Self-dual codes from smooth Fano polytopes

AMS Meeting, Chicago IL

Ivan Soprunov

Cleveland State University

October 3, 2015

Motivation

Joint project with Pinar Celebi Demirarslan

 Apply methods/results of Newton Polytopes and Residues theory to Coding theory

Motivation

Joint project with Pinar Celebi Demirarslan

- Apply methods/results of Newton Polytopes and Residues theory to Coding theory
- Dual Codes:
 - generalize duality of L- and Ω-constructions (Tsfasman et al) from curves to toric varieties
 - application: combinatorics of polytopes

Evaluation Codes

Let $\mathbb{K} = \mathbb{F}_q$, for q large enough.

Fix $S = \{p_1, \dots, p_n\}$ in $(\mathbb{K}^*)^m$ (or in \mathbb{K}^m , or in $\mathbb{P}^m_{\mathbb{K}}$).

Fix $\mathcal{L}(A)$ = a space of m-variate polynomials over \mathbb{K} with monomial exponents lying in $A \cap \mathbb{Z}^m$.

Evaluation Codes

Let $\mathbb{K} = \mathbb{F}_q$, for q large enough.

Fix
$$S = \{p_1, \dots, p_n\}$$
 in $(\mathbb{K}^*)^m$ (or in \mathbb{K}^m , or in $\mathbb{P}^m_{\mathbb{K}}$).

Fix $\mathcal{L}(A)$ = a space of m-variate polynomials over \mathbb{K} with monomial exponents lying in $A \cap \mathbb{Z}^m$.

Evaluation Map:

$$\operatorname{ev}_{\mathcal{S}}:\mathcal{L}(A) o \mathbb{K}^n \quad f \mapsto (f(p_1),\ldots,f(p_n))$$

Evaluation Code:

$$C_{S,A} = \operatorname{ev}_S(\mathcal{L}(A))$$

Examples: Reed–Solomon codes, Reed–Muller codes, AG codes, Toric codes, etc.

What is *S* for TCI codes?

Let $f_1,\ldots,f_d\in\mathbb{K}[t_1^{\pm 1},\ldots,t_d^{\pm 1}]$ with Newton polytopes P_1,\ldots,P_d and

$$S = \{ p \in (\bar{\mathbb{K}}^*)^n \mid f_1(p) = \cdots = f_d(p) = 0 \},$$

a toric complete intersection, that is ...

What is *S* for TCl codes?

Let $f_1,\ldots,f_d\in\mathbb{K}[t_1^{\pm 1},\ldots,t_d^{\pm 1}]$ with Newton polytopes P_1,\ldots,P_d and

$$S = \{ p \in (\bar{\mathbb{K}}^*)^n \mid f_1(p) = \cdots = f_d(p) = 0 \},$$

a toric complete intersection, that is ...

- $|S| = V(P_1, ..., P_m)$ (normalized mixed volume), i.e. BKK bound is attained
- \triangleright $S \subseteq (\mathbb{K}^*)^m$

What is *S* for TCI codes?

Let $f_1,\ldots,f_d\in\mathbb{K}[t_1^{\pm 1},\ldots,t_d^{\pm 1}]$ with Newton polytopes P_1,\ldots,P_d and

$$S = \{ p \in (\bar{\mathbb{K}}^*)^n \mid f_1(p) = \cdots = f_d(p) = 0 \},$$

a toric complete intersection, that is ...

- $|S| = V(P_1, ..., P_m)$ (normalized mixed volume), i.e. BKK bound is attained
- \triangleright $S \subseteq (\mathbb{K}^*)^m$

What is $\mathcal{L}(A)$ for TCI codes?

Choose $A \subseteq P^{\circ} = \operatorname{interior}(P_1 + \cdots + P_d)$. Then

$$\mathcal{L}(A) = \operatorname{span}_{\mathbb{K}} \{ x^a \mid a \in A \cap \mathbb{Z}^m \}.$$

Example [Demirarslan-S., FFA'15]

Let
$$\mathbb{K} = \mathbb{F}_{16}$$
 and $m = 2$.

