Toric Geometry in Coding Theory

Ivan Soprunov

Cleveland State University

February 27, 2014

Part I

What is Coding Theory?

Basic Definitions from Coding Theory

Let $\mathbb{K} = \mathbb{F}_q$ be a finite field of q elements (the alphabet). Linear Code: $\mathcal{C} \subset \mathbb{K}^n$ a subspace, elements of \mathcal{C} are the codewords.

Basic Definitions from Coding Theory

Let $\mathbb{K} = \mathbb{F}_q$ be a finite field of q elements (the alphabet).

Linear Code: $\mathcal{C} \subset \mathbb{K}^n$ a subspace, elements of \mathcal{C} are the codewords.

Parameters:

- ightharpoonup n the length of C
- \triangleright $k = \dim \mathcal{C}$ the dimension of \mathcal{C}
- ightharpoonup d the minimum distance of $\mathcal C$

Hamming distance: $dist(c_1, c_2) = \#of$ non-zero entries in $c_1 - c_2$.

$$d = \min_{c \in \mathcal{C} \setminus \{0\}} (\# \text{of non-zero entries in } c)$$

We say that C is a $[n, k, d]_q$ -code.

Basic Definitions from Coding Theory

Problem: The codewords $c \in \mathcal{C}$ may change when transmitted. How to recover c?

Basic Definitions from Coding Theory

Problem: The codewords $c \in \mathcal{C}$ may change when transmitted.

How to recover *c*?

Solution: If c are different enough and not too many errors occur we can look at the closest codeword. In fact, up to $\lfloor \frac{d-1}{2} \rfloor$ can be corrected.

Basic Definitions from Coding Theory

Problem: The codewords $c \in \mathcal{C}$ may change when transmitted. How to recover c?

Solution: If c are different enough and not too many errors occur we can look at the closest codeword. In fact, up to $\lfloor \frac{d-1}{2} \rfloor$ can be corrected.

Goal: Given n, k construct an $[n, k, d]_q$ -code with largest d.

Evaluation Codes

Let X be an algebraic variety over \mathbb{K} . We fix

$$Z=\{p_1,\ldots,p_n\}\subset X(\mathbb{K})$$
 and

 $\mathcal{L} = f$. dim. space of rational functions over \mathbb{K} , regular on Z.

Evaluation Codes

Let X be an algebraic variety over \mathbb{K} . We fix

$$Z=\{p_1,\ldots,p_n\}\subset X(\mathbb{K})$$
 and

 $\mathcal{L} = f$. dim. space of rational functions over \mathbb{K} , regular on Z.

Evaluation Map:

$$\operatorname{ev}_Z:\mathcal{L} o \mathbb{K}^n\quad f\mapsto (f(p_1),\ldots,f(p_n)).$$

Evaluation Code:

$$\mathcal{C}_{Z,\mathcal{L}} = \operatorname{ev}_Z(\mathcal{L}) \subset \mathbb{K}^n$$
.

Evaluation Codes

Let X be an algebraic variety over \mathbb{K} . We fix

$$Z=\{p_1,\ldots,p_n\}\subset X(\mathbb{K})$$
 and

 $\mathcal{L} = f$. dim. space of rational functions over \mathbb{K} , regular on Z.

Evaluation Map:

$$\operatorname{ev}_Z:\mathcal{L} o \mathbb{K}^n\quad f\mapsto (f(p_1),\ldots,f(p_n)).$$

Evaluation Code:

$$C_{Z,\mathcal{L}} = \operatorname{ev}_Z(\mathcal{L}) \subset \mathbb{K}^n$$
.

Problem: Compute the minimum distance $d(C_{Z,\mathcal{L}})$.

Equivalently, what is the largest number of points of Z that can lie on the hypersurface f=0 for some $f\in\mathcal{L}$ such that $f|_Z\neq 0$?

Classical Examples

Reed-Solomon Codes: Let $X=\mathbb{P}^1$, $Z=\{p_1,\ldots,p_n\}\subset\mathbb{K}$, and

$$\mathcal{L} = \{ f \in \mathbb{K}[x] \mid \deg f \leq m \}, \text{ where } m < n.$$

Then $\mathcal{C}_{Z,\mathcal{L}}$ is a $[n, m+1, d]_q$ -code, where d=n-m.

