Bezout inequality for mixed volumes

AMS Meeting, Fargo ND

Ivan Soprunov (with Christos Saroglou and Artem Zvavitch)

Cleveland State University

April 15, 2016

Motivation: Bezout's Theorem

Hypersurface in $\mathbb{C}P^n$

 $X = \{x \in \mathbb{C}P^n \mid F(x) = 0\}$, where F a is homogeneous polynomial

 $\deg X = \deg F =$ number if intersections of X with generic line

Motivation: Bezout's Theorem

Hypersurface in $\mathbb{C}P^n$

 $X = \{x \in \mathbb{C}P^n \mid F(x) = 0\}$, where F a is homogeneous polynomial

 $\deg X = \deg F =$ number if intersections of X with generic line

Intersection of hypersurfaces

 X_1, \ldots, X_r hypersurfaces in $\mathbb{C}P^n$

 $deg(X_1 \cap \cdots \cap X_r)$ = number of intersections of $X_1 \cap \cdots \cap X_r$ with a generic subspace of dimension r

Motivation: Bezout's Theorem

Hypersurface in $\mathbb{C}P^n$

 $X = \{x \in \mathbb{C}P^n \mid F(x) = 0\}$, where F a is homogeneous polynomial

 $\deg X = \deg F =$ number if intersections of X with generic line

Intersection of hypersurfaces

 X_1, \ldots, X_r hypersurfaces in $\mathbb{C}P^n$

 $deg(X_1 \cap \cdots \cap X_r)$ = number of intersections of $X_1 \cap \cdots \cap X_r$ with a generic subspace of dimension r

Theorem (Bezout)

$$
\deg(X_1\cap\cdots\cap X_r)=\prod_{i=1}^r\deg X_i.
$$

Small Example $(n = r = 2)$

Bernstein-Kushnirenko-Khovanskii theorem

Newton Polytope

 $NP(f)$ = convex hull of exponent vectors of a polynomial f

Theorem (BKK)

Let f_1, \ldots, f_n be polynomials with fixed NP's $P_1, \ldots, P_n \subset \mathbb{R}^n$ and generic coefficients. Then

$$
\#\{x\in (\mathbb{C}^*)^n \mid f_1(x)=\cdots=f_n(x)=0\}=n!V(P_1,\ldots,P_n).
$$

Bernstein-Kushnirenko-Khovanskii theorem

Newton Polytope

 $NP(f)$ = convex hull of exponent vectors of a polynomial f

Theorem (BKK)

Let f_1, \ldots, f_n be polynomials with fixed NP's $P_1, \ldots, P_n \subset \mathbb{R}^n$ and generic coefficients. Then

$$
\#\{x\in (\mathbb{C}^*)^n \mid f_1(x)=\cdots=f_n(x)=0\}=n!V(P_1,\ldots,P_n).
$$

Corollary Let $\Delta = \text{conv}\{0, e_1, \ldots, e_n\}$ be the standard *n*-simplex.

•
$$
\deg(X_1 \cap \dots \cap X_r) \geq \#\{x \in (\mathbb{C}^*)^n | f_1(x) = \dots = f_r(x) = 0, \ell_1(x) = \dots = \ell_{n-r}(x) = 0\}
$$

= $n! V(P_1, \dots, P_r, \Delta^{n-r}),$

Bernstein-Kushnirenko-Khovanskii theorem

Newton Polytope

 $NP(f)$ = convex hull of exponent vectors of a polynomial f

Theorem (BKK)

Let f_1, \ldots, f_n be polynomials with fixed NP's $P_1, \ldots, P_n \subset \mathbb{R}^n$ and generic coefficients. Then

$$
\#\{x\in (\mathbb{C}^*)^n \mid f_1(x)=\cdots=f_n(x)=0\}=n!V(P_1,\ldots,P_n).
$$

Corollary Let $\Delta = \text{conv}\{0, e_1, \ldots, e_n\}$ be the standard *n*-simplex.

