Toric Geometry in Coding Theory

Ivan Soprunov

Cleveland State University

February 27, 2014

 299 \leftarrow \Box \rightarrow \leftarrow \rightarrow \rightarrow

[Toric Geometry in Coding Theory](#page-51-0)

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Part I

[What is Coding Theory?](#page-1-0)

 299 (□) (_①)

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Let $\mathbb{K} = \mathbb{F}_q$ be a finite field of q elements (the alphabet). Linear Code: $C \subset \mathbb{K}^n$ a subspace, elements of C are the codewords.

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

Basic Definitions from Coding Theory

Let $\mathbb{K} = \mathbb{F}_q$ be a finite field of q elements (the alphabet). Linear Code: $C \subset \mathbb{K}^n$ a subspace, elements of C are the codewords. Parameters:

- In the length of $\mathcal C$
- $\blacktriangleright k = \dim C$ the dimension of C
- \blacktriangleright d the minimum distance of C

Hamming distance: $dist(c_1, c_2) = \text{\#}$ of non-zero entries in $c_1 - c_2$.

$$
d = \min_{c \in C \setminus \{0\}} (\# \text{of non-zero entries in } c)
$$

We say that C is a $[n, k, d]_q$ -code.

Problem: The codewords $c \in \mathcal{C}$ may change when transmitted. How to recover c ?

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Problem: The codewords $c \in \mathcal{C}$ may change when transmitted. How to recover c?

Solution: If c are different enough and not too many errors occur we can look at the closest codeword. In fact, up to $\lfloor\frac{d-1}{2}\rfloor$ $\frac{-1}{2}$ can be corrected.

4.0.3

 Ω

Problem: The codewords $c \in \mathcal{C}$ may change when transmitted. How to recover c?

Solution: If c are different enough and not too many errors occur we can look at the closest codeword. In fact, up to $\lfloor\frac{d-1}{2}\rfloor$ $\frac{-1}{2}$ can be corrected.

Goal: Given n, k construct an $[n, k, d]_q$ -code with largest d.

 Ω

Evaluation Codes

Let X be an algebraic variety over \mathbb{K} . We fix $Z = \{p_1, \ldots, p_n\} \subset X(\mathbb{K})$ and

 $\mathcal{L} = f$. dim. space of rational functions over K, regular on Z.

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Evaluation Codes

Let X be an algebraic variety over \mathbb{K} . We fix $Z = \{p_1, \ldots, p_n\} \subset X(\mathbb{K})$ and $\mathcal{L} = f$. dim. space of rational functions over K, regular on Z. Evaluation Map:

$$
\text{ev}_{Z}: \mathcal{L} \to \mathbb{K}^n \quad f \mapsto (f(p_1), \ldots, f(p_n)).
$$

Evaluation Code:

$$
\mathcal{C}_{Z,\mathcal{L}} = ev_Z(\mathcal{L}) \subset \mathbb{K}^n.
$$

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

← ロ ▶ → イ 冊

 QQ

Evaluation Codes

Let X be an algebraic variety over K. We fix
\n
$$
Z = \{p_1, ..., p_n\} \subset X(\mathbb{K})
$$
 and
\n $\mathcal{L} = f$. dim. space of rational functions over K, regular on Z.
\nEvaluation Map:

$$
\text{ev}_{Z}: \mathcal{L} \to \mathbb{K}^n \quad f \mapsto (f(p_1), \ldots, f(p_n)).
$$

Evaluation Code:

$$
\mathcal{C}_{Z,\mathcal{L}}=\text{ev}_Z(\mathcal{L})\subset \mathbb{K}^n.
$$

Problem: Compute the minimum distance $d(C_{Z,\mathcal{L}})$. Equivalently, what is the largest number of points of Z that can lie on the hypersurface $f=0$ for some $f\in \mathcal{L}$ such that $f_{|_Z}\neq 0?$

4.0.3

 Ω

Classical Examples

Reed-Solomon Codes: Let $X = \mathbb{P}^1$, $Z = \{p_1, \ldots, p_n\} \subset \mathbb{K}$, and

 $\mathcal{L} = \{f \in \mathbb{K}[x] \mid \text{deg } f \leq m\},\$ where $m < n$.