Classical Examples

Reed-Solomon Codes: Let $X=\mathbb{P}^1$, $Z=\{p_1,\ldots,p_n\}\subset\mathbb{K}$, and

$$\mathcal{L} = \{ f \in \mathbb{K}[x] \mid \deg f \leq m \}, \text{ where } m < n.$$

Then $C_{Z,\mathcal{L}}$ is a $[n, m+1, d]_q$ -code, where d=n-m.

Goppa Codes: Let X be alg curve, $Z = \{p_1, \ldots, p_n\} \subset X(\mathbb{K})$, $\mathcal{L} = \mathcal{L}(D)$ for a divisor D with deg D = m and supp $D \cap Z = \emptyset$.

Assume 2g - 2 < m < n, where g is the genus of X. Then $\mathcal{C}_{Z,\mathcal{L}}$ is a $[n, m - g + 1, d]_q$ -code, where $d \ge n - m$. Part II

Toric Codes

Why toric codes?

Toric codes make connections:

Alg Geom \longleftrightarrow Coding \longleftrightarrow Lattice Polytopes

Why toric codes?

Toric codes make connections:

Alg Geom
$$\longleftrightarrow$$
 Coding \longleftrightarrow Lattice Polytopes

Toric codes are champions: (Recent improvements of www.codetables.de)

Toric Codes:

```
[49, 12, 28]<sub>8</sub> J. Little (2011)
[36, 19, 12]<sub>7</sub> G. Brown, A. Kasprzyk (2012)
```

Codes from T-varieties and Generalized Toric Codes:

```
[49,8,34]_8 A. Carbonara, J. Murillo, A. Ortiz (2010) [66,19,30]_7 N. Ilten, H. Süss (2011) [49,13,27]_8, G. Brown and A. Kasprzyk, S. (2013)
```

and six more...

Definition of toric codes

Let X be a toric variety over $\overline{\mathbb{K}}$, dim $X = \ell$. Let $Z = \mathbb{T} = (\mathbb{K}^*)^{\ell}$, $\mathcal{L} =$ sections of a line bundle over \mathbb{K} on X.

Explicitly, let P be a lattice polytope in \mathbb{R}^{ℓ} , and let $P_{\mathbb{Z}} = P \cap \mathbb{Z}^{\ell}$. It defines a finite dimensional space of Laurent polynomials:

$$\mathcal{L}_P = \mathsf{span}_{\mathbb{K}}\{t^{\mathsf{a}} \mid \mathsf{a} \in P_{\mathbb{Z}}\}, \text{ where } t^{\mathsf{a}} = t_1^{\mathsf{a}_1} \cdots t_\ell^{\mathsf{a}_\ell}.$$

Toric Code: $C_P = ev_{\mathbb{T}}(\mathcal{L}_P)$.

Definition of toric codes

Let X be a toric variety over $\overline{\mathbb{K}}$, dim $X = \ell$.

Let $Z = \mathbb{T} = (\mathbb{K}^*)^{\ell}$, $\mathcal{L} =$ sections of a line bundle over \mathbb{K} on X.

Explicitly, let P be a lattice polytope in \mathbb{R}^{ℓ} , and let $P_{\mathbb{Z}} = P \cap \mathbb{Z}^{\ell}$. It defines a finite dimensional space of Laurent polynomials:

$$\mathcal{L}_P = \mathsf{span}_{\mathbb{K}}\{t^{\mathsf{a}} \mid \mathsf{a} \in P_{\mathbb{Z}}\}, \text{ where } t^{\mathsf{a}} = t_1^{\mathsf{a}_1} \cdots t_\ell^{\mathsf{a}_\ell}.$$

Toric Code: $C_P = ev_{\mathbb{T}}(\mathcal{L}_P)$.

Observe: The evaluation map $ev_{\mathbb{T}}: \mathcal{L}_P \to \mathbb{K}^n$ is injective iff points in $P_{\mathbb{Z}}$ are distinct in $(\mathbb{Z}_{q-1})^{\ell}$.

Then $\mathcal{C}_{\mathcal{P}}$ has parameters $n=(q-1)^{\ell}$, $k=|P_{\mathbb{Z}}|$. What about d?

