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Fq-zeros of irreducible polynomials

Let Fq finite field of q elements. Consider an absolutely irreducible
polynomial f ∈ Fq[x1, . . . , xn] of degree d .

Problem: Estimate Nf = |{p ∈ Pn(Fq) : f (p) = 0}|,
the number of Fq-zeros of f in projective space.

For f ∈ Fq[x , y ], we have
Hasse-Weil (1949):

|Nf − (q + 1)| ≤ gq
1
2 , where g is the genus

For irreducible projective varieties X of dimension n and degree d
Lang-Weil Bound (1954):

|NX −
qn+1 − 1

q − 1
| ≤ (d − 1)(d − 2)qn−

1
2 + Cqn−1.
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Maximum number of Fq-zeros for families of polynomials

Let L ⊂ Fq[x1, . . . , xn] be a finite subset.

Problem 1: Estimate NL = max{Nf : 0 6= f ∈ L}, the maximum
number of Fq-zeros of non-trivial f in L.

Problem 2: Estimate N′L, the maximum number of Fq-zeros of f
in L with the largest number of factors.

Example: Let L = Ld , the set of all polynomials of degree at most d .
Then NLd

= N′Ld
when d ≤ q. Therefore,

NLd
= dqn−1.

Observe: We have NL = N′L for large enough q.
Reason: If f = f1 · · · fk factorization into irreducible factors

then Nf = kqn−1 + o(qn−1) (from Lang-Weil Bound)
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Fq-zeros of sparse polynomials

We are interested in LP ⊂ Fq[x1, . . . , xn] defined by a lattice polytope
P ⊂ Rn. It defines a space of sparse polynomials

LP = spanFq
{xa : a ∈ P ∩ Zn}, where xa = xa1

1 · · · x
an
n .

Example 1: Here LP ⊂ Fq[x1, x2],

LP = spanFq
{x1, x2, x1x2, x

2
1 x

2
2}

= {λ1x1 + λ2x2 + λ3x1x2 + λ4x
2
1 x

2
2 : λi ∈ Fq}.

Example 2: When P = d∆n = conv{0, de1, . . . , den} we get Ld∆n = Ld ,
the set of polynomials of degree at most d .
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Fq-zeros of sparse polynomials

We are interested in LP ⊂ Fq[x1, . . . , xn] defined by a lattice polytope
P ⊂ Rn. It defines a space of sparse polynomials

LP = spanFq
{xa : a ∈ P ∩ Zn}, where xa = xa1

1 · · · x
an
n .

Example 1: Here LP ⊂ Fq[x1, x2],

LP = spanFq
{x1, x2, x1x2, x

2
1 x

2
2}

= {λ1x1 + λ2x2 + λ3x1x2 + λ4x
2
1 x

2
2 : λi ∈ Fq}.

From now on Nf = |{p ∈ (F∗q)n : f (p) = 0}|
Goal: Estimate NLP

= max{Nf : 0 6= f ∈ LP} in terms of q and
geometric invariants of P.
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Motivation from Coding Theory

A linear code is a linear subspace

C ⊆ FN
q

Parameters

I N is the length of C
I k = dimFq C is the dimension of C
I δ = min{weight(c) : 0 6= c ∈ C} is the minimum distance of C

where weight(c) is the number of non-zero entries of c .

We call C a [N, k, δ]q-code.

Basic Problem
Given N and k, construct C with the largest possible δ.
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Toric Codes
Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in Rn and LP the corresponding
space of sparse polynomials.

Enumerate the points of (F∗q)n = {p1, . . . , pN}.

Evaluation Map:

ev : LP → FN
q f 7→ (f (p1), . . . , f (pN))

Toric Code: CP = ev(LP) ⊆ FN
q

Example:

Let Fq = F4 and n = 2. Then |(F∗q)2| = 9.

LP = spanFq
{x1, x2, x1x2, x

2
1 x

2
2}.

In fact, CP is a [9, 4, 3]4-code.

Some champion (generalized) toric codes:

[49, 8, 34]8 A. Carbonara, J. Murillo, A. Ortiz (2010)
[49, 12, 28]8 J. Little (2011)
[36, 19, 12]7 G. Brown, A. Kasprzyk (2012)
[49, 13, 27]8, [49, 19, 21]8 G. Brown and A. Kasprzyk, — (2013)

Parameters:
I N = (q − 1)n

I k = |P ∩ Zn| iff points in P ∩ Zn are distinct in (Z/(q − 1)Z)n

I δ = (q − 1)n − NLP

Explicit formulas exist for a large class of polytopes (Little-Schwarz,
Soprunova,— )

Parameters:
I N = (q − 1)n

I k = |P ∩ Zn| iff points in P ∩ Zn are distinct in (Z/(q − 1)Z)n

I δ = (q − 1)n − NLP
← what we need

Explicit formulas exist for a large class of polytopes (Little-Schwarz,
Soprunova,— )
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Estimating NLP

Fix Fq and a lattice polytope P in [0, q − 2]n.
How to estimate the number of Fq-zeros of f ∈ LP that factor the most?

