Zeros of sparse polynomials over finite fields

IAG Seminar, Magdeburg 2021

Ivan Soprunov[∗]

(with Kyle Meyer and Jenya Soprunova)

[∗]Cleveland State University

October 19, 2021

\mathbb{F}_q -zeros of irreducible polynomials

Let \mathbb{F}_q finite field of q elements. Consider an absolutely irreducible polynomial $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ of degree d.

Problem: Estimate $N_f = |\{p \in \mathbb{P}^n(\mathbb{F}_q) : f(p) = 0\}|$, the number of \mathbb{F}_q -zeros of f in projective space.

\mathbb{F}_q -zeros of irreducible polynomials

Let \mathbb{F}_q finite field of q elements. Consider an absolutely irreducible polynomial $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ of degree d.

Problem: Estimate $N_f = |\{p \in \mathbb{P}^n(\mathbb{F}_q) : f(p) = 0\}|$, the number of \mathbb{F}_q -zeros of f in projective space.

For $f \in \mathbb{F}_q[x, y]$, we have Hasse-Weil (1949):

$$
|\mathsf{N}_{\mathsf{f}}-(q+1)|\leq \mathsf{g} q^{\frac{1}{2}}, \text{ where } \mathsf{g} \text{ is the genus}
$$

For irreducible projective varieties X of dimension n and degree d Lang-Weil Bound (1954):

$$
|\mathsf{N}_X - \frac{q^{n+1}-1}{q-1}| \leq (d-1)(d-2)q^{n-\frac{1}{2}} + Cq^{n-1}.
$$

Let $\mathcal{L} \subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a finite subset.

Problem 1: Estimate $N_{\mathcal{L}} = \max\{N_f: 0 \neq f \in \mathcal{L}\}$, the maximum number of \mathbb{F}_q -zeros of non-trivial f in \mathcal{L} .

Let $\mathcal{L} \subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a finite subset.

- Problem 1: Estimate $N_{\mathcal{L}} = \max\{N_f: 0 \neq f \in \mathcal{L}\}$, the maximum number of \mathbb{F}_q -zeros of non-trivial f in \mathcal{L} .
- Problem 2: Estimate $N'_{\mathcal{L}}$, the maximum number of \mathbb{F}_q -zeros of *f* in $\mathcal L$ with the largest number of factors.

Let $\mathcal{L} \subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a finite subset.

Problem 1: Estimate $N_{\mathcal{L}} = \max\{N_f: 0 \neq f \in \mathcal{L}\}$, the maximum number of \mathbb{F}_q -zeros of non-trivial f in \mathcal{L} .

Problem 2: Estimate $N'_{\mathcal{L}}$, the maximum number of \mathbb{F}_q -zeros of *f* in $\mathcal L$ with the largest number of factors.

Example: Let $\mathcal{L} = \mathcal{L}_d$, the set of all polynomials of degree at most d. Then $N_{\mathcal{L}_d} = N_{\mathcal{L}_d}'$ when $d \leq q$. Therefore,

$$
N_{\mathcal{L}_d}=dq^{n-1}.
$$

Let $\mathcal{L} \subset \mathbb{F}_{q}[x_1,\ldots,x_n]$ be a finite subset.

Problem 1: Estimate $N_{\mathcal{L}} = \max\{N_f: 0 \neq f \in \mathcal{L}\}$, the maximum number of \mathbb{F}_q -zeros of non-trivial f in \mathcal{L} .

Problem 2: Estimate $N'_{\mathcal{L}}$, the maximum number of \mathbb{F}_q -zeros of *f* in $\mathcal L$ with the largest number of factors.

