Zeros of sparse polynomials over finite fields

IAG Seminar, Magdeburg 2021

Ivan Soprunov*

(with Kyle Meyer and Jenya Soprunova)

*Cleveland State University

October 19, 2021

\mathbb{F}_{q} -zeros of irreducible polynomials

Let \mathbb{F}_q finite field of q elements. Consider an absolutely irreducible polynomial $f \in \mathbb{F}_a[x_1, \dots, x_n]$ of degree d.

Problem: Estimate $N_f = |\{p \in \mathbb{P}^n(\mathbb{F}_q) : f(p) = 0\}|,$ the number of \mathbb{F}_q -zeros of f in projective space.

\mathbb{F}_q -zeros of irreducible polynomials

Let \mathbb{F}_q finite field of q elements. Consider an absolutely irreducible polynomial $f \in \mathbb{F}_q[x_1, \dots, x_n]$ of degree d.

Problem: Estimate $N_f = |\{p \in \mathbb{P}^n(\mathbb{F}_q) : f(p) = 0\}|$, the number of \mathbb{F}_q -zeros of f in projective space.

For $f \in \mathbb{F}_q[x, y]$, we have Hasse-Weil (1949):

$$|\mathsf{N}_f - (q+1)| \leq gq^{\frac{1}{2}},$$
 where g is the genus

For irreducible projective varieties X of dimension n and degree d Lang-Weil Bound (1954):

$$|\mathsf{N}_X - \frac{q^{n+1}-1}{q-1}| \le (d-1)(d-2)q^{n-\frac{1}{2}} + Cq^{n-1}.$$

Let $\mathcal{L} \subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a finite subset.

Problem 1: Estimate $N_{\mathcal{L}} = \max\{N_f : 0 \neq f \in \mathcal{L}\}$, the maximum number of \mathbb{F}_q -zeros of non-trivial f in \mathcal{L} .

Let $\mathcal{L} \subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a finite subset.

- Problem 1: Estimate $N_{\mathcal{L}} = \max\{N_f : 0 \neq f \in \mathcal{L}\}$, the maximum number of \mathbb{F}_{q} -zeros of non-trivial f in \mathcal{L} .
- Problem 2: Estimate $N'_{\mathcal{C}}$, the maximum number of \mathbb{F}_q -zeros of fin \mathcal{L} with the largest number of factors.

Let $\mathcal{L} \subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a finite subset.

Problem 1: Estimate $N_{\mathcal{L}} = \max\{N_f : 0 \neq f \in \mathcal{L}\}$, the maximum number of \mathbb{F}_{q} -zeros of non-trivial f in \mathcal{L} .

Problem 2: Estimate N'_{C} , the maximum number of \mathbb{F}_{a} -zeros of f in \mathcal{L} with the largest number of factors.

Example: Let $\mathcal{L} = \mathcal{L}_d$, the set of all polynomials of degree at most d.

Then $N_{\mathcal{L}_d} = N'_{\mathcal{L}_d}$ when $d \leq q$. Therefore,

$$N_{\mathcal{L}_d} = dq^{n-1}$$
.

Let $\mathcal{L} \subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a finite subset.

Problem 1: Estimate $N_{\mathcal{L}} = \max\{N_f : 0 \neq f \in \mathcal{L}\}$, the maximum number of \mathbb{F}_q -zeros of non-trivial f in \mathcal{L} .

Problem 2: Estimate N'_{C} , the maximum number of \mathbb{F}_{a} -zeros of f in \mathcal{L} with the largest number of factors.

Example: Let $\mathcal{L} = \mathcal{L}_d$, the set of all polynomials of degree at most d.

Then $N_{\mathcal{L}_d} = N_{\mathcal{L}_d}'$ when $d \leq q$. Therefore,

$$N_{\mathcal{L}_d} = dq^{n-1}$$
.

Observe: We have $N_{\mathcal{L}} = N_{\mathcal{L}}'$ for large enough q.