Main Steps:

1. Find the largest number L of factors f ∈ LP may have.

2. Describe what irreducible factors may look like in this case.

3. Estimate the number of Fq-zeros of such irreducible factors.

4. Estimate the number of Fq-zeros of f ∈ LP with L factors.
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Newton polytopes and Minkowski Sum

Let f be a Laurent polynomial f ∈ Fq[x1, . . . , xn].

Newton Polytope: P(f ) = conv{ exponents of f } ⊂ Rn

Note: Newton polytope generalizes the notion of degree:

P(fg) = P(f ) + P(g)

The Minkowski sum of polytopes P, Q in Rn is

P + Q = {p + q ∈ Rn : p ∈ P, q ∈ Q}.

Q

++ =

P P 2P P

=

Q P +
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Minkowski length L(P)

Definition: The largest number of lattice polytopes of positive dimension
whose Minkowski sum is contained in P is called the Minkowski length:

L(P) = max{L ∈ N : Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0}.

Note: L(P) is the largest number of factors of f in LP = {f : P(f ) ⊆ P}
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L(P) = max{L ∈ N : Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0}.
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Example: L(P) = 3

Q = + +

a maximal decomposition in P
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Minkowski length L(P)

Definition: The largest number of lattice polytopes of positive dimension
whose Minkowski sum is contained in P is called the Minkowski length:

L(P) = max{L ∈ N : Q = Q1 + · · ·+ QL ⊆ P, dimQi > 0}.

Note: L(P) is the largest number of factors of f in LP = {f : P(f ) ⊆ P}
Some Properties:

I Monotonicity: L(Q) ≤ L(P) if Q ⊆ P,

I Superadditivity: L(P) + L(Q) ≤ L(P + Q),

I Invariance: L(P) is AGL(n,Z)-invariant.

I L(P) can be computed in polynomial time in size of P for n = 2, 3
(Soprunova et al, 2009, 2012)
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Solving the problem for n = 2

Example: Consider f = 1− xayb, where gcd(a, b) = 1. What is Nf ?

Change of variables: x = urv−b, y = usv a,
for some r , s ∈ Z such that ar + bs = 1.

This is an automorphism of (F∗q)2 and, hence, does not change Nf .

Then f = 1− xayb = 1− (urv−b)a(usv a)b = 1− u

We have Nf = q − 1.

Geometrically,

(
r s
−b a

)
∈ AGL(2,Z) brings P(f ) to [0, e1].
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Solving the problem for n = 2

Let L = L(P) and consider f = f1 · · · fL in LP .

Observe: Each fi has P(fi ) of Minkowski length one.

Theorem: (Soprunova, —, 2009)
Minkowski length one polytopes in R2

up to AGL(n,Z)-equivalence are

42 T0

Proposition: (Soprunova, —, 2009) At most one of the fi has P(fi ) ' T0.
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Solving the problem for n = 2

Proposition (Soprunova, —, 2009)

I if P(fi ) = primitive segment then Nfi = q − 1

I if P(fi ) = 42 then Nfi = q − 2

I if P(fi ) = T0 then Nfi ≤ q − 1 + 2
√
q − 1 (from Hasse-Weil)

Theorem (Soprunova, —, 2009) Let P be lattice polygon in R2, and
q > α(P). Then

NLP
≤ L(P)(q − 1) + 2

√
q − 1

(Remove 2
√
q − 1 term if no T0 appears in a maximal decomposition.)
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Now we enter dimension n = 3 ...
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Polytopes of Minkowski length one in R3

Let L(P) = 1. Observe:

– P has at most 23 = 8 lattice points
– Every edge of P (in fact, every segment in P) is primitive
– Every face of P is a triangle (either ' 42 or ' T0)

Theorem (Whitney, 2010; Blanco-Santos, 2016)
Let P ⊂ R3 have L(P) = 1. Then P belongs to

I one of the infinite families of width one polytopes:

I hollow and clean tetrahedra (empty tetrahedra) White (1964)
I hollow clean and non-clean 5- and 6-vertex polytopes, OR

I one of 108 classes of non-hollow polytopes.

