Collections of lattice polytopes with a given mixed volume

CMS Winter Meeting, Toronto 2019

Ivan Soprunov (with G. Averkov and C. Borger)

Cleveland State University

December 7, 2019

Sparse Polynomial Systems and BKK theorem

Sparse Polynomial $f \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$

$$
f = \sum_{a \in \mathcal{A}} c_a x^a, \text{ where } x^a = x_1^{a_1} \cdots x_n^{a_n}, \quad c_a \in \mathbb{C}^*.
$$

The set of exponents $\mathcal{A} \subset \mathbb{Z}^n$ is the support of f . The convex hull of the support $P = \text{conv}(\mathcal{A})$ is the Newton Polytope of f.

Theorem (Bernstein–Khovanskii–Kushnirenko 1976)

Let $f_1 = \cdots = f_n = 0$ be a generic sparse system with Newton polytopes P_1, \ldots, P_n . Then it has exactly $V(P_1, \ldots, P_n)$ isolated solutions in $(\mathbb{C}^*)^n$. Here $V(P_1, \ldots, P_n)$ is the (lattice) mixed volume of the polytopes P_1, \ldots, P_n .

Esterov's Question

Question: Given $m \in \mathbb{N}$ can one describe all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) such that a generic sparse system $f_1 = \cdots = f_n = 0$ with Newton polytopes P_1, \ldots, P_n has exactly m solutions in $(\mathbb{C}^*)^n$?

Esterov's Question

Question: Given $m \in \mathbb{N}$ can one describe all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) such that a generic sparse system $f_1 = \cdots = f_n = 0$ with Newton polytopes P_1, \ldots, P_n has exactly m solutions in $(\mathbb{C}^*)^n$?

State of the art:

- ► (Esterov–Gusev '15) $m = 1$ and any $n \ge 1$
- ► (Esterov–Gusev '16) $m \leq 4$ and $n = 2$
- ► (Esterov–Gusev '16) $m < 4$, any $n > 1$, unmixed and spanning
- \blacktriangleright (Hibi–Tsuchiya '19) $m \leq 4$, any $n \geq 1$, unmixed
- ▶ (Averkov–Borger–S '19) $m < 4$ and $n = 3$

Esterov's Question

Question: Given $m \in \mathbb{N}$ can one describe all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) such that a generic sparse system $f_1 = \cdots = f_n = 0$ with Newton polytopes P_1, \ldots, P_n has exactly m solutions in $(\mathbb{C}^*)^n$?

State of the art:

- ► (Esterov–Gusev '15) $m = 1$ and any $n \ge 1$
- ► (Esterov–Gusev '16) $m \leq 4$ and $n = 2$
- ► (Esterov–Gusev '16) $m < 4$, any $n > 1$, unmixed and spanning
- \blacktriangleright (Hibi–Tsuchiya '19) $m \leq 4$, any $n \geq 1$, unmixed
- ▶ (Averkov–Borger–S '19) $m < 4$ and $n = 3$

(Esterov, '19) The problem of describing all *n*-variate generic sparse systems that are solvable in radicals reduces to describing all k-variate generic sparse systems with up to 4 solutions, for $k \leq n$.

Problem: Given $m \in \mathbb{N}$ classify all *n*-tuples of lattice polytopes $(P_1, ..., P_n)$ with $V(P_1, ..., P_n) = m$.

Problem: Given $m \in \mathbb{N}$ classify all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with $V(P_1, \ldots, P_n) = m$.

Theorem (Lagarias–Ziegler '91) There are finitely many lattice polytopes P with a given volume, up to $GL(n, \mathbb{Z})$ and lattice translations.

Problem: Given $m \in \mathbb{N}$ classify all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with $V(P_1, \ldots, P_n) = m$.

Theorem (Lagarias–Ziegler '91) There are finitely many lattice polytopes P with a given volume, up to $GL(n, \mathbb{Z})$ and lattice translations.

Theorem (Esterov-Gusev '18) There are finitely many tuples of n-dim'l lattice polytopes (P_1, \ldots, P_n) with a given mixed volume, up to $GL(n, \mathbb{Z})$ and independent lattice translations.