Example: Let $\mathcal{L} = \mathcal{L}_d$, the set of all polynomials of degree at most d. Then $N_{\mathcal{L}_d} = N_{\mathcal{L}_d}'$ when $d \leq q$. Therefore,

$$
N_{\mathcal{L}_d}=dq^{n-1}.
$$

Observe: We have $N_{\mathcal{L}} = N_{\mathcal{L}}'$ for large enough q . Reason: If $f = f_1 \cdots f_k$ factorization into irreducible factors then $\mathsf{N}_\mathsf{f} = \mathsf{k} \mathsf{q}^{n-1} + o(\mathsf{q}^{n-1})$ (from Lang-Weil Bound)

\mathbb{F}_q -zeros of sparse polynomials

We are interested in $\mathcal{L}_P \subset \mathbb{F}_q[x_1,\ldots,x_n]$ defined by a lattice polytope $P \subset \mathbb{R}^n$. It defines a space of sparse polynomials

 $\mathcal{L}_P = \text{span}_{\mathbb{F}_q}\{x^a : a \in P \cap \mathbb{Z}^n\}, \text{ where } x^a = x_1^{a_1} \cdots x_n^{a_n}.$

Example 1: Here
$$
\mathcal{L}_P \subset \mathbb{F}_q[x_1, x_2]
$$
,
\n
$$
\mathcal{L}_P = \text{span}_{\mathbb{F}_q} \{x_1, x_2, x_1x_2, x_1^2x_2^2\}
$$
\n
$$
= \{\lambda_1x_1 + \lambda_2x_2 + \lambda_3x_1x_2 + \lambda_4x_1^2x_2^2 : \lambda_i \in \mathbb{F}_q\}.
$$

\mathbb{F}_q -zeros of sparse polynomials

We are interested in $\mathcal{L}_P \subset \mathbb{F}_q[x_1,\ldots,x_n]$ defined by a lattice polytope $P \subset \mathbb{R}^n$. It defines a space of sparse polynomials

$$
\mathcal{L}_P = \text{span}_{\mathbb{F}_q}\{x^a : a \in P \cap \mathbb{Z}^n\}, \text{ where } x^a = x_1^{a_1} \cdots x_n^{a_n}.
$$

Example 2: When $P = d\Delta_n = \text{conv}\{0, de_1, \ldots, de_n\}$ we get $\mathcal{L}_{d\Delta_n} = \mathcal{L}_d$, the set of polynomials of degree at most d .

\mathbb{F}_q -zeros of sparse polynomials

We are interested in $\mathcal{L}_P \subset \mathbb{F}_q[x_1,\ldots,x_n]$ defined by a lattice polytope $P \subset \mathbb{R}^n$. It defines a space of sparse polynomials

$$
\mathcal{L}_P = \text{span}_{\mathbb{F}_q} \{ x^a : a \in P \cap \mathbb{Z}^n \}, \text{ where } x^a = x_1^{a_1} \cdots x_n^{a_n}.
$$

From now on $N_f = |\{p \in (\mathbb{F}_q^*)^n : f(p) = 0\}|$ Goal: Estimate $N_{\mathcal{L}_P} = \max\{N_f: 0 \neq f \in \mathcal{L}_P\}$ in terms of q and geometric invariants of P.

Motivation from Coding Theory

A linear code is a linear subspace

$$
\mathcal{C} \subseteq \mathbb{F}_q^N
$$

Parameters

- \triangleright N is the length of C
- $\blacktriangleright k = \dim_{\mathbb{F}_q} C$ is the dimension of C
- $\triangleright \delta = \min\{\text{weight}(c) : 0 \neq c \in C\}$ is the minimum distance of C where weight(c) is the number of non-zero entries of c .

We call C a $[N, k, \delta]_q$ -code.

Motivation from Coding Theory

A linear code is a linear subspace

$$
\mathcal{C} \subseteq \mathbb{F}_q^N
$$

Parameters

- \triangleright N is the length of C
- $\blacktriangleright k = \dim_{\mathbb{F}_q} C$ is the dimension of C
- $\triangleright \delta = \min\{\text{weight}(c) : 0 \neq c \in C\}$ is the minimum distance of C where weight(c) is the number of non-zero entries of c .

We call C a $[N, k, \delta]_q$ -code.

Basic Problem

Given N and k, construct C with the largest possible δ .

