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Sparse Polynomial Systems and BKK theorem

Sparse Polynomial f ∈ C[x±1
1 , . . . , x±1

n ]

f =
∑
a∈A

cax
a, where xa = xa1

1 · · · x
an
n , ca ∈ C∗.

The set of exponents A ⊂ Zn is the support of f . The convex hull of the
support P = conv(A) is the Newton Polytope of f .

Theorem (Bernstein–Khovanskii–Kushnirenko 1976)
Let f1 = · · · = fn = 0 be a generic sparse system with Newton polytopes
P1, . . . ,Pn. Then it has exactly V (P1, . . . ,Pn) isolated solutions in (C∗)n.

Here V (P1, . . . ,Pn) is the (lattice) mixed volume of the polytopes
P1, . . . ,Pn.
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Esterov’s Question

Question: Given m ∈ N can one describe all n-tuples of lattice polytopes
(P1, . . . ,Pn) such that a generic sparse system f1 = · · · = fn = 0 with
Newton polytopes P1, . . . ,Pn has exactly m solutions in (C∗)n?

State of the art:

I (Esterov–Gusev ’15) m = 1 and any n ≥ 1

I (Esterov–Gusev ’16) m ≤ 4 and n = 2

I (Esterov–Gusev ’16) m ≤ 4, any n ≥ 1, unmixed and spanning

I (Hibi–Tsuchiya ’19) m ≤ 4, any n ≥ 1, unmixed

I (Averkov–Borger–S ’19) m ≤ 4 and n = 3

(Esterov, ’19) The problem of describing all n-variate generic sparse
systems that are solvable in radicals reduces to describing all k-variate
generic sparse systems with up to 4 solutions, for k ≤ n.

Ivan Soprunov (with G. Averkov and C. Borger), Cleveland State University Lattice polytopes with a given mixed volume 3/17



Esterov’s Question

Question: Given m ∈ N can one describe all n-tuples of lattice polytopes
(P1, . . . ,Pn) such that a generic sparse system f1 = · · · = fn = 0 with
Newton polytopes P1, . . . ,Pn has exactly m solutions in (C∗)n?

State of the art:

I (Esterov–Gusev ’15) m = 1 and any n ≥ 1

I (Esterov–Gusev ’16) m ≤ 4 and n = 2

I (Esterov–Gusev ’16) m ≤ 4, any n ≥ 1, unmixed and spanning

I (Hibi–Tsuchiya ’19) m ≤ 4, any n ≥ 1, unmixed

I (Averkov–Borger–S ’19) m ≤ 4 and n = 3

(Esterov, ’19) The problem of describing all n-variate generic sparse
systems that are solvable in radicals reduces to describing all k-variate
generic sparse systems with up to 4 solutions, for k ≤ n.

Ivan Soprunov (with G. Averkov and C. Borger), Cleveland State University Lattice polytopes with a given mixed volume 3/17



Esterov’s Question

Question: Given m ∈ N can one describe all n-tuples of lattice polytopes
(P1, . . . ,Pn) such that a generic sparse system f1 = · · · = fn = 0 with
Newton polytopes P1, . . . ,Pn has exactly m solutions in (C∗)n?

State of the art:

I (Esterov–Gusev ’15) m = 1 and any n ≥ 1

I (Esterov–Gusev ’16) m ≤ 4 and n = 2

I (Esterov–Gusev ’16) m ≤ 4, any n ≥ 1, unmixed and spanning

I (Hibi–Tsuchiya ’19) m ≤ 4, any n ≥ 1, unmixed

I (Averkov–Borger–S ’19) m ≤ 4 and n = 3

(Esterov, ’19) The problem of describing all n-variate generic sparse
systems that are solvable in radicals reduces to describing all k-variate
generic sparse systems with up to 4 solutions, for k ≤ n.

Ivan Soprunov (with G. Averkov and C. Borger), Cleveland State University Lattice polytopes with a given mixed volume 3/17



Combinatorial Problem

Problem: Given m ∈ N classify all n-tuples of lattice polytopes
(P1, . . . ,Pn) with V (P1, . . . ,Pn) = m.