Explicit Answers

Serre (1989) If $P=m\triangle_{\ell}$, where \triangle_{ℓ} is the standard simplex then

$$d(\mathcal{C}_P)=(q-1)^{\ell-1}(q-1-m).$$

Explicit Answers

Serre (1989) If $P=m\triangle_{\ell}$, where \triangle_{ℓ} is the standard simplex then

$$d(C_P) = (q-1)^{\ell-1}(q-1-m).$$

Little-Schwarz (2007) If $P = [0, m_1] imes \cdots imes [0, m_\ell]$ then

$$d(\mathcal{C}_P)=(q-1-m_1)\cdots(q-1-m_\ell).$$

Explicit Answers

Serre (1989) If $P=m\triangle_{\ell}$, where \triangle_{ℓ} is the standard simplex then

$$d(C_P) = (q-1)^{\ell-1}(q-1-m).$$

Little-Schwarz (2007) If $P = [0, m_1] \times \cdots \times [0, m_\ell]$ then

$$d(\mathcal{C}_P)=(q-1-m_1)\cdots(q-1-m_\ell).$$

S-S (2010) For any polytopes P, Q

$$d(\mathcal{C}_{P\times Q})=d(\mathcal{C}_P)d(\mathcal{C}_Q).$$

$$d(\mathcal{C}_{mPyr(Q)}) = (q-1)d(\mathcal{C}_{mQ}), \text{ for any } m=1,2,3,\ldots$$

which produces many more explicit answers.

Toric Surface Codes

Assume $\ell = 2$, so P is a lattice polygon. We have

Hasse-Weil Bound: If Y is an irreducible curve over \mathbb{K} then

$$q+1-2g\sqrt{q}\leq |Y(\mathbb{K})|\leq q+1+2g\sqrt{q},$$

where g is the genus of Y.

Toric Surface Codes

Assume $\ell = 2$, so P is a lattice polygon. We have

Hasse-Weil Bound: If Y is an irreducible curve over \mathbb{K} then

$$q+1-2g\sqrt{q} \leq |Y(\mathbb{K})| \leq q+1+2g\sqrt{q},$$

where g is the genus of Y.

Little-Schenck used this to show that if $q\gg 0$ then for any non-zero $f,g\in\mathcal{L}_P$

f has more irr factors than $g \iff f$ has more zeroes in $\mathbb T$ than g

Newton polytopes and Minkowski Sum

Let f be a Laurent polynomial $f \in \mathbb{K}[t_1, \ldots, t_\ell]$. Let P(f) be its Newton Polytope: $P(f) = \text{conv.hull} \{ \text{ exponents of } f \} \subset \mathbb{R}^\ell$ Note: Newton polytope generalizes the notion of degree:

$$P(fg) = P(f) + P(g)$$

Newton polytopes and Minkowski Sum

Let f be a Laurent polynomial $f \in \mathbb{K}[t_1, \ldots, t_\ell]$. Let P(f) be its Newton Polytope: $P(f) = \text{conv.hull} \{ \text{ exponents of } f \} \subset \mathbb{R}^\ell$ Note: Newton polytope generalizes the notion of degree:

$$P(fg) = P(f) + P(g)$$

The Minkowski sum of polytopes P, Q in \mathbb{R}^{ℓ} is

$$P+Q=\{p+q\in\mathbb{R}^\ell\mid p\in P,\ q\in Q\}.$$

Minkowski Length L(P) $L(P) = \text{largest number of factors of } f \text{ in } \mathcal{L}(P)$

- L(P) = largest number of factors of f in $\mathcal{L}(P)$
 - = largest number of non-trivial lattice polytopes whose Minkowski sum lies in *P*

- L(P) = largest number of factors of f in $\mathcal{L}(P)$
 - = largest number of non-trivial lattice polytopes whose Minkowski sum lies in *P*
 - = largest number of primitive lattice segments whose Minkowski sum lies in *P*

- L(P) = largest number of factors of f in $\mathcal{L}(P)$
 - = largest number of non-trivial lattice polytopes whose Minkowski sum lies in P
 - = largest number of primitive lattice segments whose Minkowski sum lies in *P*

- L(P) = largest number of factors of f in $\mathcal{L}(P)$
 - = largest number of non-trivial lattice polytopes whose Minkowski sum lies in P
 - = largest number of primitive lattice segments whose Minkowski sum lies in *P*

