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The Volume Polynomial
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Isoperimetric Inequality

Isoperimetric problem What plane figure has the largest area when
the perimeter is fixed?

"%
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Isoperimetric Inequality

Isoperimetric inequality For any K ⊂ R2 we have

π area(K ) ≤
(

perim(K )

2

)2

For a disk of radius r we get equality

π πr2 =

(
2πr

2

)2
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Isoperimetric Inequality

Isoperimetric inequality For any K ⊂ R2 we have

π area(K ) ≤
(

perim(K )

2

)2

This is an instance of a coefficient inequality
for the area polynomial...
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The volume polynomial

A convex body is a non-empty compact convex set.

Univariate: Given a convex body K ⊂ Rd , the function

vold(tK ) = tdvold(K )

is a homogeneous polynomial of degree d in t.

Multivariate: (Minkowski 1903)

Given convex bodies K1, . . . ,Kn ⊂ Rd , the function

vold(t1K1 + · · ·+ tnKn)

is a homogeneous polynomial of degree d in t1, . . . , tn.

Here t1K1 + · · ·+ tnKn is the Minkowski sum of tiKi
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Minkowski sum

For A,B ⊂ Rd define

A + B = {a + b | a ∈ A, b ∈ B}
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The volume polynomial: Two bodies in R2

The volume polynomial of A,B ⊂ R2 is a quadratic form

vol2(t1A + t2B) = λ11t
2
1 + 2λ12t1t2 + λ22t

2
2

We have λ11 = vol2(A), λ22 = vol2(B), and

λ12 = 1
2 (vol2(A + B)− vol2(A)− vol2(B)) =: V(A,B) ← mixed area

Examples: . V(A,A) = vol2(A)

. V(u, v) = 1
2 | det(u, v)| . V(A,©) = 1

2perim(A)
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The volume polynomial: Two bodies in R2

The volume polynomial of A,B ⊂ R2 is a quadratic form

vol2(t1A + t2B) = V(A,A)t21 + 2 V(A,B)t1t2 + V(B,B)t22

Minkowski inequality

V(A,A) V(B,B) ≤ V(A,B)2

Note: . When B =© this is the isoperimetric inequality!

vol2(A)π ≤
(1

2
perim(A)

)2
. In matrix form: vol2(t1A + t2B) = t ΛtT , for t = (t1 t2)

Minkowski inequality

det Λ = det
(

V (A, A) V (A, B)
V (A, B) V (B, B)

)
≤ 0
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Heine-Shephard Problem

Each n-tuple of bodies K = (K1, . . . ,Kn) in Rd defines a volume
polynomial

vold(t1K1 + · · ·+ tnKn) =
∑

1≤i1,...,id≤n

V(Ki1 , . . . ,Kid )ti1 · · · tid

Its coefficients are the mixed volumes V(Ki1 , . . . ,Kid ).

Problem Given n and d , describe the space of all volume
polynomials V(n, d) in terms of coefficient inequalities.

Example:

V(2, 2) = {t ΛtT | Λ ∈ Sym2(R≥0), det Λ ≤ 0︸ ︷︷ ︸
Mink ineq

}

∼= {(x , y , z) ∈ R3
≥0 | xz ≤ y2}.
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Heine-Shephard Problem: Two results

Theorem (Heine 1938) For three convex bodies in R2 we have

V(3, 2) =
{
tΛtT | det Λ ≥ 0︸ ︷︷ ︸

det ineq

, det Λ î ≤ 0︸ ︷︷ ︸
Mink ineq

, i = 1, 2, 3
}

where Λ ∈ Sym3(R≥0) and Λ î are the 2× 2 principal minors.

Note: V(3, 2) ⊂ R6
≥0 given by 1 cubic and 3 quadratic inequalities.

Theorem (Shephard 1960) For two convex bodies in Rd we have

V(2, d) = {cd td1 + · · ·+ c0t
d
2 | ci−1ci+1 ≤ c2i for i = 1 . . . d − 1}.

In other words, it’s a space of log-concave sequences of length d + 1.