Reason: If $f = f_1 \cdots f_k$ factorization into irreducible factors then $N_f = kq^{n-1} + o(q^{n-1})$ (from Lang-Weil Bound)

\mathbb{F}_{a} -zeros of sparse polynomials

We are interested in $\mathcal{L}_P \subset \mathbb{F}_q[x_1,\ldots,x_n]$ defined by a lattice polytope $P \subset \mathbb{R}^n$. It defines a space of sparse polynomials

$$\mathcal{L}_P = \operatorname{span}_{\mathbb{F}_q}\{x^{a}: a \in P \cap \mathbb{Z}^n\}, \text{ where } x^{a} = x_1^{a_1} \cdots x_n^{a_n}.$$

Example 1: Here $\mathcal{L}_P \subset \mathbb{F}_q[x_1, x_2]$,

$$\begin{split} \mathcal{L}_P &= \mathsf{span}_{\mathbb{F}_q} \{ x_1, x_2, x_1 x_2, x_1^2 x_2^2 \} \\ &= \{ \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_1 x_2 + \lambda_4 x_1^2 x_2^2 : \lambda_i \in \mathbb{F}_q \}. \end{split}$$

\mathbb{F}_q -zeros of sparse polynomials

We are interested in $\mathcal{L}_P \subset \mathbb{F}_q[x_1,\ldots,x_n]$ defined by a lattice polytope $P \subset \mathbb{R}^n$. It defines a space of sparse polynomials

$$\mathcal{L}_P = \operatorname{span}_{\mathbb{F}_q}\{x^{a}: a \in P \cap \mathbb{Z}^n\}, \text{ where } x^{a} = x_1^{a_1} \cdots x_n^{a_n}.$$

Example 1: Here $\mathcal{L}_P \subset \mathbb{F}_q[x_1, x_2]$,

$$\begin{split} \mathcal{L}_P &= \mathsf{span}_{\mathbb{F}_q} \{ x_1, x_2, x_1 x_2, x_1^2 x_2^2 \} \\ &= \{ \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_1 x_2 + \lambda_4 x_1^2 x_2^2 : \lambda_i \in \mathbb{F}_q \}. \end{split}$$

Example 2: When $P = d\Delta_n = \text{conv}\{0, de_1, \dots, de_n\}$ we get $\mathcal{L}_{d\Delta_n} = \mathcal{L}_d$, the set of polynomials of degree at most d.

\mathbb{F}_{a} -zeros of sparse polynomials

We are interested in $\mathcal{L}_P \subset \mathbb{F}_q[x_1,\ldots,x_n]$ defined by a lattice polytope $P \subset \mathbb{R}^n$. It defines a space of sparse polynomials

$$\mathcal{L}_P = \operatorname{span}_{\mathbb{F}_q}\{x^a : a \in P \cap \mathbb{Z}^n\}, \text{ where } x^a = x_1^{a_1} \cdots x_n^{a_n}.$$

Example 1: Here $\mathcal{L}_P \subset \mathbb{F}_q[x_1, x_2]$,

$$\begin{split} \mathcal{L}_P &= \mathsf{span}_{\mathbb{F}_q} \{ x_1, x_2, x_1 x_2, x_1^2 x_2^2 \} \\ &= \{ \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_1 x_2 + \lambda_4 x_1^2 x_2^2 : \lambda_i \in \mathbb{F}_q \}. \end{split}$$

From now on $N_f = |\{p \in (\mathbb{F}_q^*)^n : f(p) = 0\}|$

Goal: Estimate $N_{\mathcal{L}_P} = \max\{N_f : 0 \neq f \in \mathcal{L}_P\}$ in terms of q and geometric invariants of P.

Motivation from Coding Theory

A linear code is a linear subspace

$$\mathcal{C} \subseteq \mathbb{F}_q^N$$

Parameters

- \triangleright N is the length of C
- $k = \dim_{\mathbb{F}_a} \mathcal{C}$ is the dimension of \mathcal{C}
- ▶ $\delta = \min\{\text{weight}(c) : 0 \neq c \in \mathcal{C}\}$ is the minimum distance of \mathcal{C} where weight(c) is the number of non-zero entries of c.

We call \mathcal{C} a $[N, k, \delta]_q$ -code.

Motivation from Coding Theory

A linear code is a linear subspace

$$\mathcal{C} \subseteq \mathbb{F}_q^N$$

Parameters

- \triangleright N is the length of C
- $ightharpoonup k = \dim_{\mathbb{F}_q} \mathcal{C}$ is the dimension of \mathcal{C}
- ▶ $\delta = \min\{\text{weight}(c) : 0 \neq c \in \mathcal{C}\}$ is the minimum distance of \mathcal{C} where weight(c) is the number of non-zero entries of c.

We call C a $[N, k, \delta]_a$ -code.

Basic Problem

Given N and k, construct C with the largest possible δ .