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \ldots, p_N\}.$

Evaluation Map:

$$
\operatorname{\mathsf{ev}}: \mathcal{L}_{P} \rightarrow \mathbb{F}_q^N \quad f \mapsto (f(p_1), \ldots, f(p_N))
$$

Toric Code: $\mathcal{C}_P = \text{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \ldots, p_N\}.$

Evaluation Map:

$$
\operatorname{\mathsf{ev}}: \mathcal{L}_{P} \rightarrow \mathbb{F}_q^N \quad f \mapsto (f(p_1), \ldots, f(p_N))
$$

Toric Code: $\mathcal{C}_P = \text{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$

Example:

٨

Let
$$
\mathbb{F}_q = \mathbb{F}_4
$$
 and $n = 2$. Then $|(\mathbb{F}_q^*)^2| = 9$.
\n
$$
\mathcal{L}_P = \text{span}_{\mathbb{F}_q} \{x_1, x_2, x_1x_2, x_1^2x_2^2\}.
$$
\nIn fact, \mathcal{C}_P is a [9, 4, 3]₄-code.

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \ldots, p_N\}.$

Evaluation Map:

$$
\operatorname{\mathsf{ev}}: \mathcal{L}_{P} \rightarrow \mathbb{F}_q^N \quad f \mapsto (f(p_1), \ldots, f(p_N))
$$

Toric Code: $\mathcal{C}_P = \text{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$

Some champion (generalized) toric codes:

 $[49, 8, 34]_8$ A. Carbonara, J. Murillo, A. Ortiz (2010) $[49, 12, 28]$ ₈ J. Little (2011) $[36, 19, 12]_7$ G. Brown, A. Kasprzyk (2012) $[49, 13, 27]_8$, $[49, 19, 21]_8$ G. Brown and A. Kasprzyk, — (2013)

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \ldots, p_N\}.$

Evaluation Map:

$$
\operatorname{\mathsf{ev}}: \mathcal{L}_{P} \rightarrow \mathbb{F}_q^N \quad f \mapsto (f(p_1), \ldots, f(p_N))
$$

Toric Code: $\mathcal{C}_P = \text{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$ Parameters:

 $\blacktriangleright N = (q-1)^n$

► $k = |P \cap \mathbb{Z}^n|$ iff points in $P \cap \mathbb{Z}^n$ are distinct in $(\mathbb{Z}/(q-1)\mathbb{Z})^n$

 $\triangleright \delta = (a-1)^n - N_c$

Explicit formulas exist for a large class of polytopes (Little-Schwarz, Soprunova,—)

Generalize Reed-Solomon and Reed-Muller codes

As before, let P be a lattice polytope in \mathbb{R}^n and \mathcal{L}_P the corresponding space of sparse polynomials.

Enumerate the points of $(\mathbb{F}_q^*)^n = \{p_1, \ldots, p_N\}.$

Evaluation Map:

$$
\operatorname{\mathsf{ev}}: \mathcal{L}_{P} \rightarrow \mathbb{F}_q^N \quad f \mapsto (f(p_1), \ldots, f(p_N))
$$

Toric Code: $\mathcal{C}_P = \text{ev}(\mathcal{L}_P) \subseteq \mathbb{F}_q^N$ Parameters:

 $\blacktriangleright N = (q-1)^n$

► $k = |P \cap \mathbb{Z}^n|$ iff points in $P \cap \mathbb{Z}^n$ are distinct in $(\mathbb{Z}/(q-1)\mathbb{Z})^n$

 $\triangleright \delta = (q-1)^n - N_{\mathcal{L}_p} \leftarrow$ what we need

Explicit formulas exist for a large class of polytopes (Little-Schwarz, Soprunova,—)

Estimating N_{ℓ_p}

Fix \mathbb{F}_q and a lattice polytope P in $[0, q-2]^n$. How to estimate the number of \mathbb{F}_q -zeros of $f \in \mathcal{L}_P$ that factor the most?

