Plücker-type inequalities for mixed areas and intersection numbers

TULANE MATH COLLOQUIUM

Ivan Soprunov (Cleveland State University)

Joint work with Gennadiy Averkov (BTU, Cottbus)

February 17, 2023

The Volume Polynomial

Isoperimetric problem What plane figure has the largest area when the perimeter is fixed?

Isoperimetric Inequality

Isoperimetric inequality For any $K \subset \mathbb{R}^2$ we have

$$\pi \operatorname{area}(K) \leq \left(\frac{\operatorname{perim}(K)}{2}\right)^2$$

Isoperimetric Inequality

Isoperimetric inequality For any $K \subset \mathbb{R}^2$ we have

$$\pi \operatorname{area}(\mathcal{K}) \leq \left(\frac{\operatorname{perim}(\mathcal{K})}{2}\right)^2$$

For a disk of radius r we get equality

$$\pi \pi r^2 = \left(\frac{2\pi r}{2}\right)^2$$

Isoperimetric Inequality

Isoperimetric inequality For any $K \subset \mathbb{R}^2$ we have

$$\pi \operatorname{area}(\mathcal{K}) \leq \left(rac{\operatorname{perim}(\mathcal{K})}{2}
ight)^2$$

This is an instance of a coefficient inequality for the area polynomial...

The volume polynomial

A convex body is a non-empty compact convex set. Univariate: Given a convex body $K \subset \mathbb{R}^d$, the function

$$\operatorname{vol}_d(tK) = t^d \operatorname{vol}_d(K)$$

is a homogeneous polynomial of degree d in t.

The volume polynomial

A convex body is a non-empty compact convex set. Univariate: Given a convex body $K \subset \mathbb{R}^d$, the function

$$\operatorname{vol}_d(tK) = t^d \operatorname{vol}_d(K)$$

is a homogeneous polynomial of degree d in t.

Multivariate: (Minkowski 1903) Given convex bodies $K_1, \ldots, K_n \subset \mathbb{R}^d$, the function

$$\operatorname{vol}_d(t_1K_1+\cdots+t_nK_n)$$

is a homogeneous polynomial of degree d in t_1, \ldots, t_n .

Here $t_1K_1 + \cdots + t_nK_n$ is the Minkowski sum of t_iK_i

Minkowski sum

For $A, B \subset \mathbb{R}^d$ define

$$A+B = \{a+b \mid a \in A, b \in B\}$$

Minkowski sum

For $A, B \subset \mathbb{R}^d$ define

$$A+B=\{a+b\mid a\in A,b\in B\}$$

Minkowski sum

For $A, B \subset \mathbb{R}^d$ define

$$A+B=\{a+b\mid a\in A,b\in B\}$$

The volume polynomial of $A, B \subset \mathbb{R}^2$ is a quadratic form

$$vol_2(t_1A + t_2B) = \lambda_{11}t_1^2 + 2\lambda_{12}t_1t_2 + \lambda_{22}t_2^2$$

The volume polynomial of $A, B \subset \mathbb{R}^2$ is a quadratic form

$$\mathrm{vol}_{2}(t_{1}A + t_{2}B) = \lambda_{11}t_{1}^{2} + 2\lambda_{12}t_{1}t_{2} + \lambda_{22}t_{2}^{2}$$

We have $\lambda_{11} = \operatorname{vol}_2(A)$, $\lambda_{22} = \operatorname{vol}_2(B)$, and

 $\lambda_{12} = \frac{1}{2}(\operatorname{vol}_2(A+B) - \operatorname{vol}_2(A) - \operatorname{vol}_2(B)) =: V(A,B) \leftarrow \mathsf{mixed} \mathsf{ area}$

The volume polynomial of $A, B \subset \mathbb{R}^2$ is a quadratic form

$$\operatorname{vol}_{2}(t_{1}A + t_{2}B) = \lambda_{11}t_{1}^{2} + 2\lambda_{12}t_{1}t_{2} + \lambda_{22}t_{2}^{2}$$

We have $\lambda_{11} = \operatorname{vol}_2(A)$, $\lambda_{22} = \operatorname{vol}_2(B)$, and

$$\lambda_{12} = \frac{1}{2}(\operatorname{vol}_2(A+B) - \operatorname{vol}_2(A) - \operatorname{vol}_2(B)) =: V(A,B) \leftarrow \mathsf{mixed} \mathsf{ area}$$

