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Sparse Polynomial Systems

Study solutions to Laurent polynomial systems in the torus (C∗)n.
Sparse Polynomial f ∈ C[x±11 , . . . , x±1n ]:

f =
∑
a∈A

cax
a, where xa = xa11 · · · x

an
n , ca ∈ C∗.

The set of exponents A ⊂ Zn is the support of f .
Its convex hull P = conv(A) is the Newton Polytope of f .

Sparse Polynomial System
f1 = 0, support A1

· · ·
fn = 0, support An

In matrix form:

CxA = 0, xA =

xa1

...
xaN


where A = A1 ∪ · · · ∪ An total support, A = {a1, . . . , aN} ⊂ Zn

and C ∈ Mn×N(C) coefficient matrix
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BKK Bound

Theorem (Kushnirenko 1976)
The system CxA = 0 has at most n! vol(P) isolated solutions in (C∗)n,
where P = conv(A) is the Newton polytope of the system.

Theorem (Bernstein–Kushnirenko–Khovanskii 1978)
The system CxA = 0 has at most n!v(P1, . . . ,Pn) isolated solutions in
(C∗)n, where Pi = conv(Ai ) is the Newton polytope of the fi .

Here v(P1, . . . ,Pn) is the mixed volume of the polytopes P1, . . . ,Pn.

Moreover, the bounds are met iff certain“facial subsystems” are
inconsistent.

Question: Is there a quick way to see if the bound n! vol(P) is met
without checking inconsistency of facial subsystems?
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BKK Bound

Answer: Yes, sometimes.
Example: Consider the system


f1 = 1 + 3x + 5xy + y − 2z + 2yz = 0,

f2 = 1 + x − 3xy + 3y + z − yz = 0,

f3 = 1 + 3x + xy + 3y − z + yz = 0.

P1 = P2 = P3 = P

By Kushnirenko bound it has at most 3! vol(P) = 3 isolated solutions.
In fact, it has less! Here is how we can see that.
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BKK Bound

Example: Consider the system CxA = 0.

C =

 1 3 5 1 −2 2
1 1 −3 3 1 −1
1 3 1 3 −1 1



Ā =


1 1 1 1 1 1
0 1 1 0 0 0
0 0 1 1 0 1
0 0 0 0 1 1



P1 = P2 = P3 = P

Theorem (Bihan, S, 2018): Check if rkCF ≥ rk ĀF for every face F ( P.
If not, the bound n! vol(P) is not met.

Here rkCF < rk ĀF for F = {5, 6}.

Reason: CxA = 0 is equivalent to a system with v(P1,P2,P3) < vol(P).
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Ā =


1 1 1 1 1 1
0 1 1 0 0 0
0 0 1 1 0 1
0 0 0 0 1 1



P1 = P2 = P3 = P

Theorem (Bihan, S, 2018): Check if rkCF ≥ rk ĀF for every face F ( P.
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Mixed Volume: Definition

Recall the Minkowski sum P + Q = {p + q ∈ Rn | p ∈ P, q ∈ Q}
for any P,Q ⊂ Rn.

Mixed Volume is the coefficient of λ1 · · ·λn in the polynomial

vol(λ1P1+· · ·+λnPn) = vol(P1)λn1+· · ·+v(P1, . . . ,Pn)λ1 · · ·λn+. . .

It can be expressed as

v(P1, . . . ,Pn) =
1

n!

n∑
m=1

(−1)n+m
∑

i1<···<im

voln(Pi1 + · · ·+ Pim)

Note: Mixed volume is symmetric, additive, and satisfies
v(P, . . . ,P) = vol(P).
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Mixed Volume: Example

Example: Consider P1,P2 in R2

We have v(P1,P2) = 1
2 (vol(P1 + P2)− vol(P1)− vol(P2)) = 2.
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Mixed Volume: Properties

Non-negativity and Monotonicity:

I v(P1, . . . ,Pn) ≥ 0

I v(P1, . . . ,Pn) ≤ v(Q1, . . . ,Qn) for Pi ⊆ Qi , 1 ≤ i ≤ n.

(a) (b) (c)

In each case v(P1,P2) = 1
2 .
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Mixed Volume: Strict Positivity

Definition: A collection (P1, . . . ,Pn) for is called non-degenerate if
there exists segments Si ⊆ Pi with linearly independent directions.

Theorem (Minkowski)

Let P1, . . . ,Pn be convex bodies in Rn. Then v(P1, . . . ,Pn) > 0 iff
(P1, . . . ,Pn) is non-degenerate.
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Mixed Volume: Strict Monotonicity

Special Case:
When is v(P1,P2, . . . ,Pn) < v(Q1,P2, . . . ,Pn) for P1 ⊆ Q1?

Let hP : Sn−1 → R, hP(u) = max{〈u, v〉 | v ∈ P} be the support
function of P and Pu = P ∩ {v ∈ Rn | 〈u, v〉 = hP(u)} the face of P
corresponding to u.

Integral Formula:

vol(P) =
1

n

∑
u∈Sn−1

hP(u) vol(Pu)
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n

∑
u∈Sn−1

hP1(u)v(Pu
2 , . . . ,P

u
n )

Note:

I hP1(u) ≤ hQ1(u) for all u ∈ Sn−1 if and only if P1 ⊆ Q1

I hP1(u) < hQ1(u) if and only if Pu
1 does not touch Qu

1

Therefore, v(P1,P2, . . . ,Pn) < v(Q1,P2, . . . ,Pn) if and only if
there exists u ∈ Sn−1 such that

• Pu
1 does not touch Qu

1 and
• (Pu

2 , . . . ,P
u
n ) is non-degenerate.
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Mixed Volume: Strict Monotonicity

Theorem (Bihan-S, 2018)

Let P1, . . . ,Pn be polytopes in Rn contained in an n-dimensional
polytope P. Then

v(P1, . . . ,Pn) < vol(P)

if and only if there is a proper face of P of dimension k which is
touched by at most k of the P1, . . . ,Pn.

v(P1,P2) = v(P) v(P1,P2) < v(P)

P1 blue
P2 green
P gray
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Application to sparse systems

Corollary (Bihan-S, 2018)

Let CxA = 0 be a sparse system with Newton polytope
P = conv(A). If there exists a face F ⊂ P such that rkCF < rk ĀF

then the system has less than n! vol(P) isolated solutions.

Corollary (Bihan-S, 2018)

Let CxA = 0 be a sparse system with n-dim Newton polytope
P = conv(A). If no maximal minor of C vanishes then the system
has exactly n! vol(P) isolated solutions.
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Mixed Volume: Strict Monotonicity

Theorem (Bihan-S, 2018)

Let P1 ⊆ Q1, . . . ,Pn ⊆ Qn be polytopes in Rn. Then

v(P1, . . . ,Pn) < v(Q1, . . . ,Qn)

if and only if there is u ∈ Sn−1 such that the collection

(Qu
i | Pu

i ⊆ Qu
i )︸ ︷︷ ︸

touched faces

∪(Qi | Pu
i 6⊆ Qu

i )

is non-degenerate.
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Questions

1. Can one describe minimal/maximal collections (P1, . . . ,Pn)
with fixed v(P1, . . . ,Pn)?

2. If v(P1, . . . ,Pn) < vol(P) then

n! vol(P)− n!v(P1, . . . ,Pn) ≥ 1.

Can one have a better estimate for this gap?

— The End —
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