Main Steps:

- 1. Find the largest number L of factors $f \in \mathcal{L}_P$ may have.
- 2. Describe what irreducible factors may look like in this case.
- 3. Estimate the number of \mathbb{F}_q -zeros of such irreducible factors.
- 4. Estimate the number of \mathbb{F}_q -zeros of $f \in \mathcal{L}_P$ with L factors.

Newton polytopes and Minkowski Sum

Let f be a Laurent polynomial $f \in \mathbb{F}_q[x_1,\ldots,x_n]$. Newton Polytope: $P(f) = \text{conv}\{\text{exponents of } f\} \subset \mathbb{R}^n$

Note: Newton polytope generalizes the notion of degree:

$$
P(fg) = P(f) + P(g)
$$

The Minkowski sum of polytopes P , Q in \mathbb{R}^n is

$$
P+Q=\{p+q\in\mathbb{R}^n:p\in P,\ q\in Q\}.
$$

Minkowski length L(P)

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$
L(P) = \max\{L \in \mathbb{N} : Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.
$$

Note: $L(P)$ is the largest number of factors of f in $\mathcal{L}_P = \{f : P(f) \subseteq P\}$

Minkowski length L(P)

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$
L(P) = \max\{L \in \mathbb{N} : Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.
$$

Note: $L(P)$ is the largest number of factors of f in $\mathcal{L}_P = \{f : P(f) \subseteq P\}$ Example: $L(P) = 3$

a maximal decomposition in P

Minkowski length L(P)

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$
L(P) = \max\{L \in \mathbb{N} : Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.
$$

Note: $L(P)$ is the largest number of factors of f in $\mathcal{L}_P = \{f : P(f) \subseteq P\}$ Some Properties:

- \triangleright Monotonicity: $L(Q)$ < $L(P)$ if $Q \subset P$,
- ▶ Superadditivity: $L(P) + L(Q) \le L(P + Q)$,
- Invariance: $L(P)$ is AGL(n, \mathbb{Z})-invariant.
- If L(P) can be computed in polynomial time in size of P for $n = 2, 3$ (Soprunova et al, 2009, 2012)

Example: Consider $f = 1 - x^a y^b$, where $gcd(a, b) = 1$. What is N_f?

Example: Consider $f = 1 - x^a y^b$, where $gcd(a, b) = 1$. What is N_f?

Change of variables: $x = u^r v^{-b}$, $y = u^s v^a$, for some $r, s \in \mathbb{Z}$ such that $ar + bs = 1$.

This is an automorphism of $(\mathbb{F}_q^*)^2$ and, hence, does not change N_f .

Example: Consider $f = 1 - x^a y^b$, where $gcd(a, b) = 1$. What is N_f?

Change of variables: $x = u^r v^{-b}$, $y = u^s v^a$, for some $r, s \in \mathbb{Z}$ such that $ar + bs = 1$.

This is an automorphism of $(\mathbb{F}_q^*)^2$ and, hence, does not change N_f .

Then $f = 1 - x^a y^b = 1 - (u^r v^{-b})^a (u^s v^a)^b = 1 - u^b$ We have $N_f = a - 1$.

Example: Consider $f = 1 - x^a y^b$, where $gcd(a, b) = 1$. What is N_f?

Change of variables: $x = u^r v^{-b}$, $y = u^s v^a$, for some $r, s \in \mathbb{Z}$ such that $ar + bs = 1$.

This is an automorphism of $(\mathbb{F}_q^*)^2$ and, hence, does not change N_f .

Then
$$
f = 1 - x^a y^b = 1 - (u^r v^{-b})^a (u^s v^a)^b = 1 - u
$$

We have $N_f = q - 1$.

Geometrically,
$$
\begin{pmatrix} r & s \\ -b & a \end{pmatrix} \in \text{AGL}(2, \mathbb{Z})
$$
 brings $P(f)$ to $[0, e_1]$.

Let $L = L(P)$ and consider $f = f_1 \cdots f_L$ in \mathcal{L}_P .

Observe: Each f_i has $P(f_i)$ of Minkowski length one.