The Heine-Shephard Problem is open in all other cases...
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Plücker-type Inequalities
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Plücker-type inequalities

Let A,B,C ,D be any convex bodies in R2.Main result

D

A B

C

V(A, B) V(C , D)

V(A, C ) V(B , D)

V(A, D) V(B , C )

Theorem (A. & Soprunov)

V(A, B) V(C , D)  V(A, C ) V(B , D) + V(A, D) V(B , C )

holds for all A, B , C , D 2 K2.

That’s the only inequality for mixed volumes we know with no repetition

of a body within a mixed volume.

Theorem (Averkov-S’22) The six mixed volumes satisfy the quadratic
inequality

V(A,B) V(C ,D) ≤ V(A,C ) V(B,D) + V(A,D) V(B,C )

Note: This is the only inequality we know for mixed volumes without
repeated bodies. Previously known general inequalities (determinantal,
Aleksandrov-Fenchel, Bezout-type, etc.) involve repeated bodies.
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Plücker-type inequalities

Why do we call them Plücker-type?

Example: Suppose the Ki = [0, vi ] are segments in a half-plane ordered
counterclockwise, 1 ≤ i ≤ 4. Consider the matrix

M =
(
v1 v2 v3 v4

)
Then 2 V(Ki ,Kj) = det(vi , vj) =: vij , the maximal minors of M, which
satisfy the Grassman-Plücker relation

v12v34 − v13v24 + v14v23 = 0

Why do we call them Plücker-type?

Example: Suppose the Ki = [0, vi ] are segments in a half-plane ordered
counterclockwise, 1 ≤ i ≤ 4. Consider the matrix

M =
(
v1 v2 v3 v4

)
Then 2 V(Ki ,Kj) = det(vi , vj) =: vij , the maximal minors of M, which
satisfy the Grassman-Plücker relation

v12v34 − v13v24 + v14v23 = 0

Note: This relation is “linear” in each segment Ki . This implies the
theorem for centrally-symmetric bodies, since they are Minkowski
sums of segments.
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Square-free part of volume polynomials

Recall:

V(n, d) := the space of volume polynomials of n bodies in Rd .

Define:

PV(n, d) := the space of square-free parts of elements of V(n, d).

Example: The elements of V(n, 2) are quadratic forms∑n
i=1 V(Ki ,Ki )t

2
i + 2

∑
i<j V(Ki ,Kj)ti tj

whereas the elements of PV(n, 2) are square-free quadratic forms

2
∑

i<j V(Ki ,Kj)ti tj

Note: V(n, d)→ PV(n, d) is a coordinate projection, so information
about PV(n, d) may give some insight about V(n, d)
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Inequality description of PV(n, d)

Proposition (Averkov-S’22) . PV(d , d) = R≥0
. PV(d + 1, d) = Rd+1

≥0

Theorem (Averkov-S’22) The Plücker-type inequalities completely
describe PV(4, 2)

PV(4, 2) =
{

2
∑
i<j

cij ti tj

∣∣∣ c12c34 + c13c24 − c14c23 ≥ 0
c12c34 − c13c24 + c14c23 ≥ 0

−c12c34 + c13c24 + c14c23 ≥ 0

}

Theorem (Averkov-S’22) For any n ≥ 4 we have

PV(n, 2) ⊆
{

2
∑
i<j

cij ti tj | cijckl ≤ cikcjl + cilcjk for {i , j} t {k, l} ⊆ [n]
}

Moreover, this containment is proper for n ≥ 8.
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Theorem (Averkov-S’22) The Plücker-type inequalities completely
describe PV(4, 2)

PV(4, 2) =
{

2
∑
i<j

cij ti tj

∣∣∣ c12c34 + c13c24 − c14c23 ≥ 0
c12c34 − c13c24 + c14c23 ≥ 0

−c12c34 + c13c24 + c14c23 ≥ 0

}

Theorem (Averkov-S’22) For any n ≥ 4 we have

PV(n, 2) ⊆
{

2
∑
i<j

cij ti tj | cijckl ≤ cikcjl + cilcjk for {i , j} t {k, l} ⊆ [n]
}

Moreover, this containment is proper for n ≥ 8.
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Geometry of PV(n, 2)

Dimension

Theorem (Averkov-S’22) Both V(n, 2) and PV(n, 2) have non-empty
(relative) interior for n ≥ 2.