Examples: \triangleright V(A, A) = vol₂(A)

The volume polynomial of $A, B \subset \mathbb{R}^2$ is a quadratic form

$$\operatorname{vol}_2(t_1A + t_2B) = \lambda_{11}t_1^2 + 2\lambda_{12}t_1t_2 + \lambda_{22}t_2^2$$

We have $\lambda_{11} = \operatorname{vol}_2(A)$, $\lambda_{22} = \operatorname{vol}_2(B)$, and

$$\lambda_{12} = \frac{1}{2}(\operatorname{vol}_2(A + B) - \operatorname{vol}_2(A) - \operatorname{vol}_2(B)) =: V(A, B) \leftarrow \mathsf{mixed} \mathsf{ area}$$

Examples:
$$\triangleright V(A, A) = \operatorname{vol}_2(A)$$

 $\triangleright V(u, v) = \frac{1}{2} |\det(u, v)| \qquad \qquad \triangleright V(A, \bigcirc) = \frac{1}{2}\operatorname{perim}(A)$

The volume polynomial of $A, B \subset \mathbb{R}^2$ is a quadratic form

$$vol_2(t_1A + t_2B) = V(A, A)t_1^2 + 2V(A, B)t_1t_2 + V(B, B)t_2^2$$

Minkowski inequality

 $V(A, A) V(B, B) \leq V(A, B)^2$

The volume polynomial of $A, B \subset \mathbb{R}^2$ is a quadratic form

$$vol_2(t_1A + t_2B) = V(A, A)t_1^2 + 2V(A, B)t_1t_2 + V(B, B)t_2^2$$

Minkowski inequality

$$V(A, A) V(B, B) \leq V(A, B)^2$$

Note: \triangleright When $B = \bigcirc$ this is the isoperimetric inequality!

$$\operatorname{vol}_2(A) \pi \leq \left(\frac{1}{2}\operatorname{perim}(A)\right)^2$$

The volume polynomial of $A, B \subset \mathbb{R}^2$ is a quadratic form

$$\operatorname{vol}_2(t_1A + t_2B) = V(A, A)t_1^2 + 2V(A, B)t_1t_2 + V(B, B)t_2^2$$

Minkowski inequality

$$V(A, A) V(B, B) \leq V(A, B)^2$$

Note: \triangleright When $B = \bigcirc$ this is the isoperimetric inequality!

$$\operatorname{vol}_2(A) \pi \leq \left(\frac{1}{2}\operatorname{perim}(A)\right)^2$$

▷ In matrix form: $\operatorname{vol}_2(t_1A + t_2B) = t \Lambda t^T$, for $t = (t_1 \ t_2)$

Minkowski inequality

$$\det \Lambda = \det egin{pmatrix} {V}_{(A,\ B)} & {V}_{(A,\ B)} & {V}_{(B,\ B)} \end{pmatrix} \leq 0$$

Heine-Shephard Problem

Each *n*-tuple of bodies $K = (K_1, \ldots, K_n)$ in \mathbb{R}^d defines a volume polynomial

$$\operatorname{vol}_d(t_1K_1+\cdots+t_nK_n) = \sum_{1\leq i_1,\ldots,i_d\leq n} V(K_{i_1},\ldots,K_{i_d})t_{i_1}\cdots t_{i_d}$$

Its coefficients are the mixed volumes $V(K_{i_1}, \ldots, K_{i_d})$.

Problem Given n and d, describe the space of all volume polynomials $\mathcal{V}(n, d)$ in terms of coefficient inequalities.

Heine-Shephard Problem

Each *n*-tuple of bodies $K = (K_1, \ldots, K_n)$ in \mathbb{R}^d defines a volume polynomial

$$\operatorname{vol}_d(t_1K_1+\cdots+t_nK_n) = \sum_{1\leq i_1,\ldots,i_d\leq n} V(K_{i_1},\ldots,K_{i_d})t_{i_1}\cdots t_{i_d}$$

Its coefficients are the mixed volumes $V(K_{i_1}, \ldots, K_{i_d})$.