Problem: Given $m \in \mathbb{N}$ classify all *n*-tuples of lattice polytopes (P_1, \ldots, P_n) with $V(P_1, \ldots, P_n) = m$.

Theorem (Lagarias–Ziegler '91) There are finitely many lattice polytopes P with a given volume, up to $GL(n, \mathbb{Z})$ and lattice translations.

Theorem (Esterov-Gusev '18) There are finitely many tuples of n-dim'l lattice polytopes (P_1, \ldots, P_n) with a given mixed volume, up to $GL(n, \mathbb{Z})$ and independent lattice translations.

Idea: There exists $b(n, m)$, where $m = V(P_1, \ldots, P_n)$ such that

 $Vol(P_1 + \cdots + P_n) \le b(n, m).$

Now the statement follows from the Lagarias–Ziegler theorem.

Question: How big can the bound $b(n, m)$ be?

Esterov-Gusev '18: $b(n, m) = n^n m^{2^n}$ using Aleksandrov-Fenchel ineq's.

Main Question

Let K_1, \ldots, K_n be convex bodies in \mathbb{R}^n of volume at least 1.

Question: What is the maximum of $Vol(K_1 + \cdots + K_n)$ when $m = V(K_1, \ldots, K_n)$ is fixed?

Main Question

Let K_1, \ldots, K_n be convex bodies in \mathbb{R}^n of volume at least 1.

Question: What is the maximum of $Vol(K_1 + \cdots + K_n)$ when $m = V(K_1, \ldots, K_n)$ is fixed?

Conjecture: The maximum equals $(m + n - 1)^n$ and is attained when $K_1 = mK$ and $K_2 = \cdots = K_n = K$ with $Vol(K) = 1$.

Main Question

Let K_1, \ldots, K_n be convex bodies in \mathbb{R}^n of volume at least 1.

Question: What is the maximum of $Vol(K_1 + \cdots + K_n)$ when $m = V(K_1, \ldots, K_n)$ is fixed?

Conjecture: The maximum equals $(m + n - 1)^n$ and is attained when $K_1 = mK$ and $K_2 = \cdots = K_n = K$ with $Vol(K) = 1$.

Result: The conjecture is true for $n = 2, 3$. Moreover,

$$
Vol(K_1+\cdots+K_n)\leq O(m^d)
$$

Definition of Mixed Volume

Minkowski addition

 $A + B = \{a + b \in \mathbb{R}^n \mid a \in A, b \in B\}$ for any $A, B \subset \mathbb{R}^n$.

Consider compact convex sets K_1, \ldots, K_n in \mathbb{R}^n .

The mixed volume $V(K_1, \ldots, K_n)$ is the unique symmetric and multilinear w.r.t. Minkowski addition function satisfying

 $V(K, \ldots, K) = Vol(K),$

for any compact convex set $K\subset \mathbb{R}^n$. Here $\mathsf{Vol}(K)=n! \, \mathsf{vol}_n(K)$ a normalization of the Euclidean volume in \mathbb{R}^n .

Estimating $Vol(A + B)$ in term of $m = V(A, B)$

$$
n = 2:
$$

Minkowski inequality: Vol(A) Vol(B) \leq V(A, B)²
Vol(A + B) = V(A + B, A + B) = V(A, A) + 2V(A, B) + V(B, B)
= Vol(A) + 2m + Vol(B).

Estimating $Vol(A + B)$ in term of $m = V(A, B)$

Estimating $Vol(A + B + C)$ in term of $V(A, B, C)$

n = 3: Vol(A + B + C) = V(A, A, A) +3V(A, A, B) + 3V(A, A, C) +3V(A, B, B) + 6V(A, B, C) + 3V(A, C, C) +V(B, B, B) + 3V(B, B, C) + 3V(B, C, C) + V(C, C, C).

Estimating $Vol(A + B + C)$ in term of $V(A, B, C)$

n = 3: Vol(A + B + C) = V(3, 0, 0) +3V(2, 1, 0) + 3V(2, 0, 1) +3V(1, 2, 0) + 6V(1, 1, 1) + 3V(1, 0, 2) +V(0, 3, 0) + 3V(0, 2, 1) + 3V(0, 1, 2) + V(0, 0, 3).