Then $C_{Z, \ell}$ is a $[n, m+1, d]_q$ -code, where $d = n-m$.

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow Ω **Ivan Soprunov** Cleveland State University Cleveland State University Cleveland State University

Classical Examples

Reed-Solomon Codes: Let $X = \mathbb{P}^1$, $Z = \{p_1, \ldots, p_n\} \subset \mathbb{K}$, and

 $\mathcal{L} = \{f \in \mathbb{K}[x] \mid \text{deg } f < m\},\$ where $m < n$.

Then $C_{Z,\mathcal{L}}$ is a $[n, m+1, d]_q$ -code, where $d = n-m$.

Goppa Codes: Let X be alg curve, $Z = \{p_1, \ldots, p_n\} \subset X(\mathbb{K})$, $\mathcal{L} = \mathcal{L}(D)$ for a divisor D with deg $D = m$ and supp $D \cap Z = \emptyset$. Assume $2g - 2 < m < n$, where g is the genus of X. Then C_{Z} , is a $[n, m - g + 1, d]_q$ -code, where $d \ge n - m$.

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Part II

[Toric Codes](#page-12-0)

K ロ ⊁ K 伊 ⊁ K 299 注 þ.

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University [Toric Geometry in Coding Theory](#page-0-0)

Why toric codes?

 \blacktriangleright Toric codes make connections:

Alg Geom ←→ Coding ←→ Lattice Polytopes

Ivan Soprunov Cleveland State University

Why toric codes?

 \blacktriangleright Toric codes make connections:

Alg Geom \longleftrightarrow Coding \longleftrightarrow Lattice Polytopes

 \blacktriangleright Toric codes are champions: (Recent improvements of www.codetables.de)

Toric Codes:

 $[49, 12, 28]$ ₈ J. Little (2011) $[36, 19, 12]_7$ G. Brown, A. Kasprzyk (2012)

Codes from T-varieties and Generalized Toric Codes:

 $[49, 8, 34]_8$ A. Carbonara, J. Murillo, A. Ortiz (2010) $[66, 19, 30]_7$ N. Ilten, H. Süss (2011) $[49, 13, 27]_8$, G. Brown and A. Kasprzyk, S. (2013)

and six more...

 Ω

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow

Definition of toric codes

Let X be a toric variety over \bar{K} , dim $X = \ell$. Let $Z=\mathbb{T}=(\mathbb{K}^*)^\ell$, $\mathcal{L}=$ sections of a line bundle over $\mathbb K$ on $X.$ Explicitly, let P be a lattice polytope in \mathbb{R}^{ℓ} , and let $P_{\mathbb{Z}} = P \cap \mathbb{Z}^{\ell}$. It defines a finite dimensional space of Laurent polynomials:

$$
\mathcal{L}_P=\text{span}_{\mathbb{K}}\{t^a\mid a\in P_{\mathbb{Z}}\}, \text{ where } t^a=t_1^{a_1}\cdots t_\ell^{a_\ell}.
$$

Toric Code: $C_P = ev_{\mathbb{T}}(\mathcal{L}_P)$.

 Ω

Definition of toric codes

Let X be a toric variety over \bar{K} , dim $X = \ell$. Let $Z=\mathbb{T}=(\mathbb{K}^*)^\ell$, $\mathcal{L}=$ sections of a line bundle over $\mathbb K$ on $X.$ Explicitly, let P be a lattice polytope in \mathbb{R}^{ℓ} , and let $P_{\mathbb{Z}} = P \cap \mathbb{Z}^{\ell}$.