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \dots, p_N\}.$

Evaluation Map:

$$\operatorname{ev}:\mathcal{L}_P o \mathbb{F}_q^N\quad f\mapsto (f(p_1),\ldots,f(p_N))$$

Toric Code: $C_P = \text{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \dots, p_N\}.$

Evaluation Map:

$$\operatorname{\mathsf{ev}}: \mathcal{L}_P o \mathbb{F}_q^N \quad f \mapsto (f(p_1), \dots, f(p_N))$$

Toric Code:
$$\mathcal{C}_P = \operatorname{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$$

Example:

Let
$$\mathbb{F}_a = \mathbb{F}_4$$
 and $n = 2$. Then $|(\mathbb{F}_a^*)^2| = 9$.

$$\mathcal{L}_P = \mathsf{span}_{\mathbb{F}_q}\{x_1, x_2, x_1x_2, x_1^2x_2^2\}.$$

In fact, C_P is a $[9,4,3]_4$ -code.

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \dots, p_N\}.$

Evaluation Map:

$$\operatorname{\mathsf{ev}}: \mathcal{L}_P o \mathbb{F}_q^N \quad f \mapsto (f(p_1), \dots, f(p_N))$$

Toric Code: $C_P = ev(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$

Some champion (generalized) toric codes:

[49, 8, 34]₈ A. Carbonara, J. Murillo, A. Ortiz (2010)

[49, 12, 28]₈ J. Little (2011)

[36, 19, 12]₇ G. Brown, A. Kasprzyk (2012)

 $[49, 13, 27]_8$, $[49, 19, 21]_8$ G. Brown and A. Kasprzyk, — (2013)

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \dots, p_N\}.$

Evaluation Map:

$$\operatorname{ev}:\mathcal{L}_P o \mathbb{F}_q^N\quad f\mapsto (f(p_1),\ldots,f(p_N))$$

Toric Code: $C_P = \text{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$

Parameters:

- ▶ $N = (q-1)^n$
- $k = |P \cap \mathbb{Z}^n|$ iff points in $P \cap \mathbb{Z}^n$ are distinct in $(\mathbb{Z}/(q-1)\mathbb{Z})^n$
- $\delta = (a-1)^n N_{C_0}$

Explicit formulas exist for a large class of polytopes (Little-Schwarz, Soprunova,—)

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \dots, p_N\}.$

Evaluation Map:

$$\operatorname{ev}:\mathcal{L}_P o \mathbb{F}_q^N\quad f\mapsto (f(p_1),\ldots,f(p_N))$$

Toric Code: $C_P = \operatorname{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$

Parameters:

- $ightharpoonup N = (q-1)^n$
- ▶ $k = |P \cap \mathbb{Z}^n|$ iff points in $P \cap \mathbb{Z}^n$ are distinct in $(\mathbb{Z}/(q-1)\mathbb{Z})^n$
- ▶ $\delta = (q-1)^n N_{\mathcal{L}_P} \leftarrow \text{what we need}$

Explicit formulas exist for a large class of polytopes (Little-Schwarz, Soprunova,—)

Estimating $N_{\mathcal{L}_{\mathcal{P}}}$

Fix \mathbb{F}_a and a lattice polytope P in $[0, q-2]^n$. How to estimate the number of \mathbb{F}_q -zeros of $f \in \mathcal{L}_P$ that factor the most?

Main Steps:

- 1. Find the largest number L of factors $f \in \mathcal{L}_P$ may have.
- 2. Describe what irreducible factors may look like in this case.
- 3. Estimate the number of \mathbb{F}_q -zeros of such irreducible factors.
- 4. Estimate the number of \mathbb{F}_q -zeros of $f \in \mathcal{L}_P$ with L factors.

Newton polytopes and Minkowski Sum

Let f be a Laurent polynomial $f \in \mathbb{F}_q[x_1, \ldots, x_n]$.