Estimating $Vol(A + B + C)$ in term of $V(A, B, C)$

Estimating $Vol(K_1 + \cdots + K_n)$ in term of $V(K_1, \ldots, K_n)$

In general, for tuple $K = (K_1, \ldots, K_n)$ of convex bodies in \mathbb{R}^n , let

$$
V_K(p) = V(\underbrace{K_1, \ldots, K_1}_{p_1}, \ldots, \underbrace{K_n, \ldots, K_n}_{p_n})
$$

and
$$
\Delta_n = \{p = (p_1, \dots, p_n) \mid p_i \in \mathbb{Z}_{\geq 0}, p_1 + \dots + p_n = n\}
$$
. Then

$$
\text{Vol}(K_1 + \dots + K_n) = \sum_{p \in \Delta_n} {n \choose p} V_K(p).
$$

We need to maximize this linear function on the mixed volume configuration space:

$$
\mathcal{MV}_n = \{ (V_K(p))_{p \in \Delta_n} \mid K = (K_1, \ldots, K_n) \text{ with } \text{Vol}(K_i) \geq 1 \}.
$$

Aleksandrov-Fenchel inequality:

 $V(A, A, K_3, \ldots, K_n)V(B, B, K_3, \ldots, K_n) \leq V(A, B, K_3, \ldots, K_n)^2$

These are log-concavity relations on $\mathit{V}_{\mathcal{K}}$ along standard directions $e_i - e_j$:

Aleksandrov-Fenchel inequality:

 $V(A, A, K_3, \ldots, K_n)V(B, B, K_3, \ldots, K_n) \leq V(A, B, K_3, \ldots, K_n)^2$

These are log-concavity relations on $\mathit{V}_{\mathcal{K}}$ along standard directions $e_i - e_j$:

Aleksandrov-Fenchel inequality:

 $V(A, A, K_3, \ldots, K_n)V(B, B, K_3, \ldots, K_n) \leq V(A, B, K_3, \ldots, K_n)^2$

These are log-concavity relations on $\mathit{V}_{\mathcal{K}}$ along standard directions $e_i - e_j$:

We have

$$
\mathcal{MV}_n \subset \mathcal{AF}_n := \{ (V_p)_{p \in \Delta_n} \mid V_{p+e_i-e_j} V_{p+e_j-e_i} \leq V_p^2, \ V_p \geq 1 \}.
$$

We can turn this into a linear optimization problem by taking log base m

$$
\log \mathcal{MV}_n \subset \log \mathcal{AF}_n := \{(\nu_p)_{p \in \Delta_n} \mid \nu_{p+e_i-e_j} + \nu_{p+e_j-e_i} \leq 2\nu_p, \ \nu_p \geq 0\}.
$$

Then we can maximize the convex function in $(v_p, p \in \Delta_n)$

$$
F:=\sum_{p\in\Delta_n}\binom{n}{p}m^{\nu_p}
$$

on the Aleksandrov-Fenchel Polytope $\text{AFP}_n = \log \mathcal{AF}_n \cap \{v_{(1,...,1)} = 1\}.$

Theorem: $(n = 3)$ The maximum of $Vol(K_1 + K_2 + K_3)$ equals $(m + 2)^3$ where $m = V(K_1, K_2, K_3)$ and is attained when $K_1 = mK_2 = mK_3$ and $Vol(K_3) = 1.$

Approximating MV_n using Aleksandrov-Fenchel relations

Theorem: $(n = 3)$ The maximum of $Vol(K_1 + K_2 + K_3)$ equals $(m + 2)^3$ where $m = V(K_1, K_2, K_3)$ and is attained when $K_1 = mK_2 = mK_3$ and $Vol(K_3) = 1.$

Theorem: The Aleksandrov-Fenchel relations imply the following sharp bound

$$
V_p\leq m^{|p|},
$$

where $|p| = \prod_{p_i>0} p_i$ and $m = V_{(1,...,1)}.$

Approximating MV_n using Aleksandrov-Fenchel relations

Theorem: $(n = 3)$ The maximum of Vol $(K_1 + K_2 + K_3)$ equals $(m + 2)^3$ where $m = V(K_1, K_2, K_3)$ and is attained when $K_1 = mK_2 = mK_3$ and $Vol(K_3) = 1.$