It defines a finite dimensional space of Laurent polynomials:

$$
\mathcal{L}_P=\text{span}_{\mathbb{K}}\{t^a\mid a\in P_{\mathbb{Z}}\}, \text{ where } t^a=t_1^{a_1}\cdots t_\ell^{a_\ell}.
$$

Toric Code: $C_P = ev_{\mathbb{T}}(\mathcal{L}_P)$.

Observe: The evaluation map $ev_{\mathbb{T}} : \mathcal{L}_P \to \mathbb{K}^n$ is injective iff points in $P_{\mathbb{Z}}$ are distinct in $(\mathbb{Z}_{q-1})^{\ell}$. Then $\mathcal{C}_{\mathcal{P}}$ has parameters $n = (q-1)^\ell$, $k = |P_{\mathbb{Z}}|$. What about d ?

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

←ロ ▶ ← イ 同 →

Explicit Answers

Serre (1989) If $P = m \triangle_{\ell}$, where \triangle_{ℓ} is the standard simplex then

$$
d(C_P) = (q-1)^{\ell-1}(q-1-m).
$$

Ivan Soprunov Cleveland State University

Explicit Answers

Serre (1989) If $P = m \triangle_{\ell}$, where \triangle_{ℓ} is the standard simplex then

$$
d(\mathcal{C}_P) = (q-1)^{\ell-1}(q-1-m).
$$

Little-Schwarz (2007) If $P = [0, m_1] \times \cdots \times [0, m_\ell]$ then

$$
d(\mathcal{C}_P)=(q-1-m_1)\cdots(q-1-m_\ell).
$$

 Ω

←ロ ▶ ← イ 同 →

 Ω

Explicit Answers

Serre (1989) If $P = m \triangle_{\ell}$, where \triangle_{ℓ} is the standard simplex then

$$
d(\mathcal{C}_P) = (q-1)^{\ell-1}(q-1-m).
$$

Little-Schwarz (2007) If $P = [0, m_1] \times \cdots \times [0, m_\ell]$ then

$$
d(\mathcal{C}_P)=(q-1-m_1)\cdots(q-1-m_\ell).
$$

S-S (2010) For any polytopes P, Q

$$
d(\mathcal{C}_{P\times Q})=d(\mathcal{C}_P)d(\mathcal{C}_Q).
$$

 $d(\mathcal{C}_{mPyr(Q)})=(q-1)d(\mathcal{C}_{mQ}),$ for any $m=1,2,3,\ldots$

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow

which produces many more explicit answers.

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Toric Surface Codes

Assume $\ell = 2$, so P is a lattice polygon. We have

Hasse-Weil Bound: If Y is an irreducible curve over K then

$$
q+1-2g\sqrt{q}\leq |Y(\mathbb{K})|\leq q+1+2g\sqrt{q},
$$

where g is the genus of Y .

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

← ロ ▶ → イ 冊

 Ω

Bounds on $d(\mathcal{C}_{\mathcal{P}})$

Toric Surface Codes

Assume $\ell = 2$, so P is a lattice polygon. We have

Hasse-Weil Bound: If Y is an irreducible curve over $\mathbb K$ then

$$
q+1-2g\sqrt{q}\leq |Y(\mathbb{K})|\leq q+1+2g\sqrt{q},
$$

where g is the genus of Y .