Newton Polytope: $P(f) = \text{conv}\{\text{ exponents of } f\} \subset \mathbb{R}^n$

Note: Newton polytope generalizes the notion of degree:

$$P(fg) = P(f) + P(g)$$

The Minkowski sum of polytopes P, Q in \mathbb{R}^n is

$$P+Q=\{p+q\in\mathbb{R}^n:p\in P,\ q\in Q\}.$$

Minkowski length L(P)

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$L(P) = \max\{L \in \mathbb{N} : Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.$$

Note: L(P) is the largest number of factors of f in $\mathcal{L}_P = \{f : P(f) \subseteq P\}$

Minkowski length L(P)

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in *P* is called the Minkowski length:

$$L(P) = \max\{L \in \mathbb{N} : Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.$$

Note: L(P) is the largest number of factors of f in $\mathcal{L}_P = \{f : P(f) \subseteq P\}$ Example: L(P) = 3

$$Q =$$
 $+$ $+$ $+$

a maximal decomposition in P

Minkowski length L(P)

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in *P* is called the Minkowski length:

$$L(P) = \max\{L \in \mathbb{N} : Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.$$

Note: L(P) is the largest number of factors of f in $\mathcal{L}_P = \{f : P(f) \subseteq P\}$ Some Properties:

- ▶ Monotonicity: L(Q) < L(P) if $Q \subseteq P$,
- ▶ Superadditivity: $L(P) + L(Q) \le L(P + Q)$,
- ▶ Invariance: L(P) is AGL (n, \mathbb{Z}) -invariant.
- \triangleright L(P) can be computed in polynomial time in size of P for n=2,3(Soprunova et al. 2009, 2012)

Example: Consider $f = 1 - x^a y^b$, where gcd(a, b) = 1. What is N_f ?

Example: Consider $f = 1 - x^a y^b$, where gcd(a, b) = 1. What is N_f ?

Change of variables: $x = u^r v^{-b}$, $y = u^s v^a$, for some $r, s \in \mathbb{Z}$ such that ar + bs = 1.

This is an automorphism of $(\mathbb{F}_a^*)^2$ and, hence, does not change N_f .

Example: Consider $f = 1 - x^a y^b$, where gcd(a, b) = 1. What is N_f ?

Change of variables: $x = u^r v^{-b}$, $y = u^s v^a$, for some $r, s \in \mathbb{Z}$ such that ar + bs = 1.

This is an automorphism of $(\mathbb{F}_q^*)^2$ and, hence, does not change N_f .

Then $f = 1 - x^a y^b = 1 - (u^r v^{-b})^a (u^s v^a)^b = 1 - u$ We have $N_f = q - 1$.

Example: Consider $f = 1 - x^a y^b$, where gcd(a, b) = 1. What is N_f ?

Change of variables: $x = u^r v^{-b}$, $y = u^s v^a$, for some $r, s \in \mathbb{Z}$ such that ar + bs = 1.

This is an automorphism of $(\mathbb{F}_q^*)^2$ and, hence, does not change N_f .

Then
$$f = 1 - x^a y^b = 1 - (u^r v^{-b})^a (u^s v^a)^b = 1 - u$$

We have $N_f = q - 1$.

Geometrically, $\begin{pmatrix} r & s \\ -b & a \end{pmatrix} \in AGL(2,\mathbb{Z})$ brings P(f) to $[0,e_1]$.

Let L = L(P) and consider $f = f_1 \cdots f_L$ in \mathcal{L}_P .

Observe: Each f_i has $P(f_i)$ of Minkowski length one.

Let L = L(P) and consider $f = f_1 \cdots f_l$ in \mathcal{L}_P .

Observe: Each f_i has $P(f_i)$ of Minkowski length one.

Theorem: (Soprunova, —, 2009) Minkowski length one polytopes in \mathbb{R}^2 up to $AGL(n, \mathbb{Z})$ -equivalence are

Proposition: (Soprunova, —, 2009) At most one of the f_i has $P(f_i) \simeq T_0$.

Proposition (Soprunova, —, 2009)

- if $P(f_i)$ = primitive segment then $N_{f_i} = q 1$
- if $P(f_i) = \triangle_2$ then $N_{f_i} = q 2$
- ▶ if $P(f_i) = T_0$ then $N_{f_i} \le q 1 + 2\sqrt{q} 1$ (from Hasse-Weil)

Proposition (Soprunova, —, 2009)

- if $P(f_i)$ = primitive segment then $N_{f_i} = q 1$
- if $P(f_i) = \triangle_2$ then $N_f = q 2$
- if $P(f_i) = T_0$ then $N_{f_i} \le q 1 + 2\sqrt{q} 1$ (from Hasse-Weil)

Theorem (Soprunova, —, 2009) Let P be lattice polygon in \mathbb{R}^2 , and $q > \alpha(P)$. Then

$$N_{\mathcal{L}_P} \leq L(P)(q-1) + 2\sqrt{q} - 1$$

(Remove $2\sqrt{q}-1$ term if no T_0 appears in a maximal decomposition.)