Problem Given n and d, describe the space of all volume polynomials $\mathcal{V}(n, d)$ in terms of coefficient inequalities.

Example:

$$\mathcal{V}(2,2) = \{ t \Lambda t^{\mathcal{T}} \mid \Lambda \in \mathsf{Sym}_2(\mathbb{R}_{\geq 0}), \underbrace{\det \Lambda \leq 0}_{\mathsf{Mink ineq}} \}$$
$$\cong \{ (x, y, z) \in \mathbb{R}^3_{\geq 0} \mid xz \leq y^2 \}.$$

Heine-Shephard Problem: Two results

Theorem (Heine 1938) For three convex bodies in \mathbb{R}^2 we have

$$\mathcal{V}(3,2) = \left\{ t \Lambda t^{\mathcal{T}} \mid \underbrace{\det \Lambda \geq 0}_{\det \text{ ineq}}, \underbrace{\det \Lambda_{\widehat{i}} \leq 0}_{\mathsf{Mink ineq}}, i = 1,2,3 \right\}$$

where $\Lambda \in \mathsf{Sym}_3(\mathbb{R}_{\geq 0})$ and $\Lambda_{\widehat{i}}$ are the 2 × 2 principal minors.
Note: $\mathcal{V}(3,2) \subset \mathbb{R}^6_{\geq 0}$ given by 1 cubic and 3 quadratic inequalities.

Heine-Shephard Problem: Two results

Theorem (Heine 1938) For three convex bodies in \mathbb{R}^2 we have

$$\mathcal{V}(3,2) = \left\{ t \Lambda t^{\mathcal{T}} \mid \underbrace{\det \Lambda \geq 0}_{\det \text{ ineq}}, \underbrace{\det \Lambda_{\hat{i}} \leq 0}_{\text{Mink ineq}}, i = 1, 2, 3 \right\}$$

where $\Lambda \in \text{Sym}_3(\mathbb{R}_{\geq 0})$ and $\Lambda_{\hat{i}}$ are the 2 × 2 principal minors.
Note: $\mathcal{V}(3,2) \subset \mathbb{R}^6_{\geq 0}$ given by 1 cubic and 3 quadratic inequalities.

Theorem (Shephard 1960) For two convex bodies in \mathbb{R}^d we have

$$\mathcal{V}(2,d) = \{c_d t_1^d + \dots + c_0 t_2^d \mid c_{i-1} c_{i+1} \leq c_i^2 \text{ for } i = 1 \dots d - 1\}.$$

In other words, it's a space of log-concave sequences of length d + 1.

Heine-Shephard Problem: Two results

Theorem (Heine 1938) For three convex bodies in \mathbb{R}^2 we have

$$\mathcal{V}(3,2) = \left\{ t \Lambda t^{\mathcal{T}} \mid \underbrace{\det \Lambda \geq 0}_{\det \text{ ineq}}, \underbrace{\det \Lambda_{\hat{i}} \leq 0}_{\text{Mink ineq}}, i = 1, 2, 3 \right\}$$

where $\Lambda \in \text{Sym}_3(\mathbb{R}_{\geq 0})$ and $\Lambda_{\hat{i}}$ are the 2 × 2 principal minors.
Note: $\mathcal{V}(3,2) \subset \mathbb{R}_{\geq 0}^6$ given by 1 cubic and 3 quadratic inequalities.

Theorem (Shephard 1960) For two convex bodies in \mathbb{R}^d we have

$$\mathcal{V}(2,d) = \{c_d t_1^d + \dots + c_0 t_2^d \mid c_{i-1} c_{i+1} \leq c_i^2 \text{ for } i = 1 \dots d - 1\}.$$

In other words, it's a space of log-concave sequences of length d + 1.

The Heine-Shephard Problem is open in all other cases...

Let A, B, C, D be any convex bodies in \mathbb{R}^2 .

V(A, B) V(C, D)V(A, C) V(B, D)V(A, D) V(B, C)

Let A, B, C, D be any convex bodies in \mathbb{R}^2 .

Theorem (Averkov-S'22) The six mixed volumes satisfy the quadratic inequality

$V(A, B) V(C, D) \le V(A, C) V(B, D) + V(A, D) V(B, C)$

Note: This is the only inequality we know for mixed volumes without repeated bodies. Previously known general inequalities (determinantal, Aleksandrov-Fenchel, Bezout-type, etc.) involve repeated bodies.