Little-Schenck used this to show that if $q \gg 0$ then for any non-zero $f, g \in \mathcal{L}_P$

f has more irr factors than $g \iff f$ has more zeroes in $\mathbb T$ than g

K ロ ▶ K 何 ▶ K 手

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Newton polytopes and Minkowski Sum

Let f be a Laurent polynomial $f \in \mathbb{K}[t_1,\ldots,t_\ell].$ Let $P(f)$ be its Newton Polytope: $P(f) = \text{ conv.hull } \{ \text{ exponents of } f \} \subset \mathbb{R}^{\ell}$ Note: Newton polytope generalizes the notion of degree:

$$
P(fg) = P(f) + P(g)
$$

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

←ロ ▶ ← イ 同 →

Newton polytopes and Minkowski Sum

Let f be a Laurent polynomial $f \in \mathbb{K}[t_1,\ldots,t_\ell].$ Let $P(f)$ be its Newton Polytope: $P(f) = \text{ conv.hull } \{ \text{ exponents of } f \} \subset \mathbb{R}^{\ell}$ Note: Newton polytope generalizes the notion of degree:

$$
P(fg) = P(f) + P(g)
$$

The Minkowski sum of polytopes P, Q in \mathbb{R}^ℓ is

$$
P+Q=\{p+q\in\mathbb{R}^{\ell}\mid p\in P,\; q\in Q\}.
$$

 $L(P)$ = largest number of factors of f in $L(P)$

Ivan Soprunov Cleveland State University

 $L(P)$ = largest number of factors of f in $L(P)$

 $=$ largest number of non-trivial lattice polytopes whose Minkowski sum lies in P

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

- $L(P)$ = largest number of factors of f in $L(P)$
	- $=$ largest number of non-trivial lattice polytopes whose Minkowski sum lies in P
	- $=$ largest number of primitive lattice segments whose Minkowski sum lies in P

 Ω

← ロ ▶ → イ 冊

 $L(P)$ = largest number of factors of f in $L(P)$

- $=$ largest number of non-trivial lattice polytopes whose Minkowski sum lies in P
- $=$ largest number of primitive lattice segments whose Minkowski sum lies in P

Examples:

 \leftarrow

 Ω

 $L(P)$ = largest number of factors of f in $L(P)$

- $=$ largest number of non-trivial lattice polytopes whose Minkowski sum lies in P
- $=$ largest number of primitive lattice segments whose Minkowski sum lies in P

Examples:

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 $L(P)$ = largest number of factors of f in $L(P)$

- $=$ largest number of non-trivial lattice polytopes whose Minkowski sum lies in P
- $=$ largest number of primitive lattice segments whose Minkowski sum lies in P

Examples:

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 $L(P)$ = largest number of factors of f in $L(P)$

- $=$ largest number of non-trivial lattice polytopes whose Minkowski sum lies in P
- $=$ largest number of primitive lattice segments whose Minkowski sum lies in P

Examples:

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

Bounds on $d(\mathcal{C}_{\mathcal{P}})$

Theorem (S-S)

Suppose $\ell = 2$, P a lattice polygon, and $q > \alpha(P)$. If $f \in \mathcal{L}_P$ has largest number of factors then the factors are "simple enough". This implies

$$
d(\mathcal{C}_P) \geq (q-1)(q-1-L(P))-(2\sqrt{q}-1)
$$

("Simple enough" means $P(f_i) =$ primitive segment or \triangle or T_0 .) (Simple enough means $V(t) = p$ minute segment or \triangle or T_0 .
(No $2\sqrt{q} - 1$ term if no T_0 appears in a maximal factorization.)

イロト イ母ト イヨト

Example:

Ivan Soprunov Cleveland State University **Cleveland State University** Cleveland State University

Example:

Here $L(P) = 3$. Our bound says

 $d(\mathcal{C}_P) \ge (q-1)(q-1-3)$ for $q \ge 37$.

 QQ 4.0.3 ∢ 何

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Example:

Here $L(P) = 3$. Our bound says $d(\mathcal{C}_P) > (q-1)(q-1-3)$ for $q > 37$.

In fact,

$$
d(\mathcal{C}_P)=(q-1)(q-1-3)+2
$$

for $q > 5$, $q \neq 8$. The bound is attained at $x(x-a)(y-b)(y-c)$, for $a, b, c \in \mathbb{K}^*$.

For $q = 8$, $d(C_P) = (q - 1)(q - 1 - 3)$, the bound is attained at $x^2 + y + x^3y^3$.