Let $L = L(P)$ and consider $f = f_1 \cdots f_l$ in \mathcal{L}_P .

Observe: Each f_i has $P(f_i)$ of Minkowski length one.

Theorem: (Soprunova, —, 2009) Minkowski length one polytopes in \mathbb{R}^2 up to AGL (n, \mathbb{Z}) -equivalence are

Proposition: (Soprunova, $-$, 2009) At *most one* of the f_i has $P(f_i) \simeq T_0$.

Proposition (Soprunova, —, 2009)

 \triangleright if $P(f_i) =$ primitive segment then $N_{f_i} = q - 1$

• if
$$
P(f_i) = \triangle_2
$$
 then $N_{f_i} = q - 2$

 $\tau_{\mathfrak{0}}$

Proposition (Soprunova, —, 2009)

In if $P(f_i) =$ primitive segment then $N_{f_i} = q - 1$

• if
$$
P(f_i) = \triangle_2
$$
 then $N_{f_i} = q - 2$

► if $P(f_i) = T_0$ then $N_{f_i} \leq q - 1 + 2\sqrt{q} - 1$ (from Hasse-Weil)

Theorem (Soprunova, $-$, 2009) Let P be lattice polygon in \mathbb{R}^2 , and $q > \alpha(P)$. Then

$$
N_{\mathcal{L}_P} \leq L(P)(q-1) + 2\sqrt{q} - 1
$$

(Remove 2 $\sqrt{q}-1$ term if no \bar{T}_0 appears in a maximal decomposition.)

Now we enter dimension $n = 3$...

Polytopes of Minkowski length one in \mathbb{R}^3

Let $L(P) = 1$. Observe:

- P has at most $2^3 = 8$ lattice points
- Every edge of P (in fact, every segment in P) is primitive
- Every face of P is a triangle (either $\simeq \triangle_2$ or $\simeq T_0$)

Polytopes of Minkowski length one in \mathbb{R}^3

Let $L(P) = 1$. Observe:

- P has at most $2^3 = 8$ lattice points
- Every edge of P (in fact, every segment in P) is primitive
- Every face of P is a triangle (either $\simeq \triangle_2$ or $\simeq T_0$)

Theorem (Whitney, 2010; Blanco-Santos, 2016) Let $P \subset \mathbb{R}^3$ have $L(P) = 1$. Then P belongs to

- \triangleright one of the infinite families of width one polytopes:
	- \blacktriangleright hollow and clean tetrahedra (empty tetrahedra) White (1964)
	- \triangleright hollow clean and non-clean 5- and 6-vertex polytopes, OR
- \triangleright one of 108 classes of non-hollow polytopes.

Polytopes of Minkowski length one in \mathbb{R}^3

Let $L(P) = 1$. Observe:

- P has at most $2^3 = 8$ lattice points
- Every edge of P (in fact, every segment in P) is primitive
- Every face of P is a triangle (either $\simeq \triangle_2$ or $\simeq T_0$)

Theorem (Whitney, 2010; Blanco-Santos, 2016) Let $P \subset \mathbb{R}^3$ have $L(P) = 1$. Then P belongs to

- \triangleright one of the infinite families of width one polytopes:
	- \blacktriangleright hollow and clean tetrahedra (empty tetrahedra) White (1964)
	- \triangleright hollow clean and non-clean 5- and 6-vertex polytopes, OR
- \triangleright one of 108 classes of non-hollow polytopes.

Remark: Lattice polytopes $P \subset \mathbb{R}^3$ with $L(P) = 1$ were defined independently by Reznick (2002), as dps polytopes.

Example:

Consider $f = 1 - x + z - x^a y^b z$, where $gcd(a, b) = 1$. Bound on N_f? Here $P(f) = \text{conv}\{0, e_1, e_3, ae_1 + be_2 + e_3\}$ an empty tetrahedron.

Example: Consider $f = 1 - x + z - x^a y^b z$, where $gcd(a, b) = 1$. Bound on N_f? Here $P(f) = \text{conv}\{0, e_1, e_3, ae_1 + be_2 + e_3\}$ an empty tetrahedron.