Newton polytopes:
$$A = P_1 = P_2 = P_2 = P_2$$

Choose polynomials to define S:

$$\begin{split} f_1 &= x^3y^2 + t^4x^3y + x^3 + t^5x^2y^2 + t^2x^2y + x^2 + t^{11}xy^2 + txy + x + y^2 + y + 1 \\ f_2 &= x^7y^4 + t^{10}x^7y + t^2x^7 + t^{12}x^6y + t^8x^6 + t^{10}x^5y + t^3x^5 + t^{13}x^4y + t^{13}x^4 + t^9x^3y + t^{13}x^3 + t^{11}x^2y^3 + t^8x^2y^2 + t^{12}x^2y + t^{14}x^2 + xy^4 + t^6xy^3 + t^3xy^2 + t^{12}x + t^6y^4 + t^9y^2 + t^{13}y + t^5 \end{split}$$

TCI code $C_{S,A}$ has parameters [26, 13, 12].

Example [Demirarslan-S., FFA'15]

Let
$$\mathbb{K} = \mathbb{F}_{16}$$
 and $m = 2$.

Newton polytopes: $A = P_1 = P_2 = P_2 = P_2$

Choose polynomials to define S:

$$\begin{split} f_1 &= x^3y^2 + t^4x^3y + x^3 + t^5x^2y^2 + t^2x^2y + x^2 + t^{11}xy^2 + txy + x + y^2 + y + 1 \\ f_2 &= x^7y^4 + t^{10}x^7y + t^2x^7 + t^{12}x^6y + t^8x^6 + t^{10}x^5y + t^3x^5 + t^{13}x^4y + t^{13}x^4 + t^9x^3y + t^{13}x^3 + t^{11}x^2y^3 + t^8x^2y^2 + t^{12}x^2y + t^{14}x^2 + xy^4 + t^6xy^3 + t^3xy^2 + t^{12}x + t^6y^4 + t^9y^2 + t^{13}y + t^5 \end{split}$$

TCI code $C_{S,A}$ has parameters [26, 13, 12].

- $n = |S| = V(P_1, P_2) = 26$ intersection points in $(\mathbb{F}_{16}^*)^2$ of two curves $f_1 = 0$ and $f_2 = 0$
- \blacktriangleright $k = \dim \mathcal{L}(A) \dim \operatorname{Ker}(ev_S) = |A \cap \mathbb{Z}^2| |(A P_1) \cap \mathbb{Z}^2|$ = 15 - 2 = 13

In fact, $C_{S,A}$ is isodual!

Duality

Recall: for
$$y \in (\mathbb{K}^*)^n$$
 define $\mathcal{C}^{\perp_y} = \{ v \in \mathbb{K}^n \mid (u \cdot v)_y = 0, \forall u \in \mathcal{C} \}$, for $(u \cdot v)_y = \sum_{i=1}^n y_i u_i v_i$.

Duality

Recall: for $y \in (\mathbb{K}^*)^n$ define

$$\mathcal{C}^{\perp_y} = \{ v \in \mathbb{K}^n \mid (u \cdot v)_y = 0, \forall u \in \mathcal{C} \}, \text{ for } (u \cdot v)_y = \sum_{i=1}^n y_i u_i v_i.$$

Theorem (Demirarslan-S., FFA'15)

Let S be a toric complete intersection given by $f_1 = \cdots = f_m = 0$. Let A, B be subsets of P° such that $A + B \subseteq P^{\circ}$. Then

$$C_{S,B} \subseteq C_{S,A}^{\perp_y}$$
.

In particular, if |S| is even, $2A \subseteq P^{\circ}$, and $\dim(C_{S,A}) = |S|/2$ then $C_{S,A}$ is a quasi-self-dual code.

Duality

Recall: for $y \in (\mathbb{K}^*)^n$ define

$$\mathcal{C}^{\perp_y} = \{ v \in \mathbb{K}^n \mid (u \cdot v)_y = 0, \forall u \in \mathcal{C} \}, \text{ for } (u \cdot v)_y = \sum_{i=1}^n y_i u_i v_i.$$

Theorem (Demirarslan-S., FFA'15)

Let S be a toric complete intersection given by $f_1 = \cdots = f_m = 0$. Let A, B be subsets of P° such that $A + B \subseteq P^{\circ}$. Then

$$C_{S,B} \subseteq C_{S,A}^{\perp_y}$$
.