Why do we call them Plücker-type?

Example: Suppose the $K_i = [0, v_i]$ are segments in a half-plane ordered counterclockwise, $1 \le i \le 4$. Consider the matrix

$$M = \left(v_1 \ v_2 \ v_3 \ v_4\right)$$

Then $2V(K_i, K_j) = det(v_i, v_j) =: v_{ij}$, the maximal minors of M, which satisfy the Grassman-Plücker relation

$$v_{12}v_{34} - v_{13}v_{24} + v_{14}v_{23} = 0$$

Why do we call them Plücker-type?

Example: Suppose the $K_i = [0, v_i]$ are segments in a half-plane ordered counterclockwise, $1 \le i \le 4$. Consider the matrix

$$M = \left(v_1 \ v_2 \ v_3 \ v_4\right)$$

Then $2V(K_i, K_j) = det(v_i, v_j) =: v_{ij}$, the maximal minors of M, which satisfy the Grassman-Plücker relation

$$v_{12}v_{34} - v_{13}v_{24} + v_{14}v_{23} = 0$$

Note: This relation is "linear" in each segment K_i . This implies the theorem for centrally-symmetric bodies, since they are Minkowski sums of segments.

Square-free part of volume polynomials

Recall:

 $\mathcal{V}(n,d) :=$ the space of volume polynomials of n bodies in \mathbb{R}^d .

Define:

 $\mathcal{PV}(n, d) :=$ the space of square-free parts of elements of $\mathcal{V}(n, d)$.

Example: The elements of $\mathcal{V}(n,2)$ are quadratic forms

$$\sum_{i=1}^{n} \mathsf{V}(K_i, K_i) t_i^2 + 2 \sum_{i < j} \mathsf{V}(K_i, K_j) t_i t_j$$

whereas the elements of $\mathcal{PV}(n, 2)$ are square-free quadratic forms

$$2\sum_{i < j} V(K_i, K_j) t_i t_j$$

Note: $\mathcal{V}(n, d) \rightarrow \mathcal{PV}(n, d)$ is a coordinate projection, so information about $\mathcal{PV}(n, d)$ may give some insight about $\mathcal{V}(n, d)$

Inequality description of $\mathcal{PV}(n, d)$

 $\begin{array}{l} \mathsf{Proposition} \ (\mathsf{Averkov}\text{-}\mathsf{S'22}) \triangleright \mathcal{PV}(d,d) = \mathbb{R}_{\geq 0} \\ \triangleright \mathcal{PV}(d+1,d) = \mathbb{R}_{\geq 0}^{d+1} \end{array}$

Inequality description of $\mathcal{PV}(n, d)$

Proposition (Averkov-S'22)
$$\triangleright \mathcal{PV}(d, d) = \mathbb{R}_{\geq 0}$$

 $\triangleright \mathcal{PV}(d+1, d) = \mathbb{R}_{\geq 0}^{d+1}$

Theorem (Averkov-S'22) The Plücker-type inequalities completely describe $\mathcal{PV}(4,2)$

$$\mathcal{PV}(4,2) = \left\{ 2\sum_{i < j} c_{ij} t_i t_j \ \left| \begin{array}{c} c_{12}c_{34} + c_{13}c_{24} - c_{14}c_{23} \ge 0\\ c_{12}c_{34} - c_{13}c_{24} + c_{14}c_{23} \ge 0\\ -c_{12}c_{34} + c_{13}c_{24} + c_{14}c_{23} \ge 0 \end{array} \right\}$$

Inequality description of $\mathcal{PV}(n, d)$

Proposition (Averkov-S'22)
$$\triangleright \mathcal{PV}(d, d) = \mathbb{R}_{\geq 0}$$

