies in Rn of volume at least 1 with
m = V (K1, . . . ,Kn) is fixed.

Conjecture
Vol(K1 + · · ·+ Kn) ≤ (m + n − 1)n.

The above bound is attained when K1 = mK and K2 = · · · = Kn = K
with Vol(K ) = 1.

Theorem 1 The conjecture is true for n = 2, 3.

Theorem 2 Vol(K1 + · · ·+ Kn) ≤ O(mn)
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Estimating Vol(A + B) in terms of m = V (A,B)

n = 2:
Minkowski inequality: Vol(A) Vol(B) ≤ V (A,B)2

Vol(A + B) = V (A + B,A + B) = V (A,A) + 2V (A,B) + V (B,B)
= Vol(A) + 2m + Vol(B).

Vol(A) ≥ 1 Vol(A) Vol(B) ≤ m2

Vol(B) ≥ 1

Maximum is attained when
A = mB, Vol(B) = 1, so

Vol(A) = m2 and

Vol(A + B) = (m + 1)2
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Estimating Vol(A + B + C ) in terms of V (A,B ,C )

n = 3: Vol(A + B + C ) = V (A,A,A)

+3V (A,A,B) + 3V (A,A,C )

+3V (A,B,B) + 6V (A,B,C ) + 3V (A,C ,C )

+V (B,B,B) + 3V (B,B,C ) + 3V (B,C ,C ) + V (C ,C ,C ).

Vol(A + B + C ) = V (3, 0, 0)

+3V (2, 1, 0) + 3V (2, 0, 1)

+3V (1, 2, 0) + 6V (1, 1, 1) + 3V (1, 0, 2)

+V (0, 3, 0) + 3V (0, 2, 1) + 3V (0, 1, 2) + V (0, 0, 3).

Vol(A + B + C ) = V (3, 0, 0)

+3V (2, 1, 0) + 3V (2, 0, 1)

+3V (1, 2, 0) + 6V (1, 1, 1) + 3V (1, 0, 2)

+V (0, 3, 0) + 3V (0, 2, 1) + 3V (0, 1, 2) + V (0, 0, 3).
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Mixed volume configuration space MVn

In general, for tuple K = (K1, . . . ,Kn) of convex bodies in Rn, let

VK (p) = V (K1, . . . ,K1︸ ︷︷ ︸
p1

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
pn

)

and ∆n = {p = (p1, . . . , pn) | pi ∈ Z≥0, p1 + · · ·+ pn = n}. Then

Vol(K1 + · · ·+ Kn) =
∑
p∈∆n

(
n

p

)
VK (p).

We need to maximize this linear function on the mixed volume
configuration space:

MVn = {(VK (p))p∈∆n
| K = (K1, . . . ,Kn) with Vol(Ki ) ≥ 1}.

Challenge: We know MVn for n = 2 (Shephard’60), but not for n > 2.
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Approximating MVn using Aleksandrov-Fenchel relations

Aleksandrov-Fenchel inequality

V (A,A,K3, . . . ,Kn)V (B,B,K3, . . . ,Kn) ≤ V (A,B,K3, . . . ,Kn)2

These are log-concavity relations on VK along standard directions ei − ej :

VK (p + ei − ej)VK (p + ej − ei ) ≤ VK (p)2
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Approximating MVn using Aleksandrov-Fenchel relations

We have

MVn ⊂ AFn := {(Vp)p∈∆n | Vp+ei−ejVp+ej−ei ≤ V 2
p , Vp ≥ 1}.

We can turn this into a linear optimization problem by taking log base m

logMVn ⊂ logAFn := {(vp)p∈∆n | vp+ei−ej + vp+ej−ei ≤ 2vp, vp ≥ 0}.

Then we can maximize the convex function in (vp, p ∈ ∆n)

F :=
∑
p∈∆n

(
n

p

)
mvp

on the Aleksandrov-Fenchel Polytope AFPn = logAFn ∩ {v(1,...,1) = 1}.
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Approximating MVn using Aleksandrov-Fenchel relations

Theorem (n = 3) The maximum of Vol(K1 + K2 + K3) equals (m + 2)3

where m = V (K1,K2,K3) and is attained when K1 = mK ,K2 = K3 = K
and Vol(K ) = 1.

Proof Compute the 24 vertices of the A-F polytope AFP3

(rather the seven S3-orbits of vertices):
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AFP3 has 24 vertices that are split into 7 orbits under the action of S3. The
diagrams present the coordinates vi(p) of the seven vertices v1, . . . , v7.

Proposition 5.1 (Vertices of AFP3). The polytope AFP3 has 24 vertices, which are split into 7
orbits under the action of S3 on AFP3, with the orbits generated by the following seven vertices

v1 =e(1,1,1),

v2 =2e(2,1,0) + e(1,2,0) + e(1,1,1),

v3 =2e(2,1,0) + 2e(1,2,0) + e(1,1,1),
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v7 =2
3e(2,1,0) + 4

3e(1,2,0) + 4
3e(2,0,1) + 2

3e(1,0,2) + 2
3e(0,2,1) + 4

3e(0,1,2) + e(1,1,1).