Now we enter dimension $n = 3 \dots$

Polytopes of Minkowski length one in \mathbb{R}^3

Let L(P) = 1. Observe:

- P has at most $2^3 = 8$ lattice points
- Every edge of P (in fact, every segment in P) is primitive
- Every face of P is a triangle (either $\simeq \triangle_2$ or $\simeq T_0$)

Polytopes of Minkowski length one in \mathbb{R}^3

Let L(P) = 1. Observe:

- -P has at most $2^3 = 8$ lattice points
- Every edge of P (in fact, every segment in P) is primitive
- Every face of P is a triangle (either $\simeq \triangle_2$ or $\simeq T_0$)

Theorem (Whitney, 2010; Blanco-Santos, 2016) Let $P \subset \mathbb{R}^3$ have L(P) = 1. Then P belongs to

- one of the infinite families of width one polytopes:
 - ▶ hollow and clean tetrahedra (empty tetrahedra) White (1964)
 - ▶ hollow clean and non-clean 5- and 6-vertex polytopes, OR
- one of 108 classes of non-hollow polytopes.

Polytopes of Minkowski length one in \mathbb{R}^3

Let L(P) = 1. Observe:

- P has at most $2^3 = 8$ lattice points
- Every edge of P (in fact, every segment in P) is primitive
- Every face of P is a triangle (either $\simeq \triangle_2$ or $\simeq T_0$)

Theorem (Whitney, 2010; Blanco-Santos, 2016) Let $P \subset \mathbb{R}^3$ have L(P) = 1. Then P belongs to

- one of the infinite families of width one polytopes:
 - hollow and clean tetrahedra (empty tetrahedra) White (1964)
 - ▶ hollow clean and non-clean 5- and 6-vertex polytopes, OR
- one of 108 classes of non-hollow polytopes.

Remark: Lattice polytopes $P \subset \mathbb{R}^3$ with L(P) = 1 were defined independently by Reznick (2002), as dps polytopes.

\mathbb{F}_{a} -zeros of irreducible factors, n=3

Example:

Consider $f = 1 - x + z - x^a y^b z$, where gcd(a, b) = 1. Bound on N_f ? Here $P(f) = \text{conv}\{0, e_1, e_3, ae_1 + be_2 + e_3\}$ an empty tetrahedron.

\mathbb{F}_q -zeros of irreducible factors, n=3

Example:

Consider $f = 1 - x + z - x^a y^b z$, where gcd(a, b) = 1. Bound on N_f ? Here $P(f) = conv\{0, e_1, e_3, ae_1 + be_2 + e_3\}$ an empty tetrahedron.

We have
$$f = (1 - x) + (1 - x^a y^b)z$$

two cases	upper bound on $\#$ of zeros
$x=1,\ y^b=1,\ {\sf any}\ z\in \mathbb{F}_q^*$	b(q-1)
$x \neq 1$, $x^a y^b \neq 1$, z unique	$(q-1)^2 - 2(q-1) + b$, by incl/excl

\mathbb{F}_{q} -zeros of irreducible factors, n=3

Example:

Consider $f = 1 - x + z - x^a y^b z$, where gcd(a, b) = 1. Bound on N_f ? Here $P(f) = \text{conv}\{0, e_1, e_3, ae_1 + be_2 + e_3\}$ an empty tetrahedron.

We have
$$f = (1 - x) + (1 - x^a y^b)z$$

two cases	upper bound on $\#$ of zeros
$x=1,\ y^b=1,\ {\sf any}\ z\in \mathbb{F}_q^*$	b(q-1)
$x \neq 1$, $x^a y^b \neq 1$, z unique	$(q-1)^2 - 2(q-1) + b$, by incl/excl

Total:
$$N_f \leq (q-1)^2 + (b-2)q + 2$$

\mathbb{F}_{a} -zeros of irreducible factors, n=3

Example:

Consider $f = 1 - x + z - x^a y^b z$, where gcd(a, b) = 1. Bound on N_f ? Here $P(f) = \text{conv}\{0, e_1, e_3, ae_1 + be_2 + e_3\}$ an empty tetrahedron.