Corollary There are no non-trivial polynomial equations on the
coefficients of the area polynomial.

Semi-algebraicity

Theorem (Averkov-S’22) The closure PV(n, 2) ⊂ R(n
2) is a semi-algebraic

set, i.e. a set which can be described by a boolean combination of
polynomial inequalities.
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Applications and Other Directions

[Averkov, S]

SaiFre (UP(n,2)) = 9 [U(VvVj) titj: 1, ..., n C113
-

square free
poly

· Sq- Free (UP(d+1(d)) =1Rd+1
xO

*

8y ⑧ *

& d &

min92x+4,x +y + 1,zycx,y,1y
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Toric and Tropical curves

Fix a finite subset A ⊂ Z2, called the support.

Toric:

Laurent polynomial

f =
∑

(a1,a2)∈A

λa1,a2x
a1y a2

where λa1,a2 ∈ C∗

Tropical:

Tropical polynomial

f = min
(a1,a2)∈A

{λa1,a2 + a1x + a2y}

where λa1,a2 ∈ R

Toric curve
Cf = {(x , y) ∈ (C∗)2 | f (x , y) = 0}

Tropical curve
Cf = {(x , y) ∈ R2 | f not diff at (x , y)}
(It’s a 1-dim polyhedral complex in R2)
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Intersection numbers of curve arrangements

Consider n toric/tropical curves intersecting transversely.

Question Are there (algebraic) relations between the
(
n
2

)
pairwise

intersection numbers?

Example: arrangement of four planar tropical curves. . .

. . . gives six intersection numbers, one for each of the six pairs.

2

43

4 5

9

Is there any relation between these numbers? We’ll see...

Four tropical curves with six intersection numbers
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Intersection numbers are mixed volumes

Let C1,C2 be two generic toric/tropical curves with supports A1 and A2

and Newton polytopes P1 = conv(A1) and P2 = conv(A2).

Let I (C1,C2) = number of intersection points counting multiplicities.

BKK Theorem in dimension 2 (Bernstein–Khovanskii-Kushnirenko’75)

I (C1,C2) = 2 V(P1,P2)
↑ ↑

intersection number mixed area
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Arrangement of four tropical curves (left) with their respective regularly

subdivided Newton polygons and the pairwise mixed areas thereof (right):

The six intersection numbers IC = (2, 3, 4, 4, 5, 9) satisfy the Plücker-type
inequalities, i.e. the three products

2 · 9 = 18, 3 · 5 = 15, 4 · 4 = 16.

satisfy the triangle inequalities.
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Intersection numbers of curve arrangements

Each n-tuple C of tropical curves with pairwise transversal intersections
defines a vector IC of

(
n
2

)
intersection numbers.

Define: I(n, 2) = {IC | C transversal arrangement of n tropical curves}

By the BBK theorem we have I(n, 2) ⊆ PV(n, 2) ∩ Z(n
2).

We don’t know if these sets are equal. Here is what we know:

Let R≥0I(n, 2) the smallest positive homogeneous set containing I(n, 2).

Proposition (Averkov-S’22) We have

R≥0I(n, 2) = PV(n, 2)

Corollary The space R≥0I(4, 2) is completely described by the
Plücker-type inequalities.
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Other directions

I Is PV(n, 2) completely described by the Plücker-type inequalities for
n = 5, 6, 7?

I What inequalities for PV(8, 2) are we missing?

I Do Plücker-type inequalities exist in higher dimensions?

I Investigate relations between PV(n, d) and square-free Lorentzian
polynomials.

Thank you!
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n = 5, 6, 7?

I What inequalities for PV(8, 2) are we missing?
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