Theorem (Lagarias–Ziegler ’91) There are finitely many lattice polytopes
P with a given volume, up to GL(n,Z) and lattice translations.

Theorem (Esterov-Gusev ’18) There are finitely many tuples of n-dim’l
lattice polytopes (P1, . . . ,Pn) with a given mixed volume, up to GL(n,Z)
and independent lattice translations.

Idea: There exists b(n,m), where m = V (P1, . . . ,Pn) such that

Vol(P1 + · · ·+ Pn) ≤ b(n,m).

Now the statement follows from the Lagarias–Ziegler theorem.

Question: How big can the bound b(n,m) be?

Esterov-Gusev ’18: b(n,m) = nnm2n

using Aleksandrov-Fenchel ineq’s.
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Main Question

Let K1, . . . ,Kn be convex bodies in Rn of volume at least 1.

Question: What is the maximum of Vol(K1 + · · ·+ Kn) when
m = V (K1, . . . ,Kn) is fixed?

Conjecture: The maximum equals (m + n − 1)n and is attained
when K1 = mK and K2 = · · · = Kn = K with Vol(K ) = 1.

Result: The conjecture is true for n = 2, 3. Moreover,

Vol(K1 + · · ·+ Kn) ≤ O(md)
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Definition of Mixed Volume

Minkowski addition
A + B = {a + b ∈ Rn | a ∈ A, b ∈ B} for any A,B ⊂ Rn.

Consider compact convex sets K1, . . . ,Kn in Rn.

The mixed volume V (K1, . . . ,Kn) is the unique symmetric and
multilinear w.r.t. Minkowski addition function satisfying

V (K , . . . ,K ) = Vol(K ),

for any compact convex set K ⊂ Rn. Here Vol(K ) = n! voln(K ) a
normalization of the Euclidean volume in Rn.
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Estimating Vol(A + B) in term of m = V (A,B)

n = 2:
Minkowski inequality: Vol(A) Vol(B) ≤ V (A,B)2

Vol(A + B) = V (A + B,A + B) = V (A,A) + 2V (A,B) + V (B,B)
= Vol(A) + 2m + Vol(B).

Vol(A) ≥ 1 Vol(A) Vol(B) ≤ m2

Vol(B) ≥ 1

Maximum is attained when
A = mB, Vol(B) = 1, so

Vol(A) = m2 and

Vol(A + B) = (m + 1)2
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Estimating Vol(A + B + C ) in term of V (A,B ,C )

n = 3: Vol(A + B + C ) = V (A,A,A)

+3V (A,A,B) + 3V (A,A,C )

+3V (A,B,B) + 6V (A,B,C ) + 3V (A,C ,C )

+V (B,B,B) + 3V (B,B,C ) + 3V (B,C ,C ) + V (C ,C ,C ).

Vol(A + B + C ) = V (3, 0, 0)

+3V (2, 1, 0) + 3V (2, 0, 1)

+3V (1, 2, 0) + 6V (1, 1, 1) + 3V (1, 0, 2)

+V (0, 3, 0) + 3V (0, 2, 1) + 3V (0, 1, 2) + V (0, 0, 3).

Vol(A + B + C ) = V (3, 0, 0)

+3V (2, 1, 0) + 3V (2, 0, 1)

+3V (1, 2, 0) + 6V (1, 1, 1) + 3V (1, 0, 2)

+V (0, 3, 0) + 3V (0, 2, 1) + 3V (0, 1, 2) + V (0, 0, 3).
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Estimating Vol(K1 + · · ·+ Kn) in term of V (K1, . . . ,Kn)

In general, for tuple K = (K1, . . . ,Kn) of convex bodies in Rn, let

VK (p) = V (K1, . . . ,K1︸ ︷︷ ︸
p1

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
pn

)

and ∆n = {p = (p1, . . . , pn) | pi ∈ Z≥0, p1 + · · ·+ pn = n}. Then

Vol(K1 + · · ·+ Kn) =
∑
p∈∆n

(
n

p

)
VK (p).