We have
$$f = (1 - x) + (1 - x^a y^b)z$$

two cases	upper bound on $\#$ of zeros
$x=1,\ y^b=1,\ ext{any }z\in \mathbb{F}_q^*$	b(q-1)
$x \neq 1$, $x^a y^b \neq 1$, z unique	$(q-1)^2 - 2(q-1) + b$, by incl/excl

Total:
$$N_f \leq (q-1)^2 + (b-2)q + 2$$
 \uparrow
 $Vol(P(f))$

\mathbb{F}_{q} -zeros of irreducible factors, n=3

Theorem (Meyer, Soprunova, — 2021) Let $\operatorname{char} \mathbb{F}_q > 41$, $f \in \mathbb{F}_q[x, y, z]$ with L(P(f)) = 1 and dim P(f) = 3. Then $N_f < (q-1)^2 + (Vol(P) - 2)q + 2.$

\mathbb{F}_{q} -zeros of irreducible factors, n=3

Theorem (Meyer, Soprunova, — 2021) Let char
$$\mathbb{F}_q > 41$$
, $f \in \mathbb{F}_q[x,y,z]$ with $L(P(f)) = 1$ and dim $P(f) = 3$. Then $N_f \leq (q-1)^2 + (\operatorname{Vol}(P) - 2)q + 2$.

- ▶ For the 108 AGL(3, \mathbb{Z})-classes it follows from J. Whitney's work
- For the lattice width 1 polytopes we use mixed volumes and the BKK bound

\mathbb{F}_q -zeros of irreducible factors, n=3

Theorem (Meyer, Soprunova, — 2021) Let char
$$\mathbb{F}_q > 41$$
, $f \in \mathbb{F}_q[x,y,z]$ with $L(P(f)) = 1$ and dim $P(f) = 3$. Then $N_f \leq (q-1)^2 + (\operatorname{Vol}(P) - 2)q + 2$.

- ▶ For the 108 AGL(3, \mathbb{Z})-classes it follows from J. Whitney's work
- For the lattice width 1 polytopes we use mixed volumes and the BKK bound

Remark: If
$$P(f) \simeq T_0 \subset \mathbb{R}^3$$
 we get a worse bound $N_f \leq (q-1)(q+2\sqrt{q}-2) \sim q^2 + cq^{3/2} + O(q)$

Let $Q_1 + \cdots + Q_L \subset P$ be a maximal decomposition with L(P) = L > 1and dim $Q_i = 3$. Note $L(Q_i + Q_i) = 2$, $L(Q_i + Q_i + Q_k) = 3$, etc.

Let $Q_1 + \cdots + Q_L \subset P$ be a maximal decomposition with L(P) = L > 1and dim $Q_i = 3$. Note $L(Q_i + Q_i) = 2$, $L(Q_i + Q_i + Q_k) = 3$, etc.

Theorem (Meyer, Soprunova, —, 2021) Each $Q_i \simeq$

Pairs: Suppose $L(Q_1)=L(Q_2)=1$, $L(Q_1+Q_2)=2$. Then

$\boxed{\left(\mathit{Q}_1\cap\mathbb{Z}^3 , \mathit{Q}_2\cap\mathbb{Z}^3 \right)}$	$(\mathit{Q}_{1},\mathit{Q}_{2})\simeq$
(4,4)	(T_0,Q) , where $Q\simeq T_0$ or S_2
	$Q_1 \simeq S_1$ or S_2 and $Q_2 \simeq S_1$ or S_2
(5,4)	$(K_1, S_1), (E, S_2)$
	$(\mathit{K}_2, \mathit{S})$, where $\mathit{S} \simeq \mathit{S}_1$
(5,5)	(K_1,K_1)
$(\geq 6, \geq 3)$	impossible

Pairs: Suppose $L(Q_1) = L(Q_2) = 1$, $L(Q_1 + Q_2) = 2$. Then

$\boxed{\left(\mathit{Q}_1\cap\mathbb{Z}^3 , \mathit{Q}_2\cap\mathbb{Z}^3 \right)}$	$(\mathit{Q}_{1},\mathit{Q}_{2})\simeq$
(4,4)	(T_0,Q) , where $Q\simeq T_0$ or S_2
	$Q_1 \simeq \mathcal{S}_1$ or \mathcal{S}_2 and $Q_2 \simeq \mathcal{S}_1$ or \mathcal{S}_2
(5,4)	$(K_1, S_1), (E, S_2)$
	$(\mathcal{K}_2, \mathcal{S})$, where $\mathcal{S} \simeq \mathcal{S}_1$
(5,5)	(K_1,K_1)
$(\geq 6, \geq 3)$	impossible

k-tuples with k > 3: Suppose $L(Q_1) = \cdots = L(Q_k) = 1$, $L(Q_1 + \cdots + Q_k) = k$. Then $(Q_1, \dots, Q_k) \simeq (S_1, \dots, S_1)$, or $(S_2, ..., S_2)$, or $(E, S_2, ..., S_2)$, or $(S_1, S, ..., S)$, where $S \simeq S_2$.