- L(P) = largest number of factors of f in $\mathcal{L}(P)$
 - = largest number of non-trivial lattice polytopes whose Minkowski sum lies in *P*
 - = largest number of primitive lattice segments whose Minkowski sum lies in *P*

$$L(2\triangle)=2$$

- L(P) = largest number of factors of f in $\mathcal{L}(P)$
 - = largest number of non-trivial lattice polytopes whose Minkowski sum lies in *P*
 - = largest number of primitive lattice segments whose Minkowski sum lies in *P*

$$L(2\triangle)=2$$

$$L(P) = 3$$

Theorem (S-S)

Suppose $\ell=2$, P a lattice polygon, and $q>\alpha(P)$. If $f\in\mathcal{L}_P$ has largest number of factors then the factors are "simple enough". This implies

$$d(C_P) \ge (q-1)(q-1-L(P)) - (2\sqrt{q}-1)$$

("Simple enough" means $P(f_i) = \text{primitive segment or } \triangle \text{ or } T_0.$) (No $2\sqrt{q} - 1$ term if no T_0 appears in a maximal factorization.)

Here
$$L(P) = 3$$
. Our bound says

$$d(C_P) \ge (q-1)(q-1-3)$$
 for $q \ge 37$.

Example:

Here L(P) = 3. Our bound says

$$d(C_P) \ge (q-1)(q-1-3)$$
 for $q \ge 37$.

In fact,

$$d(C_P) = (q-1)(q-1-3)+2$$

for $q \ge 5$, $q \ne 8$. The bound is attained at x(x-a)(y-b)(y-c), for $a,b,c \in \mathbb{K}^*$.

For q = 8, $d(C_P) = (q - 1)(q - 1 - 3)$, the bound is attained at $x^2 + y + x^3y^3$.

Part III

Toric Complete Intersection Codes

Chasles' Theorem (1860)

Let C_1 , C_2 be two cubics intersecting in nine points $\{p_1, \ldots, p_9\}$. Then any cubic E containing $\{p_1, \ldots, p_8\}$ must contain p_9 as well.

Chasles' Theorem (1860)

Let C_1 , C_2 be two cubics intersecting in nine points $\{p_1, \ldots, p_9\}$. Then any cubic E containing $\{p_1, \ldots, p_8\}$ must contain p_9 as well.

Proof:
$$C_1 = \{f_1 = 0\}$$
, $C_2 = \{f_2 = 0\}$ intersect in $S = \{p_1, \dots, p_9\}$. Let $E = \{h = 0\}$.

Since deg h = 3, the form

 $\omega_h = \frac{h}{f_1 f_2} dt_1 \wedge dt_2$ has no poles at infinity.

By Residue Theorem

$$\sum_{i=1}^9 \operatorname{res}_{p_i} \omega_h = \sum_{i=1}^9 \frac{h(p_i)}{J_f(p_i)} = 0,$$

so if $h(p_i) = 0$ for $1 \le i \le 8$ then $h(p_0) = 0$.

Toric Complete Intersections (TCI)

Fix ℓ full-dim'l lattice polytopes P_1, \ldots, P_ℓ in \mathbb{R}^ℓ and let $P = \sum P_i$. Let f_1, \ldots, f_ℓ be Laurent polynomials with $P(f_i) = P_i$. We say

$$Z = \{ p \in (\bar{\mathbb{K}}^*)^\ell \mid f_1(p) = \cdots = f_\ell(p) = 0 \}$$

is a toric compete intersection if $|Z| = V(P_1, ..., P_\ell)$ (i.e. the BKK bound on the intersection number is attained).

Equivalently, there are ℓ hypersurfaces with Newton polytopes P_1, \ldots, P_ℓ in the toric variety X_P with transversal intersections Z lying in the dense orbit of X_P .

Toric ResidueTheorem

Let $Z = \{p_1, \dots, p_n\}$ be a TCI given by $f_1 = \dots = f_\ell = 0$ with polytopes P_1, \dots, P_ℓ . Let P° be the interior of $P = \sum P_i$.

Theorem [Khovanskii,1978]: For any $h \in \mathcal{L}(P^{\circ})$ we have

$$\sum_{p\in \mathcal{Z}} \mathsf{res}_p \left(\frac{h}{f_1\cdots f_\ell} \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_\ell}{t_\ell} \right) = \sum_{p\in \mathcal{Z}} \frac{h(p)}{J_f^\mathbb{T}(p)} = 0,$$

where $J_f^{\mathbb{T}} = \det(t_j \partial f_i / \partial t_j)$ is the toric Jacobian of the f_i .