In particular, if |S| is even, $2A \subseteq P^{\circ}$, and $\dim(\mathcal{C}_{S,A}) = |S|/2$ then $C_{S,A}$ is a quasi-self-dual code.

Remark: It follows from Toric Euler-Jacobi Residue formula [Khovanskii, 1978], the vector y consists of local residues at S.

Constructing quasi self-dual TCI codes

Special case: $P_1=c_1Q$, $P_2=c_2Q$ for some lattice polytope Q and $c_i\in\mathbb{N}$.

Theorem (Demirarslan-S., FFA'15)

Let S be a toric complete intersection with polygons m_1Q , m_2Q . Let A = aQ. Then $\mathcal{C}_{S,A}$ is quasi self-dual if and only if

- 1. Q is lattice-equivalent to \triangle and $a = (c_1 + c_2 3)/2$; or
- 2. *Q* is lattice-equivalent to either or \square , and $a = (c_1 + c_2 2)/2$;

or ...

Constructing quasi self-dual TCI codes

3. Q is lattice-equivalent to one of the sixteen reflexive Fano *polygons* and $a = (c_1 + c_2 - 1)/2$.

Question: Does this hold in higher dimensions?

Let Q be a lattice polytope in \mathbb{R}^m .

▶ (polar) dual
$$\check{Q} = \{y \in \mathbb{R}^m \mid (x \cdot y) \ge -1, x \in Q\}$$

Let Q be a lattice polytope in \mathbb{R}^m .

- ▶ (polar) dual $\check{Q} = \{ y \in \mathbb{R}^m \mid (x \cdot y) \ge -1, x \in Q \}$
- - 0 lies in the interior of Q
 - the vertices of each facet form a basis for \mathbb{Z}^m

Let Q be a lattice polytope in \mathbb{R}^m .

- ▶ (polar) dual $\check{Q} = \{ y \in \mathbb{R}^m \mid (x \cdot y) \ge -1, x \in Q \}$
- - 0 lies in the interior of Q
 - the vertices of each facet form a basis for \mathbb{Z}^m
- \triangleright then Q and \check{Q} are lattice polytopes, so both are reflexive polytopes

Let Q be a lattice polytope in \mathbb{R}^m .

- ▶ (polar) dual $\check{Q} = \{ y \in \mathbb{R}^m \mid (x \cdot y) \ge -1, x \in Q \}$
- \triangleright \check{Q} is a smooth Fano polytope if
 - 0 lies in the interior of Q
 - the vertices of each facet form a basis for \mathbb{Z}^m
- ightharpoonup then Q and \check{Q} are lattice polytopes, so both are reflexive polytopes
- ▶ the Ehrhart polynomial of $L_Q(t)$ satisfies functional equation

$$L_Q(t) = (-1)^m L_Q(-t-1),$$

where $L_Q(t) = |tQ \cap \mathbb{Z}^m|$ for $t \in \mathbb{N}$.

Smooth Fano varieties

Let X_Q toric variety corresponding to Q, where \check{Q} smooth Fano polytope. Let f_1, \ldots, f_m be polynomials with polytopes $c_1 Q, \ldots, c_m Q$, where $c_i \in \mathbb{N}$

- $ightharpoonup X_Q$ is smooth with ample anticanonical divisor $-K_{X_Q}$
- ▶ $f_1, ..., f_m$ correspond to sections of ample line bundles
- ▶ the Hilbert function of $I = \langle f_1, \dots, f_m \rangle$ can be computed from the Koszul resolution

Smooth Fano varieties

Let X_Q toric variety corresponding to Q, where \check{Q} smooth Fano polytope. Let f_1, \ldots, f_m be polynomials with polytopes $c_1 Q, \ldots, c_m Q$, where $c_i \in \mathbb{N}$

- \triangleright X_Q is smooth with ample anticanonical divisor $-K_{X_Q}$
- $ightharpoonup f_1, \ldots, f_m$ correspond to sections of ample line bundles
- ▶ the Hilbert function of $I = \langle f_1, \dots, f_m \rangle$ can be computed from the Koszul resolution

This produces (see Tuitman and Wulcan)

$$\dim \mathcal{C}_{S,A} = \sum_{I \subseteq [m]} (-1)^{|I|} L_Q(a - c_I),$$

where A = aQ, $[m] = \{1, \ldots, m\}$, and $c_I = \sum_{i \in I} c_i$.