Proof. We used sagemath [The18] to determine the vertices of AFP3, given by a system of linear
inequalities. Sagemath is one of the many possibilities to do computations with polytopes over the
field of rational numbers. Polymake is yet another possibility. ⇤

Proof of Theorem 1.4. For all three assertions, the equality case is verified in a straightforward way.
We prove the respective inequalities.

By Remark 3.2, Vol(K1) Æ m3, so (1) follows. For the verification of assertions (2) and (3), we
use Proposition 5.1. We fix the standard component-wise partial order Æ on R�3,3 , that is, v Æ w
if and only if v(p) Æ w(p) holds for every p œ �3,3. It is clear that the vertices v1, . . . , v6 of AFP3
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Proof. We used sagemath [The18] to determine the vertices of AFP3, given by a system of linear
inequalities. Sagemath is one of the many possibilities to do computations with polytopes over the
field of rational numbers. Polymake is yet another possibility. ⇤

Proof of Theorem 1.4. For all three assertions, the equality case is verified in a straightforward way.
We prove the respective inequalities.

By Remark 3.2, Vol(K1) Æ m3, so (1) follows. For the verification of assertions (2) and (3), we
use Proposition 5.1. We fix the standard component-wise partial order Æ on R�3,3 , that is, v Æ w
if and only if v(p) Æ w(p) holds for every p œ �3,3. It is clear that the vertices v1, . . . , v6 of AFP3
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Approximating MVn using Aleksandrov-Fenchel relations

Theorem (n = 3) The maximum of Vol(K1 + K2 + K3) equals (m + 2)3

where m = V (K1,K2,K3) and is attained when K1 = mK ,K2 = K3 = K
and Vol(K ) = 1.

Proof Compute the 24 vertices of the A-F polytope AFP3

(rather the seven S3-orbits of vertices):
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inequalities. Sagemath is one of the many possibilities to do computations with polytopes over the
field of rational numbers. Polymake is yet another possibility. ⇤

Proof of Theorem 1.4. For all three assertions, the equality case is verified in a straightforward way.
We prove the respective inequalities.

By Remark 3.2, Vol(K1) Æ m3, so (1) follows. For the verification of assertions (2) and (3), we
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inequalities. Sagemath is one of the many possibilities to do computations with polytopes over the
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Proof of Theorem 1.4. For all three assertions, the equality case is verified in a straightforward way.
We prove the respective inequalities.
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Proof. We used sagemath [The18] to determine the vertices of AFP3, given by a system of linear
inequalities. Sagemath is one of the many possibilities to do computations with polytopes over the
field of rational numbers. Polymake is yet another possibility. ⇤

Proof of Theorem 1.4. For all three assertions, the equality case is verified in a straightforward way.
We prove the respective inequalities.

By Remark 3.2, Vol(K1) Æ m3, so (1) follows. For the verification of assertions (2) and (3), we
use Proposition 5.1. We fix the standard component-wise partial order Æ on R�3,3 , that is, v Æ w
if and only if v(p) Æ w(p) holds for every p œ �3,3. It is clear that the vertices v1, . . . , v6 of AFP3

F (α6) =
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(
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mvp = (1 + 3 + 3 + 1) + (3 + 6 + 3)m+ (3 + 3)m2 +m3

= (m + 2)3
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Approximating MVn using Aleksandrov-Fenchel relations

Theorem: The Aleksandrov-Fenchel relations imply the following sharp
bound

Vp ≤ m|p|,

where |p| =
∏

pi>0 pi and m = V(1,...,1).

Corollary: The Aleksandrov-Fenchel relations cannot produce better
bound than

V (K1 + · · ·+ Kn) ≤ O(mε(n)),

where 3(n−2)/3 ≤ ε(n) ≤ 3n/3.
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Approximating MVn using Square relations

Square Inequality (Brazitikos, Giannopoulos, Liakopoulos ’18)

VK (p)V (p + a+ b) ≤ 2V (p + a)V (p + b), where a = ei − e`, b = ej − e`.

MVn ⊂ SQn := {(Vp)p∈∆n | A-F and Square relations}.
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Approximating MVn using Square relations

Theorem: The Square and Aleksandrov-Fenchel relations imply the
following bound

Vp ≤ C (n)mmax(p),

where max(p) = maxi (pi ) and m = V(1,...,1). Consequently,

Vol(K1 + · · ·+ Kn) ≤ O(mn).

By the way, C (n) = 2n(n−1)(bn/2c
2 )
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Approximating MVn using Square relations

Square and Aleksandrov-Fenchel inequalities combined produce new
(weak) log-concavity directions!

Sunday, May 31, 2020 5:14 PM


(ab)2 ≤ (2cd)2

ce ≤ b2 ⇒ ef ≤ 4d2

cf ≤ a2
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Approximating MVn using Square relations

How to show that V2200 ≤ 4m2?

Multiply two new log-concave
directions and one (A-F)2:

V2200 ≤ 4V 2
1120

V2200 ≤ 4V 2
1102

(V1120V1102)2 ≤ (m2)2

⇒ V2200 ≤ 4m2
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