Toric ResidueTheorem

Let $Z = \{p_1, \dots, p_n\}$ be a TCI given by $f_1 = \dots = f_\ell = 0$ with polytopes P_1, \dots, P_ℓ . Let P° be the interior of $P = \sum P_i$.

Theorem [Khovanskii,1978]: For any $h \in \mathcal{L}(P^{\circ})$ we have

$$\sum_{p\in \mathcal{Z}} \mathsf{res}_p \left(\frac{h}{f_1\cdots f_\ell} \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_\ell}{t_\ell} \right) = \sum_{p\in \mathcal{Z}} \frac{h(p)}{J_f^\mathbb{T}(p)} = 0,$$

where $J_f^{\mathbb{T}} = \det(t_j \partial f_i / \partial t_j)$ is the toric Jacobian of the f_i .

Corollary: If $h \in \mathcal{L}(P^{\circ})$ and $h(p_i) = 0$ for $1 \leq i \leq n-1$ then $h(p_n) = 0$.

TCI codes

Let $Z=\{p_1,\ldots,p_n\}$ be a TCI given by $f_1=\cdots=f_\ell=0$ with polytopes P_1,\ldots,P_ℓ . Let P° be the interior of $P=\sum P_i$. Assume $Z\subset\mathbb{T}$.

For any $A \subset P^{\circ}$ define $\mathcal{L}_A = \operatorname{span}_{\mathbb{K}}\{t^a \mid a \in A_{\mathbb{Z}}\}.$

Evaluation map: $ev_Z : \mathcal{L}_A \to \mathbb{K}^n$, $f \mapsto (f(p_1), \dots, f(p_n))$

TCI code: $C_{Z,A} = ev_Z(\mathcal{L}_A)$.

TCI codes

Let $Z=\{p_1,\ldots,p_n\}$ be a TCI given by $f_1=\cdots=f_\ell=0$ with polytopes P_1,\ldots,P_ℓ . Let P° be the interior of $P=\sum P_i$. Assume $Z\subset\mathbb{T}$.

For any $A \subset P^{\circ}$ define $\mathcal{L}_A = \operatorname{span}_{\mathbb{K}}\{t^a \mid a \in A_{\mathbb{Z}}\}.$

Evaluation map: $ev_Z : \mathcal{L}_A \to \mathbb{K}^n$, $f \mapsto (f(p_1), \dots, f(p_n))$

TCI code: $C_{Z,A} = ev_Z(\mathcal{L}_A)$.

Problem: Give bounds on the minimum distance $d(C_{Z,A})$ in terms of A and the polytope P.

Bound on the minimum distance

Proposition: Let $A = P^{\circ}$. Then $d(\mathcal{C}_{Z,P^{\circ}}) \geq 2$. (since any $0 \neq h \in \mathcal{L}(P^{\circ})$ has at most |Z| - 2 zeroes in Z by the Residue Theorem)

Bound on the minimum distance

Proposition: Let $A = P^{\circ}$. Then $d(\mathcal{C}_{Z,P^{\circ}}) \geq 2$.

(since any $0 \neq h \in \mathcal{L}(P^{\circ})$ has at most |Z| - 2 zeroes in Z by the Residue Theorem)

Theorem 1 [S]: Suppose $A+mQ\subset P^\circ$ for some ℓ -polytope Q such that $Q_{\mathbb{Z}}$ generates \mathbb{Z}^ℓ . Then

$$d(\mathcal{C}_{Z,A}) \geq m+2.$$

Bound on the minimum distance

Proposition: Let $A = P^{\circ}$. Then $d(\mathcal{C}_{Z,P^{\circ}}) \geq 2$. (since any $0 \neq h \in \mathcal{L}(P^{\circ})$ has at most |Z| - 2 zeroes in Z by the Residue Theorem)

Theorem 1 [S]: Suppose $A+mQ\subset P^\circ$ for some ℓ -polytope Q such that $Q_{\mathbb{Z}}$ generates \mathbb{Z}^ℓ . Then

$$d(\mathcal{C}_{Z,A}) \geq m+2.$$

Example [Gold–Little–Schenck]: Let $Z \subset \mathbb{P}^{\ell}$ defined by hypersurfaces of degrees d_1, \ldots, d_{ℓ} . Let $\mathcal{L}_A = \mathcal{L}(a)$ and $a+m \leq \sum d_i - (\ell+1)$. Then $d(\mathcal{C}_{Z,a}) \geq m+2$. This bound is sharp!

