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Counting rational points on hypersurfaces

Tsfasman’s Question (1989, Luminy): What is the largest number of
Fq-points on a hypersurface H ⊂ Pd of degree t? That is,

Nq(t, d) = max
deg f=t

{p ∈ Pd(Fq) | f (p) = 0},

over all homogeneous f ∈ Fq[x0, . . . , xd ] of degree t?

Serre’s Answer (1989): For q ≥ t, the polynomials that factor the most
have the most zeroes over Fq. Thus we should take f to be a product of
linear factors and so

Nq(t, d) = t
qd − 1

q − 1
− (t − 1)

qd−1 − 1

q − 1
= tqd−1 + qd−2 + · · ·+ 1.
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Counting rational points on hypersurfaces

More generally, let X be a toric variety and D is a T-invariant Cartier
divisor on X with polytope P = PD . Then the Fq-global sections of
OX (D) can be identified with

L(P) :=
⊕

a∈P∩Zd

Fqx
a.

Question: Given P, what is the largest number of zeroes Nq(P) in (F∗q)d

a polynomial f ∈ L(P) may have?

Example: Nq(t∆) = t(q − 1)d−1, by Serre’s argument

Easier Questions:

I What is the largest number of factors a polynomial f ∈ L(P) may
have?

I What do the factors in this case look like?
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Counting rational points on hypersurfaces

In fact, the easier questions are about the geometry of P.

I The largest number of factors f ∈ L(P) may have is the
Minkowski length of P.

I The irreducible factors of such f have Newton polytopes that
are strongly indecomposable.
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Minkowski length: Definition

Let P be a lattice polytope in Rd .

Definition: The largest number of lattice polytopes of positive
dimension whose Minkowski sum is contained in P is called the
Minkowski length:

L(P) = max{L ∈ N | Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0}.

Lattice polytopes with L(P) = 1 are strongly indecomposable.
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I L(t∆) = t for a
unimodular simplex ∆
and t ∈ N.

Ivan Soprunov (with Jenya Soprunova), Cleveland State University Minkowski Length of Lattice Polytopes 5/15



Minkowski length: Definition

Let P be a lattice polytope in Rd .

Definition: The largest number of lattice polytopes of positive
dimension whose Minkowski sum is contained in P is called the
Minkowski length:

L(P) = max{L ∈ N | Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0}.

Lattice polytopes with L(P) = 1 are strongly indecomposable.

Example

I L(P) = 3

I L(t∆) = t for a
unimodular simplex ∆
and t ∈ N.

Ivan Soprunov (with Jenya Soprunova), Cleveland State University Minkowski Length of Lattice Polytopes 5/15



Minkowski length: Properties

Simple Properties:

I Invariance: L(P) is AGL(d ,Z)-invariant,

I Monotonicity: L(Q) ≤ L(P) if Q ⊆ P,

I Superadditivity: L(P) + L(Q) ≤ L(P + Q),

I Bound:
|P ∩ Zd | ≤ (L(P) + 1)d

In particular, if P is strongly indecomposable then

|P ∩ Zd | ≤ 2d .

...Think about P ∩ (Z/2Z)d ...
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Strongly indecomposable lattice polytopes in small
dimension

dimP = 1 primitive lattice segments
dimP = 2 two classes of triangles

Theorem (Josh Whitney, 2010)

Let P be strongly indecomposable, dimP = 3. Then

I P may have 4, 5, or 6 vertices only
I There are infinite families of such P:

I empty and clean tetrahedra
I empty clean and non-clean double pyramids
I empty clean and non-clean 6 vertex polytopes

I There are 38 + 56 + 13 = 107 classes of non-empty P
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Back to counting rational points on hypersurfaces

Theorem (S-Soprunova, ’08)

Let P be a lattice polygon with L = L(P). Then

Nq(P) ≤ L(q − 1) + 2
√
q − 1

for q > α(P).

Theorem (Whitney, ’10)
Let P be a lattice polytope in R3 with L = L(P). Then for q > β(P)

Nq(P) ≤ Nq(Q1) + · · ·+ Nq(QL),

for any Q1 + · · ·+ QL ⊆ P and Nq(Qi ) have explicit formulas based on
the classification of 3-dim strongly indecomposable polytopes.

Theorem (Beckwith–Grimm–Soprunova–Weaver, ’12)
The total number of interior points in the Qi in any maximal
decomposition is at most 4.
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How to compute L(P)?