Main Result for n=3

Theorem (Meyer, Soprunova, —, 2021) Let $\operatorname{char}(\mathbb{F}_a) > 41$, $P \subset [0, q-2]^3$, and L = L(P). Consider $f \in \mathcal{L}_P$ with the largest number of absolutely irreducible factors. Let k be the number of such factors with 4 or more monomials. Then

- 1. if k = 0 then $N_f < L(q-1)^2$;
- 2. if k=1 then
 - (a) $N_f \le L(q-1)^2 + (q-1)(2\sqrt{q}-1)$, if f has a factor with Newton polytope equivalent to T_0 .
 - (b) $N_f < L(q-1)^2 + (Vol(P) 3L + 1)q + 2$, otherwise;
- 3. if k=2 then $N_f < L(q-1)^2 + 2(q-1)(2\sqrt{q}-1)$;
- 4. if $k \ge 3$ then $N_f \le L(q-1)^2 + 2k + 1 \le L(q-1)^2 + 2L + 1$.

Main Result for n=3

Theorem (Meyer, Soprunova, —, 2021) Let $\operatorname{char}(\mathbb{F}_a) > 41$, $P \subset [0, q-2]^3$, and L = L(P). Consider $f \in \mathcal{L}_P$ with the largest number of absolutely irreducible factors. Let k be the number of such factors with 4 or more monomials. Then

- 1. if k = 0 then $N_f < L(q-1)^2$;
- 2. if k=1 then
 - (a) $N_f \le L(q-1)^2 + (q-1)(2\sqrt{q}-1)$, if f has a factor with Newton polytope equivalent to T_0 .
 - (b) $N_f < L(q-1)^2 + (Vol(P) 3L + 1)q + 2$, otherwise;
- 3. if k=2 then $N_f \leq L(q-1)^2 + 2(q-1)(2\sqrt{q}-1)$;
- 4. if $k \ge 3$ then $N_f \le L(q-1)^2 + 2k + 1 \le L(q-1)^2 + 2L + 1$.

Main Result for n=3

Theorem (Meyer, Soprunova, —, 2021) Let char (\mathbb{F}_q) > 41, $P \subset [0, q-2]^3$, and L = L(P). Then for q large enough we have

$$N_{\mathcal{L}_P} \leq L(q-1)^2 + 2(q-1)(2\sqrt{q}-1).$$

Remark: Compare to $N_{\mathcal{L}_P} \leq L(q-1) + 2\sqrt{q} - 1$ for n=2.

Some references

I. Soprunov, J. Soprunova, Toric surface codes and Minkowski length of polygons, SIAM J. Discrete Math. 23, Issue 1, (2009) pp. 384-400

Josh Whitney, A bound on the minimum distance of three dimensional toric codes Ph.D. Thesis, UC Irvine 2010

O. Beckwith, M. Grimm, J. Soprunova, B. Weaver, *Minkowski* length of 3D lattice polytopes, Discrete and Computational Geometry 48, Issue 4 (2012), 1137-1158.

K. Meyer, I. Soprunov, J. Soprunova, On the number of \mathbb{F}_q -zeros of families of sparse trivariate polynomials, arXiv:2105.10071, MATLAB code: github.com/isoprou/minkowski-length

Some references

I. Soprunov, J. Soprunova, *Toric surface codes and Minkowski length of polygons*, SIAM J. Discrete Math. 23, Issue 1, (2009) pp. 384-400

Josh Whitney, A bound on the minimum distance of three dimensional toric codes Ph.D. Thesis, UC Irvine 2010

O. Beckwith, M. Grimm, J. Soprunova, B. Weaver, *Minkowski length of 3D lattice polytopes*, Discrete and Computational Geometry 48, Issue 4 (2012), 1137-1158.

K. Meyer, I. Soprunov, J. Soprunova, On the number of \mathbb{F}_q -zeros of families of sparse trivariate polynomials, arXiv:2105.10071, MATLAB code: github.com/isoprou/minkowski-length

Thank you!