Let Q be a lattice polytope. We say that $Z \subset \mathbb{T}$ is Q-generic if any $T \subset Z$ with $|T| = |Q_{\mathbb{Z}}|$ the evaluation map $\operatorname{ev}_T : \mathcal{L}_Q \to \mathbb{K}^{|T|}$ is an isomorphism.

Let Q be a lattice polytope. We say that $Z \subset \mathbb{T}$ is Q-generic if any $T \subset Z$ with $|T| = |Q_{\mathbb{Z}}|$ the evaluation map $\operatorname{ev}_T : \mathcal{L}_Q \to \mathbb{K}^{|T|}$ is an isomorphism.

Example: If $Q = \triangle_{\ell}$ this says that no $\ell + 1$ points of Z lie in a hyperplane.

Let Q be a lattice polytope. We say that $Z \subset \mathbb{T}$ is Q-generic if any $T \subset Z$ with $|T| = |Q_{\mathbb{Z}}|$ the evaluation map $\operatorname{ev}_T : \mathcal{L}_Q \to \mathbb{K}^{|T|}$ is an isomorphism.

Example: If $Q = \triangle_{\ell}$ this says that no $\ell + 1$ points of Z lie in a hyperplane.

Theorem 2 [S]: Let Z be a Q-generic TCI. Suppose $A+mQ\subset P^\circ$ for some $m\geq 0$. Then

$$d(\mathcal{C}_{Z,A}) \geq (|Q_{\mathbb{Z}}|-1)m+2.$$

Let Q be a lattice polytope. We say that $Z \subset \mathbb{T}$ is Q-generic if any $T \subset Z$ with $|T| = |Q_{\mathbb{Z}}|$ the evaluation map $\operatorname{ev}_T : \mathcal{L}_Q \to \mathbb{K}^{|T|}$ is an isomorphism.

Example: If $Q = \triangle_{\ell}$ this says that no $\ell + 1$ points of Z lie in a hyperplane.

Theorem 2 [S]: Let Z be a Q-generic TCI. Suppose $A+mQ\subset P^{\circ}$ for some $m\geq 0$. Then

$$d(\mathcal{C}_{Z,A}) \geq (|Q_{\mathbb{Z}}|-1)m+2.$$

Example [Ballico–Fontanari]: Let $Z \subset \mathbb{P}^{\ell}$ be \triangle_{ℓ} -generic defined by hypersurfaces of degrees d_1, \ldots, d_{ℓ} . Let $\mathcal{L}_A = \mathcal{L}(a)$ and $a + m \leq \sum d_i - (\ell + 1)$. Then $d(\mathcal{C}_{Z,a}) \geq \ell m + 2$.

Small example

$$\begin{cases} f_1 = x - y - 6x^2 - 2xy + 6y^2 - 3x^2y + 2xy^2 \\ f_2 = 1 - x - 4y - x^2 + 2xy - 2y^2 - 2x^2y - 3xy^2 + x^2y^2. \end{cases}$$

The system has $8 = V(P_1, P_2)$ solutions in $(\mathbb{F}_{13}^*)^2$.

Small example

$$\begin{cases} f_1 = x - y - 6x^2 - 2xy + 6y^2 - 3x^2y + 2xy^2 \\ f_2 = 1 - x - 4y - x^2 + 2xy - 2y^2 - 2x^2y - 3xy^2 + x^2y^2. \end{cases}$$

The system has $8 = V(P_1, P_2)$ solutions in $(\mathbb{F}_{13}^*)^2$.

Let
$$A=Q= \square$$
 . Then $A+Q\subset P^\circ$, so
$$d(\mathcal{C}_{\mathcal{S},\mathcal{L}(A)}) \geq (4-1)+2=5.$$

Also $\dim(\mathcal{C}_{S,\mathcal{L}(A)}) = |A_{\mathbb{Z}}| = 4$, so we get a [8, 4, 5]-code over \mathbb{F}_{13} .