Self-dual TCI codes from Fano polytopes

Newton polytopes: c_1Q, \ldots, c_mQ , and A = aQ, where $a, c_i \in \mathbb{N}$ and Q is dual to a smooth Fano polytope.

Let S be a toric complete intersection given by $f_1 = \cdots = f_m = 0$. Then $n = |S| = V(c_1Q, \dots, c_mQ) = m!c_1 \cdots c_m \text{Vol}(Q)$.

Self-dual TCI codes from Fano polytopes

Newton polytopes: c_1Q, \ldots, c_mQ , and A = aQ, where $a, c_i \in \mathbb{N}$ and Q is dual to a smooth Fano polytope.

Let S be a toric complete intersection given by $f_1 = \cdots = f_m = 0$. Then $n = |S| = V(c_1 Q, \dots, c_m Q) = m!c_1 \cdots c_m Vol(Q)$.

Theorem [S.] Put $a = (c_1 + \cdots + c_m - 1)/2$. Suppose the c_i satisfy

- 1. $a \in \mathbb{N}$ and $2 \mid c_1 \cdots c_m \mid c_1 \cdots$
- 2. if m is odd then $c_{I^c} \leq c_I$ for all $I \subseteq [m]$ with |I| > m/2
- 3. if m is even then $c_{I^c} \le c_I$ for all $I \subseteq [m]$ with either |I| > m/2 or |I| = m/2 and $I \ni m$

Self-dual TCI codes from Fano polytopes

Newton polytopes: c_1Q, \ldots, c_mQ , and A = aQ, where $a, c_i \in \mathbb{N}$ and Q is dual to a smooth Fano polytope.

Let S be a toric complete intersection given by $f_1 = \cdots = f_m = 0$. Then $n = |S| = V(c_1Q, \dots, c_mQ) = m!c_1 \cdots c_m \text{Vol}(Q)$.

Theorem [S.] Put $a = (c_1 + \cdots + c_m - 1)/2$. Suppose the c_i satisfy

- 1. $a \in \mathbb{N}$ and $2|c_1 \cdots c_m|$
- 2. if m is odd then $c_{I^c} \leq c_I$ for all $I \subseteq [m]$ with |I| > m/2
- 3. if m is even then $c_{I^c} \le c_I$ for all $I \subseteq [m]$ with either |I| > m/2 or |I| = m/2 and $I \ni m$

Then

$$\dim \mathcal{C}_{S,A} = \textstyle \sum_{I \subseteq [m]} (-1)^{|I|} L_Q(\mathsf{a} - \mathsf{c}_I) = \textstyle \frac{1}{2} m! c_1 \cdots c_m \, \mathsf{Vol}(Q) = n/2,$$

and hence $C_{S,A}$ is quasi self-dual.

Remarks

- ▶ We may assume that $c_1 \le c_2 \le \cdots \le c_m$. Then the conditions 2.-3. above are satisfied
 - ▶ always for m = 2
 - if and only if $c_3 \le c_1 + c_2$ for m = 3
 - if and only if $-c_1 + c_2 + c_3 \le c_4 \le c_1 + c_2 + c_3$ for m = 4

Remarks

- ▶ We may assume that $c_1 \le c_2 \le \cdots \le c_m$. Then the conditions 2.-3. above are satisfied
 - ▶ always for m = 2
 - if and only if $c_3 \le c_1 + c_2$ for m = 3
 - if and only if $-c_1 + c_2 + c_3 \le c_4 \le c_1 + c_2 + c_3$ for m = 4
- ▶ it seems plausible that the formula for dim $C_{S,A}$ holds without assuming X_Q smooth. In this case we can take any reflexive polytope Q (as in m=2)

Remarks

- We may assume that $c_1 < c_2 < \cdots < c_m$. Then the conditions 2.-3, above are satisfied
 - ightharpoonup always for m=2
 - if and only if $c_3 < c_1 + c_2$ for m = 3
 - if and only if $-c_1 + c_2 + c_3 < c_4 < c_1 + c_2 + c_3$ for m = 4
- \triangleright it seems plausible that the formula for dim $\mathcal{C}_{S,A}$ holds without assuming X_O smooth. In this case we can take any reflexive polytope Q (as in m=2)

— The Fnd —