Let L = L(P). The maximal decompositions Q1 + · · ·+ QL ⊆ P
form a poset with respect to inclusion (up to a lattice translation).
Minimal elements are smallest maximal decompositions.

Proposition

Every smallest maximal decomposition is a lattice zonotope
Zmin ⊆ P with at most 2d − 1 distinct direction vectors.

Reason: The direction vectors v1, . . . , vk are non-zero mod 2.
If k ≥ 2d then vi + vj = 2v for some i < j .
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Relation to Lattice Diameter

Let P be a lattice polytope in Rd .

Definition: The largest number of lattice polytopes of positive
dimension whose Minkowski sum is at most n-dimensional and is
contained in P is called the n-th Minkowski length:

Ln(P) = max{L ∈ N | Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0, dimQ ≤ n}.

Clearly L1(P) ≤ L2(P) ≤ · · · ≤ Ld(P) = L(P).
Note that L1(P) = lattice diameter of P.

Example

I L1(P) = 2, L2(P) = 3

I Ln(t∆) = t for any n ∈ N
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Rational Minkowski length
Main Question: How does Ln(tP) behave as a function of t ∈ N?

Definition: Define rational (asymptotic) Minkowski length:

λn(P) := sup
t∈N

Ln(tP)

t
.

We put λ(P) = λd(P).

In particular, λ1(P) is the rational diameter, that is

λ1(P) = max{sP(v) | primitive v ∈ Zd},

where sP(v) is the diameter of P in the direction of v (relative to
vZ ⊂ Zd). This implies

L1(tP) = bλ1(tP)c = bλ1(P)tc,

which is quasi-linear (i.e. quasi-polynomial in t with linear

constituencies).
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Rational Minkowski length

Theorem (S-Soprunova ’16)

Let P be a lattice polytope in Rd . There exists k ∈ N such that

λ(P) =
L(kP)

k
.

The smallest such k is the period of P.

Corollary: λ(tP) = tλ(P) for any t ∈ N.

Sketch of the proof:
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L(kP)

k
.

The smallest such k is the period of P.

Corollary: λ(tP) = tλ(P) for any t ∈ N.

Sketch of the proof:

I λ(P) equals the supremum of the “normalized perimeter” p(Z ) of
all rational zonotopes Z ⊆ P.

I The number of directions for the summands of Zmin is bounded by
2d − 1
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Rational Minkowski length

Theorem (S-Soprunova ’16)

Let P be a lattice polytope in Rd . There exists k ∈ N such that

λ(P) =
L(kP)

k
.

The smallest such k is the period of P.

Corollary: λ(tP) = tλ(P) for any t ∈ N.

Sketch of the proof:

I There are only finitely many collections of directions for Zmin for
which p(Z ) is “close” to λ(P)

I p(Z ) is the maximum of a linear function on a finite set of rational
polytopes
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Eventual Quasi-linearity of Minkowski length

Theorem (S-Soprunova ’16)

Let P be a lattice polytope in Rd with period k . Then L(tP) is
eventually quasi-linear in t, that is, there exist cr ∈ Z for
0 ≤ r < k such that for all t � 0

L(tP) = kλ(P)
⌊ t
k

⌋
+ cr , whenever t ≡ r mod k.

Moreover, L(rP) ≤ cr ≤ rλ(P).

Remark: The same statement holds for Ln(tP) for any n ∈ N.
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Example

P

2P

3P

1-st Minkowski length (lattice diameter)

I We have L1(P) = 2 and λ1(P) = 5
2

I L1(tP) = btλ1(P)c = 5b t2c+ {0, 2}

2-nd Minkowski length

I We have λ(P) ≤ 2Vol2(P)
w(P) for any polygon P

I Here λ(P) = 10
3 and P has period k = 3.

I L(tP) = 10b t3c+{0,3,6}
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Questions

1. As we saw earlier Ln(t∆) = L1(t∆) for any n ∈ N. It turns
out that Ln(T ) = L1(T ) for any triangle in R2. Does this
hold for simplices in any dimension?

2. Can the bound |P ∩ Zd | ≤ (L(P) + 1)d be improved?

3. The above bound is sharp for strongly indecomposable
polytopes P. What is the largest number of interior lattice
points in strongly indecomposable P? Is it 2d − (d + 1)?

— The End —
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