←ロ ▶ ← イ 同 →

 \rightarrow \equiv \rightarrow

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

Part III

[Toric Complete Intersection Codes](#page-35-0)

 QQ **←ロ ▶ ← イ 同 →**

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University [Toric Geometry in Coding Theory](#page-0-0)

Chasles' Theorem (1860)

Let C_1 , C_2 be two cubics intersecting in nine points $\{p_1, \ldots, p_9\}$. Then any cubic E containing $\{p_1, \ldots, p_8\}$ must contain p_9 as well.

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

Chasles' Theorem (1860)

Let C_1 , C_2 be two cubics intersecting in nine points $\{p_1, \ldots, p_9\}$. Then any cubic E containing $\{p_1, \ldots, p_8\}$ must contain p_9 as well.

Proof:
$$
C_1 = \{f_1 = 0\}
$$
, $C_2 = \{f_2 = 0\}$ intersect in
\n $S = \{p_1, ..., p_9\}$. Let $E = \{h = 0\}$.
\nSince deg $h = 3$, the form

$$
\omega_h = \frac{h}{f_1 f_2} dt_1 \wedge dt_2
$$
 has no poles at infinity.

By Residue Theorem

$$
\sum_{i=1}^{9} \text{res}_{p_i} \omega_h = \sum_{i=1}^{9} \frac{h(p_i)}{J_f(p_i)} = 0,
$$

so if $h(p_i) = 0$ for $1 \le i \le 8$ then $h(p_9) = 0$ [.](#page-36-0)

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Toric Complete Intersections (TCI)

Fix ℓ full-dim'l lattice polytopes P_1, \ldots, P_ℓ in \mathbb{R}^ℓ and let $P = \sum P_i.$ Let f_1,\ldots,f_ℓ be Laurent polynomials with $P(f_i)=P_i.$ We say

$$
Z=\{p\in (\bar{\mathbb{K}}^*)^\ell\,\,|\,\, f_1(p)=\cdots=f_\ell(p)=0\}
$$

is a toric compete intersection if $|Z| = V(P_1, \ldots, P_\ell)$ (i.e. the BKK bound on the intersection number is attained).

Equivalently, there are ℓ hypersurfaces with Newton polytopes P_1, \ldots, P_ℓ in the toric variety X_P with transversal intersections Z lying in the dense orbit of X_P .

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ .

Toric ResidueTheorem

Let $Z = \{p_1, \ldots, p_n\}$ be a TCI given by $f_1 = \cdots = f_\ell = 0$ with polytopes P_1, \ldots, P_ℓ . Let P° be the interior of $P = \sum P_i$.

Theorem [Khovanskii,1978]: For any $h \in \mathcal{L}(P^{\circ})$ we have

$$
\sum_{\rho \in Z} \operatorname{res}_\rho \Big(\frac{h}{f_1 \cdots f_\ell} \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_\ell}{t_\ell} \Big) = \sum_{\rho \in Z} \frac{h(\rho)}{J_f^{\mathbb{T}}(\rho)} = 0,
$$

where $J_f^{{\mathbb T}}=\det(t_j\partial f_i/\partial t_j)$ is the toric Jacobian of the f_i .

 Ω

K ロ ト K 何 ト K 手

 Ω

Toric ResidueTheorem

Let $Z = \{p_1, \ldots, p_n\}$ be a TCI given by $f_1 = \cdots = f_\ell = 0$ with polytopes P_1, \ldots, P_ℓ . Let P° be the interior of $P = \sum P_i$.