 $\triangleright \mathcal{PV}(d+1, d) = \mathbb{R}_{\geq 0}^{d+1}$

Theorem (Averkov-S'22) The Plücker-type inequalities completely describe $\mathcal{PV}(4,2)$

$$\mathcal{PV}(4,2) = \left\{ 2\sum_{i < j} c_{ij} t_i t_j \ \left| \begin{array}{c} c_{12}c_{34} + c_{13}c_{24} - c_{14}c_{23} \ge 0\\ c_{12}c_{34} - c_{13}c_{24} + c_{14}c_{23} \ge 0\\ -c_{12}c_{34} + c_{13}c_{24} + c_{14}c_{23} \ge 0 \end{array} \right\}$$

Theorem (Averkov-S'22) For any $n \ge 4$ we have

$$\mathcal{PV}(n,2) \subseteq \left\{ 2\sum_{i < j} c_{ij} t_i t_j \mid c_{ij} c_{kl} \le c_{ik} c_{jl} + c_{il} c_{jk} \text{ for } \{i,j\} \sqcup \{k,l\} \subseteq [n] \right\}$$

Moreover, this containment is proper for $n \ge 8$.

Geometry of $\mathcal{PV}(n,2)$

Dimension

Theorem (Averkov-S'22) Both $\mathcal{V}(n,2)$ and $\mathcal{PV}(n,2)$ have non-empty (relative) interior for $n \geq 2$.

Corollary There are no non-trivial polynomial equations on the coefficients of the area polynomial.

Geometry of $\mathcal{PV}(n,2)$

Dimension

Theorem (Averkov-S'22) Both $\mathcal{V}(n,2)$ and $\mathcal{PV}(n,2)$ have non-empty (relative) interior for $n \geq 2$.

Corollary There are no non-trivial polynomial equations on the coefficients of the area polynomial.

Semi-algebraicity

Theorem (Averkov-S'22) The closure $\overline{\mathcal{PV}(n,2)} \subset \mathbb{R}^{\binom{n}{2}}$ is a semi-algebraic set, i.e. a set which can be described by a boolean combination of polynomial inequalities.

Applications and Other Directions

Toric and Tropical curves

Fix a finite subset $A \subset \mathbb{Z}^2$, called the support.

Toric:

Laurent polynomial

$$f = \sum_{(a_1,a_2) \in A} \lambda_{a_1,a_2} x^{a_1} y^{a_2}$$

where $\lambda_{\mathbf{a}_1,\mathbf{a}_2} \in \mathbb{C}^*$

Tropical:

Tropical polynomial

$$f = \min_{(a_1, a_2) \in A} \{ \lambda_{a_1, a_2} + a_1 x + a_2 y \}$$

where $\lambda_{a_1,a_2} \in \mathbb{R}$

Toric and Tropical curves

Fix a finite subset $A \subset \mathbb{Z}^2$, called the support.

Toric:

Laurent polynomial

$$f = \sum_{(a_1,a_2)\in A} \lambda_{a_1,a_2} x^{a_1} y^{a_2}$$

where $\lambda_{\mathbf{a}_1,\mathbf{a}_2} \in \mathbb{C}^*$

Toric curve $C_f = \{(x, y) \in (\mathbb{C}^*)^2 \mid f(x, y) = 0\}$

Tropical:

Tropical polynomial

$$f = \min_{(a_1, a_2) \in A} \{ \lambda_{a_1, a_2} + a_1 x + a_2 y \}$$

where $\lambda_{a_1,a_2} \in \mathbb{R}$

Tropical curve $C_f = \{(x, y) \in \mathbb{R}^2 | f \text{ not diff at } (x, y)\}$ (It's a 1-dim polyhedral complex in \mathbb{R}^2)

Consider *n* toric/tropical curves intersecting transversely.

Question Are there (algebraic) relations between the $\binom{n}{2}$ pairwise intersection numbers?

Consider *n* toric/tropical curves intersecting transversely.

Question Are there (algebraic) relations between the $\binom{n}{2}$ pairwise intersection numbers?

Four tropical curves with six intersection numbers

Intersection numbers are mixed volumes

Let C_1 , C_2 be two generic toric/tropical curves with supports A_1 and A_2 and Newton polytopes $P_1 = \text{conv}(A_1)$ and $P_2 = \text{conv}(A_2)$.

Let $I(C_1, C_2)$ = number of intersection points counting multiplicities.

Intersection numbers are mixed volumes

Let C_1 , C_2 be two generic toric/tropical curves with supports A_1 and A_2 and Newton polytopes $P_1 = \text{conv}(A_1)$ and $P_2 = \text{conv}(A_2)$.