Remark: Lattice polytopes P ⊂ R3 with L(P) = 1 were defined
independently by Reznick (2002), as dps polytopes.
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Fq-zeros of irreducible factors, n = 3

Example:
Consider f = 1− x + z − xaybz , where gcd(a, b) = 1. Bound on Nf ?
Here P(f ) = conv{0, e1, e3, ae1 + be2 + e3} an empty tetrahedron.

We have f = (1− x) + (1− xayb)z

two cases upper bound on # of zeros

x = 1, yb = 1, any z ∈ F∗q b(q − 1)

x 6= 1, xayb 6= 1, z unique (q − 1)2 − 2(q − 1) + b, by incl/excl

Total: Nf ≤ (q − 1)2 + (b − 2)q + 2
↑

Vol(P(f ))

P(f)
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Fq-zeros of irreducible factors, n = 3

Theorem (Meyer, Soprunova, — 2021) Let charFq > 41, f ∈ Fq[x , y , z ]
with L(P(f )) = 1 and dimP(f ) = 3. Then

Nf ≤ (q − 1)2 + (Vol(P)− 2)q + 2.

I For the 108 AGL(3,Z)-classes it follows from J. Whitney’s work

I For the lattice width 1 polytopes we use mixed volumes and the
BKK bound

Remark: If P(f ) ' T0 ⊂ R3 we get a worse bound

Nf ≤ (q − 1)(q + 2
√
q − 2) ∼ q2 + cq3/2 + O(q)
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Classifying maximal decompositions in R3

Let Q1 + · · ·+ QL ⊂ P be a maximal decomposition with L(P) = L > 1
and dimQi = 3. Note L(Qi + Qi ) = 2, L(Qi + Qj + Qk) = 3, etc.

Theorem (Meyer, Soprunova, —, 2021) Each Qi '

S1
S2 E

K1
K2
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Classifying maximal decompositions in R3

Pairs: Suppose L(Q1) = L(Q2) = 1, L(Q1 + Q2) = 2. Then

(|Q1 ∩ Z3|, |Q2 ∩ Z3|) (Q1,Q2) '

(4,4)
(T0,Q), where Q ' T0 or S2

Q1 ' S1 or S2 and Q2 ' S1 or S2

(5,4)
(K1,S1), (E ,S2)

(K2,S), where S ' S1

(5,5) (K1,K1)

(≥ 6,≥ 3) impossible

k-tuples with k ≥ 3: Suppose L(Q1) = · · · = L(Qk) = 1,
L(Q1 + · · ·+ Qk) = k. Then (Q1, . . . ,Qk) ' (S1, . . . ,S1), or
(S2, . . . ,S2), or (E ,S2, . . .S2), or (S1,S , . . . ,S), where S ' S2.
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Main Result for n = 3

Theorem (Meyer, Soprunova, —, 2021) Let char (Fq) > 41,
P ⊂ [0, q − 2]3, and L = L(P). Consider f ∈ LP with the largest number
of absolutely irreducible factors. Let k be the number of such factors
with 4 or more monomials. Then

1. if k = 0 then Nf ≤ L(q − 1)2;

2. if k = 1 then

(a) Nf ≤ L(q − 1)2 + (q − 1)(2
√
q − 1), if f has a factor with

Newton polytope equivalent to T0,
(b) Nf ≤ L(q − 1)2 + (Vol(P)− 3L + 1)q + 2, otherwise;

3. if k = 2 then Nf ≤ L(q − 1)2 + 2(q − 1)(2
√
q − 1);

4. if k ≥ 3 then Nf ≤ L(q − 1)2 + 2k + 1 ≤ L(q − 1)2 + 2L + 1.
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Main Result for n = 3

Theorem (Meyer, Soprunova, —, 2021) Let char (Fq) > 41,
P ⊂ [0, q − 2]3, and L = L(P). Then for q large enough we have

NLP
≤ L(q − 1)2 + 2(q − 1)(2

√
q − 1).

Remark: Compare to NLP
≤ L(q − 1) + 2

√
q − 1 for n = 2.
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O. Beckwith, M. Grimm, J. Soprunova, B. Weaver, Minkowski
length of 3D lattice polytopes, Discrete and Computational
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K. Meyer, I. Soprunov, J. Soprunova, On the number of Fq-zeros of
families of sparse trivariate polynomials, arXiv:2105.10071,
MATLAB code: github.com/isoprou/minkowski-length

Thank you!
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