Theorem [Khovanskii,1978]: For any $h \in \mathcal{L}(P^{\circ})$ we have

$$
\sum_{p\in Z} {\rm res}_p\left(\frac{h}{f_1\cdots f_\ell}\frac{dt_1}{t_1}\wedge\cdots\wedge\frac{dt_\ell}{t_\ell}\right)=\sum_{p\in Z}\frac{h(p)}{J_f^{\mathbb{T}}(p)}=0,
$$

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow

where $J_f^{{\mathbb T}}=\det(t_j\partial f_i/\partial t_j)$ is the toric Jacobian of the f_i . Corollary: If $h \in \mathcal{L}(P^{\circ})$ and $h(p_i) = 0$ for $1 \leq i \leq n-1$ then $h(p_n) = 0.$

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

TCI codes

Let $Z = \{p_1, \ldots, p_n\}$ be a TCI given by $f_1 = \cdots = f_\ell = 0$ with polytopes P_1, \ldots, P_ℓ . Let P° be the interior of $P = \sum P_i$. Assume $Z \subset \mathbb{T}$.

For any $A \subset P^{\circ}$ define $\mathcal{L}_A = \mathsf{span}_{\mathbb{K}}\{t^a \mid a \in A_{\mathbb{Z}}\}.$ Evaluation map: $ev_Z : \mathcal{L}_A \to \mathbb{K}^n$, $f \mapsto (f(p_1), \dots, f(p_n))$ TCI code: $C_{Z,A} = ev_Z(\mathcal{L}_A)$.

 Ω

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

TCI codes

Let $Z = \{p_1, \ldots, p_n\}$ be a TCI given by $f_1 = \cdots = f_\ell = 0$ with polytopes P_1, \ldots, P_ℓ . Let P° be the interior of $P = \sum P_i$. Assume $Z \subset \mathbb{T}$.

For any $A \subset P^{\circ}$ define $\mathcal{L}_A = \mathsf{span}_{\mathbb{K}}\{t^a \mid a \in A_{\mathbb{Z}}\}.$ Evaluation map: $ev_Z : \mathcal{L}_A \to \mathbb{K}^n$, $f \mapsto (f(p_1), \dots, f(p_n))$ TCI code: $C_{Z,A} = ev_Z(\mathcal{L}_A)$.

Problem: Give bounds on the minimum distance $d(C_{Z,A})$ in terms of A and the polytope P.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \sqrt{10} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Bound on the minimum distance

Proposition: Let $A = P^{\circ}$. Then $d(C_{Z,P^{\circ}}) \geq 2$.

(since any $0\neq h\in\mathcal{L}(P^\circ)$ has at most $|Z|-2$ zeroes in Z by the Residue Theorem)

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Bound on the minimum distance

Proposition: Let $A = P^{\circ}$. Then $d(C_{Z,P^{\circ}}) \geq 2$.

(since any $0\neq h\in\mathcal{L}(P^\circ)$ has at most $|Z|-2$ zeroes in Z by the Residue Theorem)

Theorem 1 [S]: Suppose $A + mQ \subset P^{\circ}$ for some ℓ -polytope Q such that $Q_{\mathbb{Z}}$ generates $\mathbb{Z}^{\ell}.$ Then

 $d(C_{Z_A}) > m+2.$

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

 Ω

イロト イ母ト イヨト

Bound on the minimum distance

Proposition: Let $A = P^{\circ}$. Then $d(C_{Z,P^{\circ}}) \geq 2$.

(since any $0\neq h\in\mathcal{L}(P^\circ)$ has at most $|Z|-2$ zeroes in Z by the Residue Theorem)

Theorem 1 [S]: Suppose $A + mQ \subset P^{\circ}$ for some ℓ -polytope Q such that $Q_{\mathbb{Z}}$ generates $\mathbb{Z}^{\ell}.$ Then

$$
d(\mathcal{C}_{Z,A})\geq m+2.
$$

Example [Gold–Little–Schenck]: Let $Z \subset \mathbb{P}^{\ell}$ defined by hypersurfaces of degrees $d_1, \ldots, d_\ell.$ Let $\mathcal{L}_\mathcal{A} = \mathcal{L}(a)$ and $a+m\leq\sum d_i-(\ell+1).$ Then $d(\mathcal{C}_{Z,a})\geq m+2.$ This bound is sharp!