Let $I(C_1, C_2)$ = number of intersection points counting multiplicities.

BKK Theorem in dimension 2 (Bernstein-Khovanskii-Kushnirenko'75)

$$I(C_1, C_2) = 2 V(P_1, P_2)$$

intersection number mixed area

The six intersection numbers $I_C = (2, 3, 4, 4, 5, 9)$ satisfy the Plücker-type inequalities, i.e. the three products

$$2\cdot 9 = 18, \ 3\cdot 5 = 15, \ 4\cdot 4 = 16.$$

satisfy the triangle inequalities.

Each *n*-tuple *C* of tropical curves with pairwise transversal intersections defines a vector I_C of $\binom{n}{2}$ intersection numbers.

Define: $\mathcal{I}(n,2) = \{I_C \mid C \text{ transversal arrangement of } n \text{ tropical curves}\}$

By the BBK theorem we have $\mathcal{I}(n,2) \subseteq \mathcal{PV}(n,2) \cap \mathbb{Z}^{\binom{n}{2}}$.

We don't know if these sets are equal. Here is what we know:

Each *n*-tuple *C* of tropical curves with pairwise transversal intersections defines a vector I_C of $\binom{n}{2}$ intersection numbers.

Define: $\mathcal{I}(n,2) = \{I_C \mid C \text{ transversal arrangement of } n \text{ tropical curves}\}$

By the BBK theorem we have $\mathcal{I}(n,2) \subseteq \mathcal{PV}(n,2) \cap \mathbb{Z}^{\binom{n}{2}}$.

We don't know if these sets are equal. Here is what we know:

Let $\mathbb{R}_{\geq 0}\mathcal{I}(n, 2)$ the smallest positive homogeneous set containing $\mathcal{I}(n, 2)$. Proposition (Averkov-S'22) We have

$$\overline{\mathbb{R}_{\geq 0}\mathcal{I}(n,2)} = \overline{\mathcal{PV}(n,2)}$$

Each *n*-tuple *C* of tropical curves with pairwise transversal intersections defines a vector I_C of $\binom{n}{2}$ intersection numbers.

Define: $\mathcal{I}(n,2) = \{I_C \mid C \text{ transversal arrangement of } n \text{ tropical curves}\}$

By the BBK theorem we have $\mathcal{I}(n,2) \subseteq \mathcal{PV}(n,2) \cap \mathbb{Z}^{\binom{n}{2}}$.

We don't know if these sets are equal. Here is what we know:

Let $\mathbb{R}_{\geq 0}\mathcal{I}(n, 2)$ the smallest positive homogeneous set containing $\mathcal{I}(n, 2)$. Proposition (Averkov-S'22) We have

$$\overline{\mathbb{R}_{\geq 0}\mathcal{I}(n,2)} = \overline{\mathcal{PV}(n,2)}$$

Corollary The space $\overline{\mathbb{R}_{\geq 0}\mathcal{I}(4,2)}$ is completely described by the Plücker-type inequalities.

Is PV(n,2) completely described by the Plücker-type inequalities for n = 5,6,7?

- Is PV(n,2) completely described by the Plücker-type inequalities for n = 5,6,7?
- What inequalities for $\mathcal{PV}(8,2)$ are we missing?

- Is PV(n,2) completely described by the Plücker-type inequalities for n = 5,6,7?
- What inequalities for $\mathcal{PV}(8,2)$ are we missing?
- Do Plücker-type inequalities exist in higher dimensions?

- Is PV(n,2) completely described by the Plücker-type inequalities for n = 5,6,7?
- What inequalities for $\mathcal{PV}(8,2)$ are we missing?
- Do Plücker-type inequalities exist in higher dimensions?
- lnvestigate relations between $\mathcal{PV}(n, d)$ and square-free Lorentzian polynomials.

- Is PV(n,2) completely described by the Plücker-type inequalities for n = 5,6,7?
- What inequalities for $\mathcal{PV}(8,2)$ are we missing?
- Do Plücker-type inequalities exist in higher dimensions?
- lnvestigate relations between $\mathcal{PV}(n, d)$ and square-free Lorentzian polynomials.

Thank you!