We have $f = (1-x) + (1-x^a y^b)z$

Example: Consider $f = 1 - x + z - x^a y^b z$, where $gcd(a, b) = 1$. Bound on N_f? Here $P(f) = \text{conv}\{0, e_1, e_3, ae_1 + be_2 + e_3\}$ an empty tetrahedron.

We have $f = (1-x) + (1-x^a y^b)z$

Total: $N_f < (q-1)^2 + (b-2)q + 2$

Example: Consider $f = 1 - x + z - x^a y^b z$, where $gcd(a, b) = 1$. Bound on N_f? Here $P(f) = \text{conv}\{0, e_1, e_3, ae_1 + be_2 + e_3\}$ an empty tetrahedron.

We have
$$
f = (1 - x) + (1 - x^a y^b)z
$$

Total:
$$
N_f \leq (q-1)^2 + (b-2)q + 2
$$

\n
$$
\uparrow
$$
\n
$$
\text{Vol}(P(f))
$$

Theorem (Meyer, Soprunova, $-$ 2021) Let char $\mathbb{F}_q > 41$, $f \in \mathbb{F}_q[x, y, z]$ with $L(P(f)) = 1$ and dim $P(f) = 3$. Then $N_f \leq (q-1)^2 + (Vol(P) - 2)q + 2.$

Theorem (Meyer, Soprunova, — 2021) Let char $\mathbb{F}_q > 41$, $f \in \mathbb{F}_q[x, y, z]$ with $L(P(f)) = 1$ and dim $P(f) = 3$. Then $N_f \leq (q-1)^2 + (Vol(P) - 2)q + 2.$

- \triangleright For the 108 AGL(3, \mathbb{Z})-classes it follows from J. Whitney's work
- \triangleright For the lattice width 1 polytopes we use mixed volumes and the BKK bound

Theorem (Meyer, Soprunova, — 2021) Let char $\mathbb{F}_q > 41$, $f \in \mathbb{F}_q[x, y, z]$ with $L(P(f)) = 1$ and dim $P(f) = 3$. Then $N_f \leq (a-1)^2 + (Vol(P) - 2)a + 2.$

- \triangleright For the 108 AGL(3, \mathbb{Z})-classes it follows from J. Whitney's work
- \triangleright For the lattice width 1 polytopes we use mixed volumes and the BKK bound

Remark: If $P(f) \simeq T_0 \subset \mathbb{R}^3$ we get a worse bound $N_f \leq (q-1)(q+2\sqrt{q}-2) \sim q^2 + cq^{3/2} + O(q)$

Let $Q_1 + \cdots + Q_L \subset P$ be a maximal decomposition with $L(P) = L > 1$ and dim $Q_i = 3$. Note $L(Q_i + Q_i) = 2$, $L(Q_i + Q_i + Q_k) = 3$, etc.

Let $Q_1 + \cdots + Q_L \subset P$ be a maximal decomposition with $L(P) = L > 1$ and dim $Q_i = 3$. Note $L(Q_i + Q_i) = 2$, $L(Q_i + Q_i + Q_k) = 3$, etc.

Pairs: Suppose $L(Q_1) = L(Q_2) = 1$, $L(Q_1 + Q_2) = 2$. Then

Pairs: Suppose $L(Q_1) = L(Q_2) = 1$, $L(Q_1 + Q_2) = 2$. Then

k-tuples with $k > 3$: Suppose $L(Q_1) = \cdots = L(Q_k) = 1$, $L(Q_1 + \cdots + Q_k) = k$. Then $(Q_1, \ldots, Q_k) \simeq (S_1, \ldots, S_1)$, or (S_2, \ldots, S_2) , or (E, S_2, \ldots, S_2) , or (S_1, S, \ldots, S) , where $S \simeq S_2$.