•
$$
\deg(X_1 \cap \dots \cap X_r) \geq #\{x \in (\mathbb{C}^*)^n | f_1(x) = \dots = f_r(x) = 0,
$$

\n $\ell_1(x) = \dots = \ell_{n-r}(x) = 0\}$
\n $= n! V(P_1, \dots, P_r, \Delta^{n-r}),$

 \triangleright Suppose the NP's touch the coordinate hyperplanes. Then

$$
\deg(X_i)=n!V(P_i,\Delta^{n-1}).
$$

Small Example $(n = r = 2)$

Bezout: $2!V(\square,\square) \leq 2!V(\square,\triangle)2!V(\square,\triangle)$

Bezout Inequality for Mixed Volumes

In general, we have

$$
n!V(P_1,\ldots,P_r,\Delta^{n-r})\leq \prod_{i=1}^r n!V(P_i,\Delta^{n-1}).
$$

Since $V_n(\Delta) = 1/n!$ this is equivalent to

$$
V_n(\Delta)^{r-1}V(P_1,\ldots,P_r,\Delta^{n-r})\leq \prod_{i=1}^r V(P_i,\Delta^{n-1}).
$$

Bezout Inequality for Mixed Volumes

Theorem

For any convex bodies P_1, \ldots, P_r and any n-simplex Δ in \mathbb{R}^n

$$
(BMV-r) Vn(\Delta)^{r-1} V(P_1,\ldots,P_r,\Delta^{n-r}) \leq \prod_{i=1}^r V(P_i,\Delta^{n-1}).
$$

Bezout Inequality for Mixed Volumes

Theorem

For any convex bodies P_1, \ldots, P_r and any n-simplex Δ in \mathbb{R}^n

$$
(BMV-r) Vn(\Delta)^{r-1} V(P_1,\ldots,P_r,\Delta^{n-r}) \leq \prod_{i=1}^r V(P_i,\Delta^{n-1}).
$$

Proof.

Rescale & translate P_1,\ldots,P_r such that each P_i is inscribed in Δ . Then

$$
\blacktriangleright V(P_i, \Delta^{n-1}) = V_n(\Delta),
$$

 $V(P_1, \ldots, P_r, \Delta^{n-r}) \leq V_n(\Delta)$ by monotonicity.

Conjecture

The special, but the most important case is when $r = 2$:

$$
(\text{BMV-2}) \quad V_n(\Delta) V(P,Q,\Delta^{n-2}) \leq V(P,\Delta^{n-1}) V(Q,\Delta^{n-1}).
$$

Conjecture

Let Δ be an n-dimensional convex body satisfying (BMV-2) for arbitrary convex bodies P , Q . Then Δ is an n-simplex.

 $(\mathsf{BMV}\text{-}2) \quad V_n(\Delta) V(P,Q,\Delta^{n-2}) \leq V(P,\Delta^{n-1}) V(Q,\Delta^{n-1})$

Theorem

Let Δ be an n-dimensional convex body satisfying (BMV-2) for any bodies P, Q. Then

- 1. Δ is indecomposable, i.e. if $\Delta = \Delta_1 + \Delta_2$ then $\Delta_1 \sim \Delta_2$.
- 2. ∆ has no strict points, i.e. points not lying on a boundary segment.
- 3. If Δ is a polytope then Δ is an n-simplex.

$$
(\text{BMV-2}) \quad V_n(\Delta) V(P,Q,\Delta^{n-2}) \leq V(P,\Delta^{n-1}) V(Q,\Delta^{n-1})
$$

Theorem

Let Δ be an n-dimensional convex body satisfying (BMV-2) for any bodies P, Q. Then

- 1. Δ is indecomposable, i.e. if $\Delta = \Delta_1 + \Delta_2$ then $\Delta_1 \sim \Delta_2$.
- 2. △ has no strict points, i.e. points not lying on a boundary segment.
- 3. If Δ is a polytope then Δ is an n-simplex.

Idea for 1. If $P = \Delta_1$, $Q = \Delta_2$ we get the reversed A-F. Then $\Delta_1 \sim \Delta_2$.

$$
(\text{BMV-2}) \quad V_n(\Delta) V(P,Q,\Delta^{n-2}) \leq V(P,\Delta^{n-1}) V(Q,\Delta^{n-1})
$$

Theorem

Let Δ be an n-dimensional convex body satisfying (BMV-2) for any bodies P, Q. Then

- 1. Δ is indecomposable, i.e. if $\Delta = \Delta_1 + \Delta_2$ then $\Delta_1 \sim \Delta_2$.
- 2. ∆ has no strict points, i.e. points not lying on a boundary segment.
- 3. If Δ is a polytope then Δ is an n-simplex.