Theorem: The Aleksandrov-Fenchel relations imply the following sharp bound

$$
V_p\leq m^{|p|},
$$

where $|p| = \prod_{p_i>0} p_i$ and $m = V_{(1,...,1)}.$

Corollary: The Aleksandrov-Fenchel relations cannot produce better bound than

$$
V(K_1+\cdots+K_n)\leq \mathcal{O}(m^{\alpha(n)}),
$$

where $3^{(n-2)/3}\leq \alpha(n)\leq 3^{n/3}.$

Approximating MV_n using Square relations

Square Inequality (Brazitikos, Giannopoulos, Liakopoulos '18)

 $V_K(p)V(p+a+b) \leq 2V(p+a)V(p+b)$, where $a = e_i - e_\ell$, $b = e_i - e_\ell$.

Approximating MV_n using Square relations

Square and Aleksandrov-Fenchel inequalities combined produce new (weak) log-concavity directions!

Approximating MV_n using Square relations

Square and Aleksandrov-Fenchel inequalities combined produce new (weak) log-concavity directions!

Approximating MV_n using Square relations

Square and Aleksandrov-Fenchel inequalities combined produce new (weak) log-concavity directions!

Approximating MV_n using Square relations

Theorem: The Square relations imply the following bound

 $V_p \leq C(n) m^{\max(p)},$

where max(p) = max_i(p_i) and $m = V_{(1,...,1)}$. Consequently, $\mathsf{Vol}(K_1+\cdots+K_n)\leq \mathcal{O}(m^n).$

Further work

Question: Is there a "structural" result for lattice polytopes across all n? For example,

- \triangleright (Hofscheier–Katthän–Nill '19) There are only finitely many spanning lattice polytopes of given volume up to lattice equivalence and unit pyramid construction.
- \triangleright (Balletti–Borger'19) All tuples of *n*-dim'l lattice polytopes (P_1,\ldots,P_n) with $V(P_1,\ldots,P_n)=|(P_1+\cdots+P_n)^\circ \cap \mathbb{Z}^n|+1$ are lattice projections onto $(\Delta_{n-1}, \ldots, \Delta_{n-1})$, except for finitely many exceptions.

Further work

Question: Is there a "structural" result for lattice polytopes across all n? For example,

- \triangleright (Hofscheier–Katthän–Nill '19) There are only finitely many spanning lattice polytopes of given volume up to lattice equivalence and unit pyramid construction.
- \triangleright (Balletti–Borger'19) All tuples of *n*-dim'l lattice polytopes (P_1,\ldots,P_n) with $V(P_1,\ldots,P_n)=|(P_1+\cdots+P_n)^\circ \cap \mathbb{Z}^n|+1$ are lattice projections onto $(\Delta_{n-1}, \ldots, \Delta_{n-1})$, except for finitely many exceptions.

Thank you!

Further work

Question: Is there a "structural" result for lattice polytopes across all n? For example,

- \triangleright (Hofscheier–Katthän–Nill '19) There are only finitely many spanning lattice polytopes of given volume up to lattice equivalence and unit pyramid construction.
- \triangleright (Balletti–Borger'19) All tuples of *n*-dim'l lattice polytopes (P_1,\ldots,P_n) with $V(P_1,\ldots,P_n)=|(P_1+\cdots+P_n)^\circ \cap \mathbb{Z}^n|+1$ are lattice projections onto $(\Delta_{n-1}, \ldots, \Delta_{n-1})$, except for finitely many exceptions.

Thank you!

Output: number of trivariate systems with m solutions

Unmixed system $=$ all Newton polytopes are the same Full-dim'l system $=$ all Newton polytopes are 3-dimensional Maximal system $=$ no Newton polytope can be increased without changing m

SageMath code and pictures of Newton polytopes are here: [gi](#page-0-1)thub.com/christopherborger/mixed volume classification