We need to maximize this linear function on the mixed volume
configuration space:

MVn = {(VK (p))p∈∆n
| K = (K1, . . . ,Kn) with Vol(Ki ) ≥ 1}.
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Approximating MVn using Aleksandrov-Fenchel relations

Aleksandrov-Fenchel inequality:

V (A,A,K3, . . . ,Kn)V (B,B,K3, . . . ,Kn) ≤ V (A,B,K3, . . . ,Kn)2

These are log-concavity relations on VK along standard directions ei − ej :

VK (p + ei − ej)VK (p + ej − ei ) ≤ VK (p)2
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Approximating MVn using Aleksandrov-Fenchel relations

We have

MVn ⊂ AFn := {(Vp)p∈∆n | Vp+ei−ejVp+ej−ei ≤ V 2
p , Vp ≥ 1}.

We can turn this into a linear optimization problem by taking log base m

logMVn ⊂ logAFn := {(vp)p∈∆n | vp+ei−ej + vp+ej−ei ≤ 2vp, vp ≥ 0}.

Then we can maximize the convex function in (vp, p ∈ ∆n)

F :=
∑
p∈∆n

(
n

p

)
mvp

on the Aleksandrov-Fenchel Polytope AFPn = logAFn ∩ {v(1,...,1) = 1}.
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Approximating MVn using Aleksandrov-Fenchel relations

Theorem: (n = 3) The maximum of Vol(K1 + K2 + K3) equals (m + 2)3

where m = V (K1,K2,K3) and is attained when K1 = mK2 = mK3 and
Vol(K3) = 1.

Theorem: The Aleksandrov-Fenchel relations imply the following sharp
bound

Vp ≤ m|p|,

where |p| =
∏

pi>0 pi and m = V(1,...,1).

Corollary: The Aleksandrov-Fenchel relations cannot produce better
bound than

V (K1 + · · ·+ Kn) ≤ O(mα(n)),

where 3(n−2)/3 ≤ α(n) ≤ 3n/3.
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Approximating MVn using Square relations

Square Inequality (Brazitikos, Giannopoulos, Liakopoulos ’18)

VK (p)V (p + a+ b) ≤ 2V (p + a)V (p + b), where a = ei − e`, b = ej − e`.
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Approximating MVn using Square relations

Square and Aleksandrov-Fenchel inequalities combined produce new
(weak) log-concavity directions!
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Approximating MVn using Square relations

Theorem: The Square relations imply the following bound

Vp ≤ C (n)mmax(p),

where max(p) = maxi (pi ) and m = V(1,...,1). Consequently,

Vol(K1 + · · ·+ Kn) ≤ O(mn).
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Further work

Question: Is there a “structural” result for lattice polytopes across all n?

For example,

I (Hofscheier–Katthän–Nill ’19) There are only finitely many spanning
lattice polytopes of given volume up to lattice equivalence and unit
pyramid construction.

I (Balletti–Borger’19) All tuples of n-dim’l lattice polytopes
(P1, . . . ,Pn) with V (P1, . . . ,Pn) = |(P1 + · · ·+ Pn)◦ ∩ Zn|+ 1 are
lattice projections onto (∆n−1, . . . ,∆n−1), except for finitely many
exceptions.

Thank you!
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Output: number of trivariate systems with m solutions

Unmixed system = all Newton polytopes are the same
Full-dim’l system = all Newton polytopes are 3-dimensional
Maximal system = no Newton polytope can be increased without
changing m

m # of full-dim’l # of maximal running time

unmixed

1 1 1 1

2 3 4 7 ∼ 2 hours

3 6 10 21 ∼ 1 day

4 17 30 92 ∼ 3 days

SageMath code and pictures of Newton polytopes are here:
github.com/christopherborger/mixed volume classification
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