Idea for 2. If $P=[-\xi,\xi]$, $Q=\Delta\backslash$ "cup" then $V_n(\Delta)>V(Q,\Delta^{n-1})$, but $V(P, Q, \Delta^{n-2}) = V(Q|\xi^{\perp}, (\Delta|\xi^{\perp})^{n-2}) = V(P, \Delta^{n-1}).$

 $(W - 2)$ $V_n(\Delta) V(P, Q, \Delta^{n-2}) \leq V(P, \Delta^{n-1}) V(Q, \Delta^{n-1})$

Theorem

Let Δ be an n-dimensional convex body satisfying (BMV-2) for any bodies P, Q. Then

- 1. Δ is indecomposable, i.e. if $\Delta = \Delta_1 + \Delta_2$ then $\Delta_1 \sim \Delta_2$.
- 2. △ has no strict points, i.e. points not lying on a boundary segment.
- 3. If Δ is a polytope then Δ is an n-simplex.

Idea for 3. Let P be Δ with a "moving facet". Then (BMV-2) is a variational problem which implies $P \sim \Delta$. Hence, Δ is a cone over a moving facet, for every facet. Thus Δ is a simplex.

Bezout Inequality and Projections

Special case of BMV-2. Let $P=[0,\xi],\ Q=[0,\eta]$ for $\xi,\eta\in S^{n-1},$ $\xi \cdot \eta = 0$. Then

$$
\frac{n}{n-1}V_n(\Delta)V_{n-2}(\Delta|(\xi,\eta)^{\perp})\leq V_{n-1}(\Delta|\xi^{\perp})V_{n-1}(\Delta|\eta^{\perp})
$$

for any *n*-simplex Δ .

Bezout Inequality and Projections

Special case of BMV-2. Let $P=[0,\xi],\ Q=[0,\eta]$ for $\xi,\eta\in S^{n-1},$ $\xi \cdot \eta = 0$. Then

$$
\frac{n}{n-1}V_n(\Delta)V_{n-2}(\Delta|(\xi,\eta)^{\perp})\leq V_{n-1}(\Delta|\xi^{\perp})V_{n-1}(\Delta|\eta^{\perp})
$$

for any *n*-simplex Δ .

Lemma (Giannopoulos, Hartzoulaki, Paouris) For any convex body D

$$
\frac{n}{n-1}V_n(D)V_{n-2}(D|(\xi,\eta)^{\perp})\leq 2V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\eta^{\perp}).
$$

Relaxing the Bezout Inequality

Problem: Find the smallest constant $c_{n,r} > 0$ such that

$$
V_n(D)^{r-1}V(P_1,\ldots,P_r,D^{n-r})\leq c_{n,r}\prod_{i=1}^r V(P_i,D^{n-1}).
$$

holds for arbitrary bodies P_1, \ldots, P_r and D.

Relaxing the Bezout Inequality

Problem: Find the smallest constant $c_{n,r} > 0$ such that

$$
V_n(D)^{r-1}V(P_1,\ldots,P_r,D^{n-r})\leq c_{n,r}\prod_{i=1}^r V(P_i,D^{n-1}).
$$

holds for arbitrary bodies P_1, \ldots, P_r and D.

Theorem

\n- $$
c_{n,r} = r^{r-1}
$$
 when P_1, \ldots, P_r are zonoids,
\n- $c_{n,r} \leq n^{r/2} r^{r-1}$ when P_1, \ldots, P_r are symmetric,
\n- $c_{n,r} \leq n^r r^{r-1}$ when P_1, \ldots, P_r are arbitrary,
\n- $c_{2,2} = 2$.
\n

Relaxing the Bezout Inequality

Problem: Find the smallest constant $c_{n,r} > 0$ such that

$$
V_n(D)^{r-1}V(P_1,\ldots,P_r,D^{n-r})\leq c_{n,r}\prod_{i=1}^r V(P_i,D^{n-1}).
$$

holds for arbitrary bodies P_1, \ldots, P_r and D.

Theorem

\n- $$
c_{n,r} = r^{r-1}
$$
 when P_1, \ldots, P_r are zonoids,
\n- $c_{n,r} \leq n^{r/2} r^{r-1}$ when P_1, \ldots, P_r are symmetric,
\n- $c_{n,r} \leq n^r r^{r-1}$ when P_1, \ldots, P_r are arbitrary,
\n- $c_{2,2} = 2$.
\n

$$
-\mathsf{The}\ \mathsf{End}\ -
$$