Main Result for $n = 3$

Theorem (Meyer, Soprunova, $-$, 2021) Let char (\mathbb{F}_q) > 41, $P\subset [0,q-2]^3$, and $L=L(P)$. Consider $f\in \mathcal{L}_P$ with the largest number of absolutely irreducible factors. Let k be the number of such factors with 4 or more monomials. Then

- 1. if $k = 0$ then $N_f \le L(q-1)^2$;
- 2. if $k = 1$ then

(a) $N_f \le L(q-1)^2 + (q-1)(2\sqrt{q}-1)$, if f has a factor with Newton polytope equivalent to T_0 . (b) $N_f \le L(q-1)^2 + (Vol(P) - 3L + 1)q + 2$, otherwise;

- 3. if $k = 2$ then $N_f \le L(q-1)^2 + 2(q-1)(2\sqrt{q}-1);$
- 4. if $k \ge 3$ then $N_f \le L(q-1)^2 + 2k + 1 \le L(q-1)^2 + 2L + 1$.

Main Result for $n = 3$

Theorem (Meyer, Soprunova, $-$, 2021) Let char (\mathbb{F}_q) > 41, $P\subset [0,q-2]^3$, and $L=L(P)$. Consider $f\in \mathcal{L}_P$ with the largest number of absolutely irreducible factors. Let k be the number of such factors with 4 or more monomials. Then

- 1. if $k = 0$ then $N_f \le L(q-1)^2$;
- 2. if $k = 1$ then

(a) $N_f \le L(q-1)^2 + (q-1)(2\sqrt{q}-1)$, if f has a factor with Newton polytope equivalent to T_0 . (b) $N_f \le L(a-1)^2 + (Vol(P) - 3L + 1)q + 2$, otherwise;

- 3. if $k = 2$ then $N_f \le L(q-1)^2 + 2(q-1)(2\sqrt{q}-1);$
- 4. if $k \ge 3$ then $N_f \le L(q-1)^2 + 2k + 1 \le L(q-1)^2 + 2L + 1$.

Main Result for $n = 3$

Theorem (Meyer, Soprunova, $-$, 2021) Let char (\mathbb{F}_q) > 41, $P \subset [0, q-2]^3$, and $L = L(P)$. Then for q large enough we have

$$
N_{\mathcal{L}_P}\leq L(q-1)^2+2(q-1)(2\sqrt{q}-1).
$$

Remark: Compare to $N_{\mathcal{L}_P} \leq L(q-1) + 2\sqrt{q} - 1$ for $n = 2$.

Some references

- S. I. Soprunov, J. Soprunova, Toric surface codes and Minkowski length of polygons, SIAM J. Discrete Math. 23, Issue 1, (2009) pp. 384-400
- 靠 Josh Whitney, A bound on the minimum distance of three dimensional toric codes Ph.D. Thesis, UC Irvine 2010
- O. Beckwith, M. Grimm, J. Soprunova, B. Weaver, Minkowski length of 3D lattice polytopes, Discrete and Computational Geometry 48, Issue 4 (2012), 1137-1158.
-
- K. Meyer, I. Soprunov, J. Soprunova, On the number of \mathbb{F}_q -zeros of families of sparse trivariate polynomials, arXiv:2105.10071, MATLAB code: github.com/isoprou/minkowski-length

Some references

- 譶 I. Soprunov, J. Soprunova, Toric surface codes and Minkowski length of polygons, SIAM J. Discrete Math. 23, Issue 1, (2009) pp. 384-400
- 暈 Josh Whitney, A bound on the minimum distance of three dimensional toric codes Ph.D. Thesis, UC Irvine 2010
- O. Beckwith, M. Grimm, J. Soprunova, B. Weaver, Minkowski length of 3D lattice polytopes, Discrete and Computational Geometry 48, Issue 4 (2012), 1137-1158.
- 晶 K. Meyer, I. Soprunov, J. Soprunova, On the number of \mathbb{F}_q -zeros of families of sparse trivariate polynomials, arXiv:2105.10071, MATLAB code: github.com/isoprou/minkowski-length

Thank you!