 Ω

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow

Let Q be a lattice polytope. We say that $Z \subset \mathbb{T}$ is Q-generic if any $T \subset Z$ with $|T| = |Q_{\mathbb{Z}}|$ the evaluation map ev $\tau : \mathcal{L}_Q \to \mathbb{K}^{|T|}$ is an isomorphism.

Ivan Soprunov Cleveland State University Cleveland State University Cleveland State University

Let Q be a lattice polytope. We say that $Z \subset \mathbb{T}$ is Q-generic if any $T \subset Z$ with $|T| = |Q_{\mathbb{Z}}|$ the evaluation map ev $\tau : \mathcal{L}_O \to \mathbb{K}^{|T|}$ is an isomorphism.

Example: If $Q = \triangle_{\ell}$ this says that no $\ell + 1$ points of Z lie in a hyperplane.

 Ω

←ロ ▶ ← イ 同 →

Let Q be a lattice polytope. We say that $Z \subset \mathbb{T}$ is Q-generic if any $T \subset Z$ with $|T| = |Q_{\mathbb{Z}}|$ the evaluation map ev $\tau : \mathcal{L}_O \to \mathbb{K}^{|T|}$ is an isomorphism.

Example: If $Q = \triangle_{\ell}$ this says that no $\ell + 1$ points of Z lie in a hyperplane.

Theorem 2 [S]: Let Z be a Q-generic TCI. Suppose $A + mQ \subset P^{\circ}$ for some $m > 0$. Then

$$
d(C_{Z,A})\geq (|Q_{\mathbb{Z}}|-1)m+2.
$$

 Ω

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow

Let Q be a lattice polytope. We say that $Z \subset \mathbb{T}$ is Q-generic if any $T \subset Z$ with $|T| = |Q_{\mathbb{Z}}|$ the evaluation map ev $T : \mathcal{L}_Q \to \mathbb{K}^{|\mathcal{T}|}$ is an isomorphism.

Example: If $Q = \triangle_{\ell}$ this says that no $\ell + 1$ points of Z lie in a hyperplane.

Theorem 2 [S]: Let Z be a Q-generic TCI. Suppose $A + mQ \subset P^{\circ}$ for some $m > 0$. Then

$$
d(C_{Z,A})\geq (|Q_{\mathbb{Z}}|-1)m+2.
$$

Example [Ballico–Fontanari]: Let $Z \subset \mathbb{P}^\ell$ be \triangle_{ℓ} -generic defined by hypersurfaces of degrees $d_1, \ldots, d_\ell.$ Let $\mathcal{L}_\mathcal{A} = \mathcal{L}(a)$ and $a+m\leq\sum d_i-(\ell+1).$ Then $d(\mathcal{C}_{Z,a})\geq\ell m+2.$

 Ω

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow

وسنتهشش

Small example

Let
$$
P_1 = \begin{cases} 1 & \text{if } P_2 = 1 \\ 2 & \text{if } P_3 = 1 \end{cases}
$$
. We have $P = \begin{cases} 1 & \text{if } P_4 = 1 \\ 2 & \text{if } P_5 = 1 - x - 4y - x^2 + 2xy - 2y^2 - 2x^2y - 3xy^2 + x^2y^2 \end{cases}$.

The system has $8 = V(P_1, P_2)$ solutions in $(\mathbb{F}_{13}^*)^2$.

(□) (@)

 299

Small example

Let
$$
P_1 = \begin{cases} 1 & \text{and } P_2 = \begin{cases} 1 & \text{if } P_1 = \cdots \end{cases}
$$
. We have $P = \begin{cases} 1 & \text{if } P_1 = \cdots = \begin{cases} 1 & \text{if } P_$

(ロ) (@)

 290