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Motivation: Bezout’s Theorem

Hypersurface in CPn

X = {x ∈ CPn | F (x) = 0}, where F a is homogeneous polynomial

degX = deg F = number if intersections of X with generic line

Intersection of hypersurfaces

X1, . . . ,Xr hypersurfaces in CPn

deg(X1 ∩ · · · ∩ Xr ) = number of intersections of X1 ∩ · · · ∩ Xr

with a generic subspace of dimension r

Theorem (Bezout)

deg(X1 ∩ · · · ∩ Xr ) =
r∏

i=1

degXi .
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Small Example (n = r = 2)

F1 = a0z
2 +a1xz +a2yz +a3xy

F2 = b0z
2+b1xz+b2yz+b3xy

degX1 = degX2 = 2

deg(X1 ∩ X2) = 4

Bezout: deg(X1 ∩ X2) = degX1 degX2
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Bernstein-Kushnirenko-Khovanskii theorem
Newton Polytope

NP(f ) = convex hull of exponent vectors of a polynomial f

Theorem (BKK)
Let f1, . . . , fn be polynomials with fixed NP’s P1, . . . ,Pn ⊂ Rn and
generic coefficients. Then

#{x ∈ (C∗)n | f1(x) = · · · = fn(x) = 0} = n!V (P1, . . . ,Pn).

Corollary Let ∆ = conv{0, e1, . . . , en} be the standard n-simplex.

I deg(X1 ∩ · · · ∩ Xr ) ≥ #{x ∈ (C∗)n | f1(x) = · · · = fr (x) = 0,
`1(x) = · · · = `n−r (x) = 0}

= n!V (P1, . . . ,Pr ,∆
n−r ),

I Suppose the NP’s touch the coordinate hyperplanes. Then

deg(Xi ) = n!V (Pi ,∆
n−1).
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Small Example (n = r = 2)

f1 = a0 + a1x + a2y + a3xy
f2 = b0 + b1x + b2y + b3xy

P1 = P2 = �

degXi = 2!V (�,∆) = 2

deg(X1∩X2) ≥ 2!V (�,�) = 2

Bezout: 2!V (�,�) ≤ 2!V (�,∆)2!V (�,∆)
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Bezout Inequality for Mixed Volumes

In general, we have

n!V (P1, . . . ,Pr ,∆
n−r ) ≤

r∏
i=1

n!V (Pi ,∆
n−1).

Since Vn(∆) = 1/n! this is equivalent to

Vn(∆)r−1V (P1, . . . ,Pr ,∆
n−r ) ≤

r∏
i=1

V (Pi ,∆
n−1).
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Bezout Inequality for Mixed Volumes

Theorem
For any convex bodies P1, . . . ,Pr and any n-simplex ∆ in Rn

(BMV-r) Vn(∆)r−1V (P1, . . . ,Pr ,∆
n−r ) ≤

r∏
i=1

V (Pi ,∆
n−1).

Proof.
Rescale & translate P1, . . . ,Pr such that each Pi is inscribed in ∆.
Then

I V (Pi ,∆
n−1) = Vn(∆),

I V (P1, . . . ,Pr ,∆
n−r ) ≤ Vn(∆) by monotonicity.
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Conjecture

The special, but the most important case is when r = 2:

(BMV-2) Vn(∆)V (P,Q,∆n−2) ≤ V (P,∆n−1)V (Q,∆n−1).

Conjecture

Let ∆ be an n-dimensional convex body satisfying (BMV-2) for
arbitrary convex bodies P,Q. Then ∆ is an n-simplex.
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Main Results

(BMV-2) Vn(∆)V (P,Q,∆n−2) ≤ V (P,∆n−1)V (Q,∆n−1)

Theorem

Let ∆ be an n-dimensional convex body satisfying (BMV-2) for
any bodies P,Q. Then

1. ∆ is indecomposable, i.e. if ∆ = ∆1 + ∆2 then ∆1 ∼ ∆2.

2. ∆ has no strict points, i.e. points not lying on a boundary
segment.

3. If ∆ is a polytope then ∆ is an n-simplex.
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2. ∆ has no strict points, i.e. points not lying on a boundary
segment.

3. If ∆ is a polytope then ∆ is an n-simplex.

Idea for 1. If P = ∆1, Q = ∆2 we get the reversed A-F. Then ∆1 ∼ ∆2.
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2. ∆ has no strict points, i.e. points not lying on a boundary
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3. If ∆ is a polytope then ∆ is an n-simplex.

Idea for 2. If P = [−ξ, ξ], Q = ∆\“cup” then Vn(∆) > V (Q,∆n−1), but

V (P,Q,∆n−2) = V (Q|ξ⊥, (∆|ξ⊥)n−2) = V (P,∆n−1).
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1. ∆ is indecomposable, i.e. if ∆ = ∆1 + ∆2 then ∆1 ∼ ∆2.

2. ∆ has no strict points, i.e. points not lying on a boundary
segment.

3. If ∆ is a polytope then ∆ is an n-simplex.

Idea for 3. Let P be ∆ with a “moving facet”. Then (BMV-2) is a

variational problem which implies P ∼ ∆. Hence, ∆ is a cone over a

moving facet, for every facet. Thus ∆ is a simplex.
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Bezout Inequality and Projections

Special case of BMV-2. Let P = [0, ξ], Q = [0, η] for ξ, η ∈ Sn−1,
ξ · η = 0. Then

n

n − 1
Vn(∆)Vn−2(∆|(ξ, η)⊥) ≤ Vn−1(∆|ξ⊥)Vn−1(∆|η⊥)

for any n-simplex ∆.

Lemma (Giannopoulos, Hartzoulaki, Paouris) For any convex
body D

n

n − 1
Vn(D)Vn−2(D|(ξ, η)⊥) ≤ 2Vn−1(D|ξ⊥)Vn−1(D|η⊥).
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Relaxing the Bezout Inequality

Problem: Find the smallest constant cn,r > 0 such that

Vn(D)r−1V (P1, . . . ,Pr ,D
n−r ) ≤ cn,r

r∏
i=1

V (Pi ,D
n−1).

holds for arbitrary bodies P1, . . . ,Pr and D.

Theorem

I cn,r = r r−1 when P1, . . . ,Pr are zonoids,

I cn,r ≤ nr/2r r−1 when P1, . . . ,Pr are symmetric,

I cn,r ≤ nr r r−1 when P1, . . . ,Pr are arbitrary,

I c2,2 = 2.

— The End —
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